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Introduction

Consider the di�erential equation

−y′′ + q (x) y = λ2y, −∞ < x < +∞, (0.1)

with discontinuity conditions at a point a ∈ (−∞,+∞)

y (a− 0) = αy (a + 0) ,

y′ (a− 0) = α−1y′ (a + 0) , (0.2)
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Inverse Scattering Problem for One-Dimensional Schr�odinger Equation

where 1 6= α > 0, λ is a complex parameter, q (x) is a real-valued function
with

+∞∫

−∞
(1 + |x|) |q (x)| dx < +∞. (0.3)

The aim of this paper is to study direct and inverse scattering problems for
equation (0.1) with conditions (0.2). The inverse problem, where discontinuity
conditions (0.2) are absent, i.e., α = 1, was completely solved in [1�4]. The similar
problem for the system of di�erential equations without discontinuity conditions
was studied in [5�8]. Some aspects of direct and inverse problems for di�erential
operators with discontinuity conditions were studied in [9�13].

Since the case α 6= 1 is almost analogous to the case α = 1, below we will
consider the moments that di�er these cases.

Notice that problem (0.1)�(0.2) can be rewritten in the form

−p (x)
(

1
p2 (x)

(p (x) y)′
)′

+ q (x) y = λ2y, −∞ < x < +∞,

where p (x) = α for x > a and p (x) = 1 for x < a.

1. Jost Type Solutions
The functions e± (x, λ) satisfying equation (0.1), conditions (0.2) and the con-

dition
lim

x→±∞e± (x, λ) e∓iλx = 1 (1.1)±

are called the Jost type solutions. It is not di�cult to show that if q (x) ≡ 0, then
the Jost solutions are

e±0 (x, λ) =
{

e±iλx, ±x > ±a,

Ae±iλx ±Be±iλ(2a−x), ±x < ±a,

where A =
1
2

(
α +

1
α

)
, B =

1
2

(
α− 1

α

)
.

Theorem 1.1. Under condition (0.3), equation (0.1) with discontinuity con-
ditions (0.2) for all λ from the half-plane Imλ ≥ 0 has a solution e± (x, λ) which
can be represented in the form

e± (x, λ) = e±0 (x, λ)±
±∞∫

x

K± (x, t) e±iλtdt, (1.2)±

where the kernels K±(x, t) satisfy the inequalities
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∣∣K±(x, t)
∣∣ ≤ C

2
σ±

(
x + t

2

)
eCσ±1 (x), 0 < |x− a| < ±(t− a),

∣∣K±(x, t)
∣∣ ≤

{
C

2
σ±

(
x + t

2

)
+
|B|
2

σ±
(

2a + x− t

2

)}
eCσ±1 (x),

|t− a| < ±(a− x), (1.3)±

where C = A+|B| , σ±(x) = ±
±∞∫
x
|q(s)| ds, σ±1 (x) = ±

±∞∫
x

σ±(s)ds. Moreover,

the functions K±(x, t) are continuous at t 6= 2a − x, x 6= a, and the following
relations are satis�ed:

K±(x, x) = ±A

2

±∞∫

x

q(t)dt, ±x < ± a,

K±(x, x) = ±1
2

±∞∫

x

q(t)dt, ±x > ±a,

K±(x, 2a− x + 0)−K±(x, 2a− x− 0)

= ±B

2




±∞∫

a

q(t)dt−
a∫

x

q(t)dt


 , ±x < ± a. (1.4)±

P r o o f. We give the proof of the theorem for the solution e+ (x, λ). Problem
(0.1), (0.2), (1.1)+ is equivalent to the integral equation

e+ (x, λ) = e+
0 (x, λ) +

+∞∫

x

S+
0 (x, t, λ) q (t) e+ (t, λ) dt, (1.5)

where

S+
0 (x, t, λ) =





sinλ (t− x)
λ

, a < x < t or x < t < a,

A
sinλ (t− x)

λ
+ B

sinλ (t− 2a + x)
λ

, x < a < t.

Substituting (1.2)+ in (1.5) and using the uniqueness of the expansion in a
Fourier integral, we obtain the equation for K+ (x, t),

K+ (x, t) = K+
0 (x, t) +

1
2

a∫

x

q (ξ)

t+ξ−x∫

t−ξ+x

K+ (ξ, s) ds dξ
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+
A

2

+∞∫

a

q (ξ)

t+ξ−x∫

t−ξ+x

K+ (ξ, s) ds dξ

+
B

2

+∞∫

a

q (ξ)

t+ξ−2a+x∫

t−ξ+2a−x

K+ (ξ, s) ds dξ, x < a, (1.6)+

K+ (x, t) = K+
0 (x, t) +

1
2

+∞∫

x

q (ξ)

t+ξ−x∫

t−ξ+x

K+ (ξ, s) ds dξ, x > a, (1.7)+

where

K+
0 (x, t) =

A

2

+∞∫

x+t
2

q (ξ) dξ+
B

2





a∫
2a+x−t

2

q (ξ) dξ −
t+2a−x

2∫
a

q (ξ) dξ, x < t < 2a− x,

+∞∫
t+2a−x

2

q (ξ) dξ, t > 2a− x,

(1.8)+
for x < a, and

K+
0 (x, t) =

1
2

+∞∫

x+t
2

q (ξ) dξ (1.9)+

for x > a.
Thus, to �nish the proof of the theorem for e+(x, λ), it is su�cient to show

that for each �xed x 6= a the system of equations (1.6)+, (1.7)+ has a solution
K+ (x, t) satisfying inequality (1.3)+.

We put

K+
n (x, t) =

1
2

a∫

x

q (ξ)

t+ξ−x∫

t−ξ+x

K+
n−1 (ξ, s) ds dξ +

A

2

+∞∫

a

q (ξ)

t+ξ−x∫

t−ξ+x

K+
n−1 (ξ, s) ds dξ

+
B

2

+∞∫

a

q (ξ)

t+ξ−2a+x∫

t−ξ+2a−x

K+
n−1 (ξ, s) ds dξ, x < a,

K+
n (x, t) =

1
2

+∞∫

x

q (ξ)

t+ξ−x∫

t−ξ+x

K+
n−1 (ξ, s) ds dξ, x > a, n = 1, 2, . . . ,

where K+
0 (x, t) is de�ned by (1.8)+, (1.9)+.

Journal of Mathematical Physics, Analysis, Geometry, 2013, vol. 9, No. 3 335



H.M. Huseynov and J.A. Osmanli

It follows from the de�nition of K+
n (x, t) that

∣∣K+
n (x, t)

∣∣ ≤ C

2

+∞∫

x

|q (ξ)|
t+ξ−x∫

t−ξ+x

∣∣K+
n−1 (ξ, s)

∣∣ ds dξ

or
∣∣K+

n (x, t)
∣∣ ≤ C

2

x+t
2∫

x

|q(ξ)|
t+ξ−x∫

t−ξ+x

∣∣K+
n−1(ξ, s)

∣∣ dsdξ

+
C

2

∞∫

x+t
2

|q(ξ)|
t+ξ−x∫

ξ

∣∣K+
n−1(ξ, s)

∣∣ ds dξ (1.10)

since K(ξ, s) = 0 for s < ξ. Using (1.8)+, (1.9)+, we have

∣∣K+
0 (x, t)

∣∣ ≤ C

2
σ+

(
x + t

2

)
, 0 < |x− a| < t− a,

∣∣K+
0 (x, t)

∣∣ ≤ A

2
σ+

(
x + t

2

)
+
|B|
2

σ+

(
2a + x− t

2

)
, |t− a| < a− x.

