Lie Invariant Shape Operator for Real Hypersurfaces in Complex Two-Plane Grassmannians II

I. Jeong, E. Pak, and Y.J. Suh
Department of Mathematics, Kyungpook National University
Taegu 702-701, Korea
E-mail: imsoon.jeong@gmail.com
empak@knu.ac.kr
yjsuh@knu.ac.kr
Received January 17, 2012, revised October 11, 2012

Abstract

A new notion of the generalized Tanaka-Webster \mathfrak{D}^{\perp}-invariant for a hypersurface M in $G_{2}\left(\mathbb{C}^{m+2}\right)$ is introduced, and a classification of Hopf hypersurfaces in $G_{2}\left(\mathbb{C}^{m+2}\right)$ with generalized Tanaka-Webster \mathfrak{D}^{\perp}-invariant shape operator is given.

Key words: real hypersurfaces, complex two-plane Grassmannians, Hopf hypersurface, generalized Tanaka-Webster connection, Reeb parallel shape operator, \mathfrak{D}^{\perp}-parallel shape operator, invariant shape operator, g-TanakaWebster invariant shape operator, g-Tanaka-Webster \mathfrak{D}^{\perp}-invariant shape operator.

Mathematics Subject Classification 2010: 53C40 (primary); 53C15 (secondary).

Introduction

The Tanaka-Webster connecton is a unique affine connection on a non-degenerate pseudo-Hermitian $C R$ manifold which associates with the almost contact structure ($[17,18]$). Tanno [17] introduced the generalized Tanaka-Webster (in short, the g-Tanaka-Webster) connection for contact Riemannian manifolds generalizing it for non-degenerate integrable $C R$ manifolds. For a real hypersurface in Kähler manifolds with almost