Applying the principle of mathematical induction, from (1.10) we obtain

∣∣K+
n (x, t)

∣∣ ≤ C

2
σ+

(
x + t

2

) {
Cσ+

1 (x)
}n

n!
, 0 < |x− a| < t− a,

∣∣K+
n (x, t)

∣∣ ≤
{

C

2
σ+

(
x + t

2

)
+
|B|
2

σ+

(
2a + x− t

2

)} {
Cσ+

1 (x)
}n

n!
,

|t− a| < a− x.

Therefore the series
+∞∑
n=0

K+
n (x, t) uniformly converges on the set t > x, t 6=

2a− x, x 6= a and its sum K+ (x, t) is the solution of the system (1.6)+ − (1.7)+
and satis�es inequality (1.3)+. The validity of relations (1.4)+ follows immediately
from (1.6)+ − (1.9)+.

The statement of the theorem for the solution e−(x, λ) can be established in
a similar way. We give only integral equations for the kernel K−(x, t),

K−(x, t) = K−
0 (x, t) +

1
2

x∫

a

q(ξ)

t−ξ+x∫

t+ξ−x

K−(ξ, s)ds dξ
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−A

2

a∫

−∞
q(ξ)

t−ξ+x∫

t+ξ−x

K−(ξ, s)ds dξ − B

2

a∫

−∞
q(ξ)

t−ξ+2a−x∫

t+ξ−2a+x

K−(ξ, s)ds dξ,

x > a, (1.6)−

K−(x, t) = K−
0 (x, t) +

1
2

x∫

−∞
q(ξ)

t−ξ+x∫

t+ξ−x

K−(ξ, s)ds dξ, x < a, (1.7)−

where

K−
0 (x, t) =

A

2

x+t
2∫

−∞
q(ξ)dξ

−B

2





2a+x−t
2∫
a

q(ξ)dξ −
a∫

t+2a−x
2

q(ξ)dξ, 2a− x < t < x,

t+2a−x
2∫

−∞
q(ξ)dξ, t < 2a− x,

(1.8)−

at x > a, and

K−
0 (x, t) =

1
2

x+t
2∫

−∞
q(ξ)dξ (1.9)−

at x < a.

In virtue of formulas (1.8)± and (1.9)±, there exist partial derivatives of the
function K±

0 (x, t) with respect to each argument at t 6= 2a− x and x 6= a. Thus,
it follows from equations (1.6)±, (1.7)± that the functions K±(x, t) also have
�rst partials with respect to both arguments at t 6= 2a− x and x 6= a.

By di�erentiating equations (1.5)±, (1.6)± and using estimations (1.3)±, it is
easy to prove the following lemma.

Lemma 1.1. There exist partial derivatives of the function K±(x, t) with
respect to both arguments at t 6= 2a− x and x 6= a, moreover

∣∣∣∣
∂K±(x1, x2)

∂xi
± 1

4
q

(
x1 + x2

2

)∣∣∣∣

≤ 1
2
σ±(x1) σ±

(
x1 + x2

2

)
eCσ±1 (x1), ±x1 > ±a,

∣∣∣∣
∂K±(x1, x2)

∂xi
± A

4
q

(
x1 + x2

2

)
± (−1)i B

4
q

(
x2 + 2a− x1

2

)∣∣∣∣
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≤ C2

2
σ±(x1)σ±

(
x1 + x2

2

)
eCσ±1 (x1), ±x2 ≥ ±(2a− x1), ±x1 < ±a,

∣∣∣∂K±(x1, x2)
∂xi

± A

4
q

(
x1 + x2

2

)
± (−1)i−1 B

4
q

(
2a + x1 − x2

2

)

∓(−1)i−1 B

4
q

(
2a + x2 − x1

2

)∣∣∣

≤ C

2

{
Cσ±

(
x1 + x2

2

)
+ |B|σ±

(
2a + x1 − x2

2

)}
σ±(x1)eCσ±1 (x1),

±x1 ≤ ±x2 ≤ ±(2a− x1).

R e m a r k. The following relationships immediately follow from equations
(1.6)±, (1.7)± :

K±(a− 0, t) = αK±(a + 0, t), ±t > ±a,

K±
x

′
(a− 0, t) = α−1K±

x

′
(a + 0, t), ±t > ±a. (1.11)±

Provided that q(x) is di�erentiable, the functions K±(x, t) have the second
partial derivatives, and we get the equation for them

∂2K±(x, t)
∂x2

− ∂2K±(x, t)
∂t2

= q(x)K±(x, t). (1.12)±

On can show that conversely if the functions K±(x, t) satisfy equations (1.12)±,
relations (1.4)±, (1.11)± and the conditions

lim
x+t→±∞

∂K±(x, t)
∂x

= lim
x+t→±∞

∂K±(x, t)
∂t

= 0

at in�nity, then they are the solutions of equations (1.6)±, (1.7)±(see Remark in
Appendix A). Therefore, the functions e±(x, λ), constructed by them by using
formulas (1.2)±, give the solutions of problem (0.1), (0.2) with the coe�cients

q(x) =

{
∓2dK±(x, x)

dx , ±x > ±a,

∓ 2
A

dK±(x, x)
dx , ±x < ±a.
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2. Direct Scattering Problem
Since the function q (x) and the number α are real, the functions e+ (x, λ) ≡

e+ (x,−λ) and e− (x, λ) ≡ e− (x,−λ) are also the solutions of problem (0.1)�(0.2)
together with e+ (x, λ) and e− (x, λ) for real λ, and since the Wronskian of two
solutions of problem (0.1)�(0.2) does not depend on x, we have

W [e+ (x, λ) , e+ (x,−λ)]
= e+′ (x, λ) e+ (x,−λ)− e+ (x, λ) e+′ (x,−λ) = 2iλ,
W [e− (x, λ) , e− (x,−λ)] = −2iλ.

(2.1)

Consequently, when λ 6= 0, the pairs e+ (x, λ) , e+ (x,−λ) and e− (x, λ) , e− (x,−λ)
form two fundamental systems of the solutions for problem (0.1)�(0.2). Hence,
for λ ∈ R∗ = R\{0}, the following representations are true:

e+ (x, λ) = b (λ) e− (x, λ) + a (λ) e− (x,−λ) , λ ∈ R∗, (2.2)

e− (x, λ) = −b (−λ) e+ (x, λ) + a (λ) e+ (x,−λ) , λ ∈ R∗. (2.3)

Moreover, according to (2.1),

a (λ) =
1

2iλ
W

[
e+ (x, λ) , e− (x, λ)

]
, λ ∈ R∗, (2.4)

b (λ) = − 1
2iλ

W
[
e+ (x, λ) , e− (x,−λ)

]
, λ ∈ R∗. (2.5)

We put

u± (x, λ) = e∓ (x, λ)
1

a (λ)
, r± (λ) = ∓b (∓λ)

a (λ)
, t (λ) =

1
a (λ)

. (2.6)±

Then inequalities (2.2), (2.3) can be rewritten in the form

u± (x, λ) = r± (λ) e± (x, λ) + e± (x,−λ) . (2.7)±

From (2.6)±, (2.7)±, using (1.2)±, we obtain the asymptotic formulas

u± (x, λ) = r± (λ) e±iλx + e∓iλx + o (1) , x → ±∞,

u± (x, λ) = t (λ) e∓iλx + o (1) , x → ∓∞.

The solutions u± (x, λ) are called the eigenfunctions of the left (u− (x, λ)) and
the right (u+ (x, λ)) scattering problems, the coe�cients r− (λ), r+ (λ) are called
the left and the right re�ection coe�cients, respectively, and t (λ) is called the
transmission coe�cient.
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Using formulas (2.1)�(2.5) and standard methods [3, �3.5], the following lem-
mas can be proved.

Lemma 2.1. The functions a(λ), b(λ) de�ned by formulas (2.4), (2.5), admit
the following representations (λ ∈ R∗):

1) a (λ) = A− d
2iλ + 1

2iλ

+∞∫
0

ϕ (t) eiλtdt,

2) b (λ) = Be2iλa + 1
2iλ

+∞∫
−∞

ψ (t) eiλtdt,

where d = A
+∞∫
−∞

q (t) dt, ϕ (t) ∈ L1 (0,∞), ψ (t) ∈ L1 (−∞, +∞),

3) |a (λ)|2 − |b (λ)|2 = 1.

Lemma 2.2. The function a(λ) can have only a �nite number of zeros in the
half-plane Imλ > 0. The zeros are simple and located on the imaginary half-axis,
and the function a−1 (λ) is bounded in some neighborhood of zero.

In what follows, we will denote the zeros of the function a (λ) by iχ1, ..., iχn

(a (iχk) = 0, χk > 0) , and the inverses of the norms of eigenfunctions u±k =
e± (x, iχk) by m±

k . Thus,

(
m±

k

)−2 =

∞∫

−∞

∣∣e± (x, iχk)
∣∣2 dx.

The solutions u+
k (x) and u−k (x) are linearly dependent

u±k (x) = c±k u∓k (x) .

Lemma 2.3. The following relations hold:
(
m±

k

)−2 = ic±k
·
a (iχk) , k = 1, 2, . . . , n.

Lemma 2.4. The function za(z) is continuous on the closed upper half-plane,
and limλ→0 λa(λ)[r+(λ) + 1] = 0. There exists C > 0 such that 1 > (1 −
|r+(λ)|2) > Cλ2(1 + λ2)−1.

The collections
{
r− (λ) , iχk, m−

k

}
and

{
r+ (λ) , iχk, m+

k

}
are called the

left and the right scattering data for problem (0.1), (0.2), respectively.
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As in the case α = 1, it is easy to show that one scattering data is uniquely
de�ned by another one. Indeed, from formula (2.6)± and Lemma 2.3 there follow
the equalities

r− (λ) = −a (−λ)
a (λ)

,
(
m−

k

)−2 = − (
m+

k

)2 [ ·
a (iχk)

]2
(2.8)

by which the function a (z) can be reconstructed

a (z) = A exp



−

1
2πi

+∞∫

−∞

ln
[(

1− |r+ (λ)|2
)

A2
]

λ− z
dλ





n∏

k=1

z − iχk

z + iχk
. (2.9)

The inverse scattering problem for problem (0.1)�(0.2) consists of the recon-
struction of the potential q (x) by the left or the right scattering data.

3. Main Equations of the Inverse Problem
(Marchenko Equations)

In this section, we obtain the main equations of the inverse scattering problem.
Note that according to (2.6)± and Lemma 2.1, we have

∣∣r± (λ)
∣∣ < 1 for λ ∈ R∗, (3.1)±

r± (λ) = r±0 (λ) + O

(
1
λ

)
for |λ| → +∞, λ ∈ R, (3.2)±

where
r±0 (λ) = ∓B

A
e∓2iλa.

So, r± (λ)− r±0 (λ) ∈ L2 (−∞, +∞) and, consequently, the function

R± (x) =
1
2π

+∞∫

−∞

[
r± (λ)− r±0 (λ)

]
e±iλxdλ (3.3)±

also belongs to L2 (−∞, +∞).
Theorem 3.1. For each x 6= a, the kernels of representations (1.2)± satisfy

the functional-integral equations (the main equations of the inverse problem)

F±
1 (x, y)±

±∞∫

x

K± (x, t) F± (t + y) dt

Journal of Mathematical Physics, Analysis, Geometry, 2013, vol. 9, No. 3 341



H.M. Huseynov and J.A. Osmanli

+K± (x, y)∓ B

A
K± (x, 2a− y) = 0, ±y > ±x, (3.4)±

where

F±
1 (x, y) =

{
F± (x + y) , ±x > ±a,

AF± (x + y)±BF± (2a− x + y) , ±x < ±a,
(3.5)±

F± (x) = R± (x) +
n∑

k=1

(
m±

k

)2
e−χkx, (3.6)±

and the functions R± (x) are de�ned by (3.3)±.

P r o o f. To obtain (3.4)+, we use equality (2.7)+ rewritten in the form
(

1
a (λ)

− 1
A

)
e− (x, λ) =

(
r+ (λ)− r−0 (λ)

)
e+ (x, λ)+

+e+ (x,−λ) + r+
0 (λ) e+ (x, λ)− 1

A
e− (x, λ) .

Multiplying both sides of this equation by 1
2πeiλy, where y > x, and integrating

with respect to λ from −∞ to +∞, one can get

1
2π

+∞∫

−∞

(
1

a (λ)
− 1

A

)
e− (x, λ) dλ =

1
2π

+∞∫

−∞

(
r+ (λ)− r−0 (λ)

)
e+ (x, λ) eiλydλ

+
1
2π

+∞∫

−∞

(
e+ (x,−λ) + r+

0 (λ) e+ (x, λ)− 1
A

e− (x, λ)
)

eiλydλ. (3.7)

Then, using (1.2)+ for the solution e+ (x, λ) , we get

1
2π

+∞∫

−∞

(
r+ (λ)− r+

0 (λ)
)
e+ (x, λ) eiλydλ = R+

1 (x, y) +

∞∫

x

K+ (x, t) R+ (t + y) dt,

where

R+
1 (x, y) =

{
R+ (x + y) , x > a,
AR+ (x + y) + BR+ (y + 2a− x) , x < a.

From
e+
0 (x,−λ) + r+

0 (λ) e+
0 (x, λ)− 1

A
e−0 (x, λ) ≡ 0,
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for the second term in the right-hand side of (3.7) we obtain

1
2π

+∞∫

−∞

(
e+ (x,−λ) + r+

0 (λ) e+ (x, λ)− 1
A

e− (x, λ)
)

eiλydλ

=
1
2π

+∞∫

−∞




+∞∫

x

K+ (x, t) e−iλtdt− B

A

+∞∫

x

K+ (x, t) eiλ(t−2a)dt

− 1
A

x∫

−∞
K− (x, t) e−iλtdt


 eiλydλ

= K+ (x, y)− B

A
K+ (x, 2a− y)− 1

A
K− (x, y) = K+ (x, y)− B

A
K+ (x, 2a− y)

since K− (x, y) = 0 for y > x.
Therefore, (3.7) takes the form

1
2π

+∞∫

−∞

(
1

a (λ)
− 1

A

)
e− (x, λ) eiλydλ = R+

1 (x, y)

+

∞∫

x

K+ (x, t) R+ (t + y) dt + K+ (x, y)− B

A
K+ (x, 2a− y) . (3.8)

Now we calculate the left-hand side of (3.8) with the help of contour integra-
tion. Since the function 1

a(λ) − 1
A is regular in the upper half-plane Imλ > 0,

except the �nite number of points iχk (where it has simple poles), tends to zero
for |λ| → ∞, Imλ ≥ 0, and is bounded in some neighborhood of zero (see Lemmas
2.1 and 2.2) and the function e− (x, λ) eiλy for y > x is uniformly bounded in the
half-plane Imλ ≥ 0, by using Jordan's lemma, for y > x we obtain

1
2π

+∞∫

−∞

(
1

a (λ)
− 1

A

)
e− (x, λ) eiλydλ

= i
n∑

k=1

res
λ=iχk

(
1

a (λ)
− 1

A

)
e− (x, λ) eiλy

= i

n∑

k=1

e− (x, iχk) e−χky

·
a (iχk)

= i

n∑

k=1

e+ (x, iχk) e−χky

c+
k
·
a (iχk)
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=
n∑

k=1

m2
k



e+

0 (x, iχk) e−χky +

∞∫

x

K+ (x, t) e−χk(t+y)dt



 .

Substituting this into equality (3.8) and taking into account

e+
0 (x, iχk) e−χky =

{
e−χk(x+y), x > a,

Ae−χk(x+y) + Be−χk(2a−x+y), x < a,

we obtain equation (3.4)+. It is also true for y = x because of continuity. Equation
(3.4)− can be obtained in a similar way by using equality (2.7)−.

4. Other Properties of the Scattering Data. Uniqueness
Theorem for the Solution of the Inverse Problem

The main equations (3.4)± can be written in the form

F± (x + y) + K± (x, y)±
±∞∫

x

K± (x, t) F± (t + y) dt = 0,

±x > ±a, ±y > ±x, (4.1)±

AF± (x + y)±BF± (2a− x + y) + K± (x, y)∓ B

A
K± (x, 2a− y)

±
±∞∫

x

K± (x, t) F± (t + y) dt = 0, ±x < ±a, ±x < ±y < ± (2a− x) , (4.2)±

AF± (x + y)±BF± (2a− x + y) + K± (x, y)

±
±∞∫

x

K± (x, t) F± (t + y) dt = 0, ±x < ±a, ±y > ± (2a− x) . (4.3)±

Equations (4.1)± coincide with the main equation in the case α = 1 (see [3]).
It implies that the functions F± (x) are absolutely continuous for ±x ≥ 2a, and

+∞∫

±2a

∣∣F± (±x)
∣∣ dx < ∞,

+∞∫

±2a

(1 + |x|)
∣∣∣F±′ (±x)

∣∣∣ dx < ∞.

It is clear that the functions R± (x) also have this property. From (4.2)±, for
y → x±+0 we have (±x < ±a)

AF±(2x)±BF±(2a± 0) + K±(x, x)∓ B

A
K±(x, 2a− x∓ 0)

±
±∞∫

x

K±(x, t)F±(t + x)dt = 0.
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From the above, taking into account the properties of the functions K± (x, t)
(1), it is easy to show that the functions F± (x) are absolutely continuous when

x′ ≤ ±x ≤ ±2a and
±2a∫
x′
| F±(±x) | dx < ∞.

Now we pass to the limits in (4.2)± as y → 2a − x ∓ 0 and in (4.3)± as
y → 2a− x± 0 and subtract the obtained relations. Taking into account (1.4)±,
we have

F± (2a + 0)− F± (2a− 0) = ∓B

A

±∞∫

a

q (t) dt.

Thus the scattering data of the considered problem satisfy the following con-
ditions:

I. The re�ection coe�cients r± (λ) are continuous for real λ 6= 0, r± (−λ) =
r± (λ) , |r± (λ)| < 1 and r± (λ) = r±0 (λ) + O

(
1
λ

)
as λ → ±∞. Their Fourier

transformations

R± (x) =
1
2π

+∞∫

−∞

[
r± (λ)− r±0 (λ)

]
e±iλχdλ

are real, absolutely continuous on any interval not containing the point 2a, and
at the point x = 2a have �nite limits R± (2a + 0), R± (2a− 0). Furthermore, the
functions R± (x) belong to the space L2 (−∞, +∞) , and for any x′ > −∞,

+∞∫

x′

∣∣R± (±x)
∣∣ dx < ∞,

+∞∫

x′

(1 + |x|)
∣∣∣R±′ (±x)

∣∣∣ dx < ∞.

Theorem 4.1. If conditions I are satis�ed, equations (3.4)+ and (3.4)− have
the unique solutions K+ (x, ·) ∈ L1 (x,∞) and K− (x, ·) ∈ L1 (−∞, x) for each
�xed x > −∞ and x < ∞, respectively.

P r o o f. Notice that for each �xed x > −∞, the operator

(
M+

x f
)
(y) =

{
f (y) , x > a

f (y)− B
Af (2a− y) , x < a,

acting in the space L1 (x,+∞) (and also in L2 (x,+∞)), is invertible. Therefore
the main equation (3.5)+ is equivalent to

K+ (x, y) +
(
M+

x

)−1
F+

1 (x, y) +
(
M+

x

)−1
F+K+ (x, ·) (y) = 0, y > x,

Journal of Mathematical Physics, Analysis, Geometry, 2013, vol. 9, No. 3 345



H.M. Huseynov and J.A. Osmanli

i.e., to the equation with the compact operator (M+
x )−1

F+ (for the compactness
of F+, see [3, Lemma 3.3.1]). To prove the theorem, it is su�cient to show that
the homogeneous equation

fx (y)− B

A
fx (2a− y) +

+∞∫

x

fx (t)F+ (t + y) dt = 0, y > x, (4.4)+

has only the trivial solution fx (y) ∈ L1 (x,+∞). By conditions I, the function
F+ (y) and the corresponding solution fx (y) are bounded in the half axis x ≤
y < ∞. Therefore, fx (·) ∈ L2 (x,+∞).

Now let us multiply equation (4.4)+ by fx (y) and integrate with respect to y
over the interval (x,+∞). Using (3.3)+, (3.5)+, (3.6)+ and Parseval's identity

∞∫

x

|fx (y)|2 dy =
1
2π

∞∫

−∞

∣∣∣
∼
f (λ)

∣∣∣
2
dλ,

−B

A

∞∫

x

fx (2a− y) fx (y)dy =
1
2π

∞∫

−∞
r+
0 (λ)

∼
f (λ)

∼
f (−λ) dλ,

where
∼
fx (λ) =

∞∫
x

fx (t) e−iλtdt, we obtain

1
2π

∞∫

−∞

∣∣∣
∼
f (λ)

∣∣∣
2
dλ +

n∑

k=1

(
m+

k

)2
∣∣∣
∼
f (−iχk)

∣∣∣
2
+

1
2π

∞∫

−∞
r+ (λ)

∼
f (−λ)

∼
f (λ)dλ = 0.

Since |r+ (λ)| = |r+ (−λ)|, we obtain the estimate

1
2π

∞∫

−∞

∣∣∣
∼
f (λ)

∣∣∣
2
dλ ≤ 1

2π

∞∫

−∞

∣∣r+ (λ)
∣∣
∣∣∣∣
∼
f (−λ)

∣∣∣∣
∣∣∣
∼
f (λ)

∣∣∣ dλ

≤ 1
2π

∞∫

−∞

∣∣r+ (λ)
∣∣
∣∣∣
∼
f (−λ)

∣∣∣
2
+

∣∣∣
∼
f (λ)

∣∣∣
2

2
dλ =

1
2π

∞∫

−∞

∣∣r+ (λ)
∣∣
∣∣∣
∼
f (λ)

∣∣∣
2
dλ

or
1
2π

∞∫

−∞

{
1− ∣∣r+ (λ)

∣∣}
∣∣∣
∼
f (λ)

∣∣∣
2
dλ ≤ 0.

It follows from the above that
∼
f (λ) ≡ 0 since 1−|r+ (λ)| > 0 for all λ 6= 0. Thus,

the main equation (3.4)+ is uniquely solvable. The unique solvability of (3.4)−
can be proved in a similar way. The theorem is proved.
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Corollary. The potential q(x) from class (0.3) in problem (0.1)�(0.2) is
uniquely de�ned by the right (left) scattering data, i.e., if the right (left) scat-
tering data of two problems (0.1)�(0.2) with the potentials q(x) and q̃(x) from
class (0.3) coincide, then q(x) = q̃(x) a.e. on the whole axis.

5. Solution of the Inverse Scattering Problem
In the next theorem we provide a solution to the inverse scattering problem

from class (0.3).
Theorem 5.1. For the collection {r+(λ), iχk, m+

k } to be the right scattering
data of problem (0.1)�(0.2) with a real potential q(x) satisfying (0.3), the following
necessary and su�cient conditions should be satis�ed:

1) the function r+(λ) is continuous for all real λ 6= 0, r+(λ) = r+(−λ),
r+(λ) = r+

0 (λ) + O
(

1
λ

)
, λ → ±∞, where r+

0 (λ) = e−2iλa 1−α2

1+α2 , and there exists
C > 0 such that 1− |r+(λ)| ≥ C λ2

1+λ2 ;
2) the function za(z), where

a(z) =
α2 + 1

2α
exp



−

1
2πi

+∞∫

−∞

ln
[
(1− |r+(λ)|2)(α2+1

2α

)2]

λ− z
dλ





n∏

k=1

z − iχk

z + iχk
,

is continuous on the closed upper half-plane, and

lim
λ→0

λa(λ)[r+(λ) + 1] = 0;

3) the functions R+(x) = 1
2π

+∞∫
−∞

[r+(λ) − r+
0 (λ)]eiλxdλ and R−(x) = − 1

2π

×
+∞∫
−∞

[r+(λ)a(−λ)
a(λ) − 1−α2

1+α2 e2iλa]e−iλxdλ are absolutely continuous on any segment

not containing the point 2a; there exist �nite limits R±(2a + 0), R±(2a− 0), and
the derivatives R+′(x), R−′(x) satisfy the inequalities

+∞∫

α′

(1 + |x|) | R+′(x) | dx < ∞,

β
′∫

−∞
(1 + |x|) | R−′(x) | dx < ∞

for all α
′
> −∞, β

′
< +∞;

4) the solutions K±(x, t) of the main equations (3.4)± satisfy the conditions

K±(x, x)
∣∣
a∓0

=
α2 + 1

2α
K±(x, x)

∣∣
a±0

.
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P r o o f. We give a short proof of su�ciency. The necessity was proved
above. Basing on the given collection, we construct another collection {r−(λ),
iχk, m−

k } using (2.8), (2.9) and show that these collections are, respectively, the
right and left scattering data of problem (0.1)�(0.2) with a real potential q(x)
satisfying (0.3).

1. From the conditions of Theorem 5.1, we obtain that equations (3.4)+ and
(3.4)− reconstructed by the scattering data, have the unique solutions K+(x, y)
and K−(x, y) according to Theorem 4.1. It is easy to show that these solutions
satisfy the relations

A[F±(2a + 0)− F±(2a− 0)] + K±(x, 2a− x + 0)

−K±(x, 2a− x− 0) +
B

A
K±(x, x) = 0, ±x < ±a. (5.1)±

2. Show that the functions e+(x, λ), e−(x, λ), constructed with the help of
K+(x, t), K−(x, t) by formulas (1.2)+ and (1.2)−, satisfy the equations

−e±
′′
(x, λ) + q±(x)e±(x, λ) = λ2e±(x, λ) (5, 2)±

and the discontinuity conditions

e±(a− 0, λ) = αe±(a + 0, λ),

e±
′
(a− 0, λ) = α−1e±(a + 0, λ), (5, 3)±

moreover
+∞∫

x′

(1 + |x|) ∣∣q+(x)
∣∣ dx < ∞,

x′′∫

−∞
(1 + |x|) ∣∣q−(x)

∣∣ dx < ∞. (5.4)

First, suppose that the functions R±(x) are twice continuously di�erentiable,
and for all α′ > −∞, β′ < +∞

+∞∫

α′

(1 + |x|)
∣∣∣R+

′′
(x)

∣∣∣ dx < ∞,

β′∫

−∞
(1 + |x|)

∣∣∣R−′′(x)
∣∣∣ dx < ∞. (5.5)

Then the solutions K±(x, y) of the main equations (3.4)± are twice continuously
di�erentiable for t 6= 2a − x and x 6= a, moreover, for each x all �rst order and
second order partial derivatives are summable with respect to y.
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Consider the region ±x < ±a, ±x < ±y < ±(2a − x). Then the main
equations (3.4)± become like (4.2)±. After twice di�erentiating this equation
with respect to y and integrating by parts, we get

AF±′′(x + y)±BF±′′(2a− x + y) + K±
yy

′′
(x, y)∓ B

A
K±

yy

′′
(x, 2a− y)

∓K±′′(x, y)F±′(x + y)−
[
K±(x, t)

∣∣2a+x+0

t=2a−x−0

]
F±′(2a− x + y)

± K+
t

′
(x, t)

∣∣∣
t=x

F+(x + y) +
[
K
′
t(x, t)

∣∣∣
2a−x+0

t=2a−x−0

]
F+(2a− x + y)

±
±∞∫

x

K±
tt

′′
(x, t)F+(t + y)dt = 0

By di�erentiating equations (4.2)± two times with respect to x, we have

AF±′′(x + y)±BF±′′(2a− x + y) + K±
xx

′′
(x, y)∓ B

A
K±

xx

′′
(x, 2a− y)

∓K±′′(x, x)F±(x + y)∓K±(x, x)F±′(x + y)

+
[
K±(x, t)

∣∣2a−x+0

t=2a−x−0

]′
F±(2a− x + y)

±
[
K+(x, t)

∣∣2a−x+0

2a−x−0

]
F±′(2a− x + y)∓ K±

x

′
(x, y)

∣∣∣
y=x

F±(x + y)

∓
[
K±′

x (x, t)
′
∣∣∣
2a−x+0

t=2a−x−0

]
F±(2a− x + y)±

±∞∫

x

K±
xx

′′
(x, t)F±(t + y)dt = 0.

Subtracting from the latter equation the previous one, we obtain

K±
xx

′′
(x, y)∓ B

A
K±

xx

′′
(x, 2a− y)−K±

yy

′′
(x, y)± B

A
K±

yy

′′
(x, 2a− y)

∓2K±′(x, x)F±(x + y) + 2
[
K±(x, t)

∣∣2a−x+0

t=2a−x−0

]
F±(2a− x + y)

±
±∞∫

x

(
K±

xx

′′
(x, t)−K±

tt

′′
(x, t)

)
F±(t + y)dt = 0. (5.5′)±

By virtue of (5.1)± and the main equation (4.2)±, we get

±2K±′(x, x)F±(x + y) + 2
[
K±(x, y)

∣∣2a−x+0

y=2a−x−0

]
F±(2a− x + y)
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= −q±(x)
[
AF±(x + y)±BF±(2a− x + y)

]

= q±(x)
[
K±(x, y)∓ B

A
K±(x, 2a− y)

]
±

∞∫

x

K±(x, t)F±(t + y)dt. (5.5′′)±

From (5.5′)± and (5.5′′)± it follows that

K±
xx

′′
(x, y)−K±

yy

′′
(x, y)− q±(x)K±(x, y)

∓B

A

{
K±

xx

′′
(x, 2a− y)−K±

yy

′′
(x, 2a− y)− q±(x)K±(x, 2a− y)

}

±
±∞∫

x

{
K±

xx

′′
(x, t)− q±(x)K±(x, t)−Ktt

′′
(x, t)

}
F±(t + y)dt = 0,

i.å., the functions

h±x (y) = K±
xx

′′
(x, y)− q±(x)K±(x, y)−K±

yy

′′
(x, y)

are summable solutions of homogeneous equations which correspond to (4.2)±. In
the similar way as for equations (4.1)± and (4.3)±, we obtain that the solutions
K±(x, y) of the main equations (3.4)± satisfy the equation

K±
xx

′′ − q±(x)K± −K±
yy

′′
= 0 (∗)

according to Theorem 4.1.
In virtue of condition 4), (5.1)± yields that the functions K±(x, y) satisfy

relations (1.4)±.
By our assumptions (see (5.5)), it can be easily shown that the relations

lim
x+y→±∞K±

x

′
(x, y) = lim

x+y→±∞K±
y

′
(x, y) = 0 (∗∗)

also hold.
Now we will show that the functions K±(x, y) satisfy the conditions

K±(a− 0, y)− αK±(a + 0, y) = 0, (5.6)±

K±
x

′
(a− 0, y)− α−1K±

x

′
(a + 0, y) = 0. (5.7)±

Take x = a±0 and x = a∓0 in the main equations (4.1)± and (4.3)±, respectively.
Subtracting from the �rst obtained relation the second one multiplied by α, we get
that the di�erences K±(a−0, y)−αK±(a+0, y) are the solutions of homogeneous
equations corresponding to the main equations (4.1)± at x = a. Thus, according
to Theorem 4.1, we obtain (5.6)±.

350 Journal of Mathematical Physics, Analysis, Geometry, 2013, vol. 9, No. 3



Inverse Scattering Problem for One-Dimensional Schr�odinger Equation

Prove that conditions (5.7)± also hold. Notice that for the solutions of the
main equations the relationships below are true:

K±(x, 2a− x± 0)
∣∣
a∓0

= α±1K±(x, x)
∣∣
a±0

,

K±(x, 2a− x∓ 0)
∣∣
a∓0

= K±(x, x)
∣∣
a∓0

. (5.8)±

Indeed, in equations (4.1)± set �rst y = x, then x = a ± 0, and in equations
(4.3)± �rst y = 2a−x±0, then x = a∓0. Multiply the �rst obtained relations by
α±1 and subtract the second ones. As a result, according to (5.6)± , we get the
�rst equalities from (5.8)±. Supposing �rst y = 2a− x− 0, x = a− 0 and then
y = x, x = a − 0 in equations (4.2)±, it is easy to obtain the second relations
from (5.8)±.

Now di�erentiate equations (4.1)± and (4.3)± with respect to the variable x
and assume x = a± 0 and x = a∓ 0, respectively. As a result, we have

F±′(a + y) + K±
x

′
(a± 0, y)∓ K±(x, x)

∣∣
a±0

F±(a + y)

±
±∞∫

a

K±
x

′
(a± 0, t)F±(t + y)dt = 0, (5.9)±

(A∓B)F±′(a + y) + K±
x

′
(a∓ 0, y)± [K±(x, 2a− x + 0)

−K±(x, 2a− x− 0)]
∣∣
x=a∓0

· F±(a + y)∓K±(x, x)
∣∣
a∓0

F±(a + y)

±
±∞∫

a

K±
x

′
(a∓ 0, t)F±(t + y)dt = 0. (5.10)±

Multiply (5.9)± by α∓1 and subtract (5.10)±. By virtue of (5.8)±, using condition
4) of the theorem, we get that the di�erences α∓1K±

x

′
(a ± 0, y) −K±

x

′
(a ∓ 0, y)

also satisfy homogeneous equations corresponding to (4.1)± at x = a. Thus,

α∓1K±
x

′
(a± 0, y)−K±

x

′
(a∓ 0, y) = 0

and, consequently, conditions (5.7)± are also satis�ed.
Therefore, if conditions (5.5) hold, then the solutions K±(x, y) of the main

equations (3.4)± satisfy equation (∗), relations (1.4)± (where the functions q(x)
must correspond to the functions q±(x)), (5.6)±, (5.7)± and conditions (∗∗) at
in�nity. Hence, according to Remark from Section 1, the functions e±(x, λ) satisfy
equations (5.2)± and conditions (5.3)±.

The case, when only conditions 3) of the theorem are satis�ed, can be consid-
ered by passing to limit (see [3], p. 212).
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Finally show that conditions (5.4) hold. Since at ±x > ±a the main equations
(3.4)± become like (4.1)±, namely they have the form analogous to the case α = 1,
and conditions 3) of Theorem 5.1 are the same as in the case α = 1, then it is not
di�cult to show that if x′ ≥ a, x′′ ≤ a, then (5.4) are true (see [3], p. 209). It
should be shown that q+(x) (q−(x)) are summable in the interval (x′, a) ((a, x′′))
for every x′ > −∞ (x′′ < +∞). But it is easy to establish these facts by means
of the formula (which is equivalent to equation (4.2)±)

K±(x, y) =
A2

A2 −B2

[
ϕ±(x, y)± ϕ±(x, 2a− y)

]
,

where

ϕ±(x, y) = −AF±(x + y)∓BF±(2a− x + y)∓
±∞∫

x

K±(x, t)F±(t + y)dt,

using conditions 3) of the theorem and summability of partial derivatives K±
x

′
,

K±
t

′
.
3. To prove the theorem, it is su�cient to show that for the real values λ 6= 0,

the functions e+(x, λ) and e−(x, λ) are related by the equalities

r±(λ)e±(x, λ) + e±(x, λ) =
1

a(λ)
e∓(x, λ). (5.11)±

In fact, by virtue of (5.2)±, it follows from (5.11)± that

q+(x) = q−(x)
def
= q(x), −∞ < x < +∞,

and according to (5.4),
∞∫

−∞
(1 + |x|) |q(x)| dx < +∞.

Show that then {r+(λ), iχk, m+
k } and {r−(λ), iχk, m−

k } are the right and left
scattering data of the constructed problem (0.1), (0.2).

Denote by {r̃+(λ), iχ̃k, m̃+
k } and {r̃−(λ), iχ̃k, m̃−

k } the right and left scat-
tering data of the constructed problem (0.1), (0.2). The functions e+(x, λ) and
e−(x, λ) will be Jost type solutions of the constructed problem (0.1), (0.2). Thus,
by virtue of the results of direct problem of scattering theory (see Section 2), we
can write

r̃±(λ)e±(x, λ) + e±(x, λ) =
1

ã(λ)
e∓(x, λ). (5.12)±
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From (5.11)± and (5.12)± we have

a(λ)r+(λ)e+(x, λ) + a(λ)e+(x, λ) = e−(x, λ),

ã(λ)r̃+(λ)e+(x, λ) + ã(λ)e+(x, λ) = e−(x, λ),

respectively. Subtracting this relations, we get
{
a(λ)r+(λ)− ã(λ)r̃+(λ)

}
e+(x, λ) + {a(λ)− ã(λ)} e+(x, λ) = 0.

Since for λ 6= 0, e+(x, λ) and e+(x, λ) are linearly independent, then from the
last identity it follows that

a(λ)r+(λ)− ã(λ)r̃+(λ) = 0, a(λ) = ã(λ),

i.å., a(λ) = ã(λ), r+(λ) = r̃+(λ).
Analogously, relations (5.11)_ and (5.12)_ yield r−(λ) = r̃−(λ). Conse-

quently, the zeros of the functions a(λ) and ã(λ) coincide: iχk = iχ̃k. Thus,

(m±
k )−2 =

∞∫

−∞

∣∣e±(x, iχk)
∣∣2 dx =

∞∫

−∞

∣∣e±(x, iχ̃k)
∣∣2 dx = (m̃±

k )−2.

Therefore, the collection of the quantities {r̃+(λ), iχ̃k, m̃+
k } and {r̃−(λ), iχ̃k, m̃−

k }
are the right and the left scattering data of the constructed problem (0.1), (0.2).

4. Now, turn to the proof of relations (5.11)±. Suppose

Φ±(x, y) = R±
1 (x, y)±

±∞∫

x

K±(x, t)R±(t + y)dt,

where

R±
1 (x, y) =

{
R±(x + y), ±x > ±a,
AR±(x + y)±BR±(2a− x + y), ±x < ±a,

A =
1
2

(
α +

1
α

)
, B =

1
2

(
α− 1

α

)
.

Since R±(y) ∈ L2(−∞, +∞), then for each �xed x Φ±(x, y) ∈ L2(−∞, +∞).
We have

lim
N→∞

N∫

−N

Φ±(x, y)e∓iλydy = [r±(λ)− r±0 (λ)]
[
e±0 (x, λ)
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±
±∞∫

x

K±(x, t)e±iλtdt


 = [r±(λ)− r±0 (λ)] e±(x, λ). (5.13)±

On the other hand, by virtue of equations (3.4)±,

Φ±(x, y) = −K±(x, y)± B

A
K±(x, 2a− y)−

n∑

k=1

(
m±

k

)2
e±(x, iχk), ±y > ±x.

Hence,

lim
N→∞

N∫

−N

Φ±(x, y)e∓iλydy = lim
N→∞



±

x∫

∓N

Φ±(x, y)e∓iλydy





∓
±∞∫

x

K±(x, y)e∓iλydy +
B

A

±∞∫

x

K±(x, 2a− y)e∓iλydy

−
n∑

k=1

(
m±

k

)2
e±(x, iχk)

e∓(χk+iλ)x

χk + iλ
= lim

N→∞



±

x∫

∓N

Φ±(x, y)e∓iλydy





+e±0 (x,−λ)− e±(x,−λ)− r±0 (λ)
[−e±0 (x,−λ) + e±(x, λ)

]

−
n∑

k=1

(
m±

k

)2
e±(x, iχk)

e∓(χk+iλ)x

χk + iλ
. (5.14)±

Taking into consideration (5.13)±, (5.14)± and the formulas

r±0 (λ)e±0 (x, λ) + e±0 (x,−λ) =
1
A

e∓0 (x, λ),

we get the equality

r±(λ)e±(x, λ) + e±(x,−λ) =
1

a(λ)
h∓(x, λ), (5.15)±

where

h±(x, λ) = a(λ)





1
A

e±0 (x, λ) + lim
N→∞


±

x∫

∓N

Φ∓(x, y)e±iλydy




−
n∑

k=1

(
m∓

k

)2
e∓(x, iχk)

e±(χk+iλ)x

χk + iλ

}
. (5.16)±
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Now it is su�cient to show that h±(x, λ) = e±(x, λ).
If we use expressions (5.15)± and (5.16)± for the functions h±(x, λ) and con-

ditions 2) of the theorem, the proof of this equality will completely coincide with
the proof of analogous assertion at α = 1 (see [3], p. 277�278). For this reason
we do not derive it here.

R e m a r k. Condition 4) of Theorem 5.1 is necessary. The function r+(λ) =

−B+ β
2iλ

A+ β
2iλ

e−2iλa for αβ < 0 satis�es all conditions of the theorem, except condition
4), and is not a right re�ection coe�cient of the problem of the form (0.1)�(0.2).
Indeed, in this case the main equations (3.4)± have the solutions

K±(x, t) =

{
0, if ± x > ±a, ±t > ±x or ± x < ±a, ±t > ±(2a− x),
−β

2 , if ± x < ±a, ±x < ±t < ±(2a− x).

Therefore the Jost solutions satisfy equations (0.1) with q(x) = 0, and conditions
(0.2) are not satis�ed. But if β = 0, then condition 4) is also satis�ed, and in
this case the inverse problem has a solution: r+(λ) = r+

0 (λ) is the right re�ection
coe�cient of problem (0.1)�(0.2) with the potential q(x) ≡ 0.

A. On one Problem for Hyperbolic Equation with
Discontinuity Conditions

Introduce the regions D1 = {(x, t) : x > a, t > x)}, D2 = {(x, t) : x < a, t >
2a − x)}, D3 = {(x, t) : x < a, x < t < 2a − x)} and consider the following
problem:
Find the functions U(x, t) satisfying the equation

U
′′
x − U

′′
tt = f(x, t), (x, t) ∈ D1

⋃
D1

⋃
D3, (A.1)

and the conditions
U(x, x) = ϕ1(x), a < x < ∞, (A.2)

U(x, x) = ϕ2(x), −∞ < x < a, (A.3)

U(x, 2a− x + 0)− U(x, 2a− x− 0) = ψ(x), −∞ < x < a, (A.4)

U(a− 0, t) = αU(a + 0, t), a < t < +∞, (A.5)

U
′
x(a− 0, t) = α−1U

′
x(a + 0, t), a < t < +∞, (A.6)

lim
x+t→+∞

(
U
′
x(x, t)− U

′
t (x, t)

)
= 0. (A.7)
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Theorem A. Let the function f(x, t) be di�erentiable, f(x, t) = 0 for t < x
and for each �xed x ∈ (−∞, ∞)

∞∫

x

dτ

+∞∫

τ

|f(τ, ξ)| dξ < +∞,

and the functions ϕ1(x), ϕ2(x), ψ(x) be twice di�erentiable, and

Aϕ1(a) = ϕ2(a), αϕ1(a)− ϕ2(a) = ψ(a). (A∗)

Then the solution of problem (A.1)�(A.7) can be represented as

U(x, t) = ϕ1

(
x + t

2

)
+

1
2

+∞∫

x

dτ

t+τ−x∫

t−τ+x

f(τ, ξ)dξ, (x, t) ∈ D1, (A.8)

U(x, t) = Aϕ1

(
x + t

2

)
+ Bϕ1

(
t− x

2
+ a

)
+

1
2

a∫

x

dτ

t+τ−x∫

t−τ+x

f(τ, ξ)dξ

+
A

2

+∞∫

a

dτ

t+τ−x∫

t−τ+x

f(τ, ξ)dξ +
B

2

+∞∫

a

dτ

t+τ+x−2a∫

t−τ−x+2a

f(τ, ξ)dξ, (x, t) ∈ D2, (A.9)

U(x, t) = ϕ2

(
x + t

2

)
+ Bϕ1

(
a +

t− x

2

)
− ψ

(
a− t− x

2

)

+
1
2

a∫

x

dτ

t+τ−x∫

t−τ+x

f(τ, ξ)dξ +
A

2

+∞∫

a

dτ

t+τ−x∫

t−τ+x

f(τ, ξ)dξ +
B

2

+∞∫

a

dτ

t+τ+x−2a∫

t−τ−x+2a

f(τ, ξ)dξ,

(x, t) ∈ D3, (A.10)

where A = 1
2

(
α + 1

α

)
, B = 1

2

(
α− 1

α

)
.

P r o o f. Let (x, t) ∈ D1. In new variables ξ = t+x
2 , η = t−x

2 , equation
(A.1) takes the form −Ũ

′′
ξη = f̃(ξ, η). By integrating this equation with respect

to ξ and taking into consideration condition (A.7) we get

Ũ
′
η =

+∞∫

ξ

f̃(ξ′, η)dξ′.

From which, integrating with respect to η by virtue of condition (A.2), we get

Ũ(ξ, η) = ϕ1(ξ) +

+∞∫

ξ

dξ′
η∫

0

f̃(ξ′, η′)dη′.
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Turning again to the variables x and y, we get (A.8).
Now, let (x, t) ∈ D2. The general solution of equation (A.1) one can write as

U(x, t) = θ1

(
t + x

2

)
+ θ2

(
t− x

2

)
+

1
2

a∫

x

dτ

t+τ−x∫

t−τ+x

f(τ, ξ)dξ. (A.11)

Then, according to conditions (A.5) and (A.6), for determining twice di�erentiable
arbitrary functions θ1 and θ2, we get the relations

θ1

(
t + a

2

)
+ θ2

(
t− a

2

)
= α


ϕ1

(
t + a

2

)
+

1
2

+∞∫

a

dτ

t+τ−a∫

t−τ+a

f(τ, ξ)dξ


 ,

1
2
θ
′
1

(
t + a

2

)
− 1

2
θ2

(
t− a

2

)
= α−1

[
1
2
ϕ
′
1

(
t + a

2

)
−

− 1
2

+∞∫

a

[f(τ, t + τ − a)− f(τ, t− τ + a)]dτ


 . (A.12)

From which we �nd

θ1(s) = Aϕ1(s) +
B

2

+∞∫

a

dτ

2s−2a+τ∫

c1

f(τ, ξ)dξ

+
A

2

+∞∫

a

dτ

c2∫

2c−τ

f(τ, ξ)dξ + c3,

θ2(s) = Bϕ1(s + a) +
A

2

+∞∫

a

dτ

2s+τ∫

c2

f(τ, ξ)dξ

+
B

2

+∞∫

a

dτ

c1∫

2s−τ+2a

f(τ, ξ)dξ + c4, (A.13)

where c1, c2, c3, c4 are arbitrary constants. Moreover, in virtue of (A.12),

c3 + c4 = 0. (A.14)

Substituting expressions (A.13) for the functions θ1 and θ2 into formula (A.11)
and taking into consideration condition (A.14), we get representation (A.9).
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Finally, assume that (x, t) ∈ D3. We will look for the solution U(x, t) in this
region in the form

U(x, t) = θ3

(
t + x

2

)
+ θ4

(
t− x

2

)
+

1
2

a∫

x

dτ

t−τ−x∫

t−τ+x

f(τ, ξ)dξ. (A.15)

For determining the arbitrary functions θ3, θ4, make use of conditions (A.3),
(A.4) and equality f(τ, ξ) = 0 for ξ < τ . Hence,

θ3(x) + θ4(0) = ϕ2(x),

Aϕ1(a) + Bϕ1(2a− x) +
1
2

a∫

x

dτ

2a−2x+τ∫

2a−τ

f(τ, ξ)dξ +
A

2

+∞∫

a

dτ

2a−2x+τ∫

2a−τ

f(τ, ξ)dξ

−

θ3(a) + θ4(a− x) +

1
2

a∫

x

dτ

2a−2x+τ∫

2a−τ

f(τ, ξ)dξ


 = ψ(x).

From which we de�ne the functions θ3(x), θ4(x) and substitute the obtained ex-
pressions into (A.15). As a result, according to conditions (A∗), we come to
representation (A.10).

R e m a r k. In the case when q(x) is di�erentiable, the kernel K+(x, t)
is the solution of problem (A.1)�(A.7), where f(x, t) = q(x)K+(x, t), ϕ1(x) =
1
2

∞∫
x

q(ξ)dξ, ϕ2(x) = A
2

∞∫
x

q(ξ)dξ, ψ(x) = B
2

(∞∫
a

q(ξ)dξ −
a∫
x

q(ξ)dξ

)
(see Sec. 1).

Thus, applying representations (A.8)�(A.10), we get integral equations (1.6)+,
(1.7)+.

In a similar way, one can also get integral equations (1.6)−, (1.7)−.
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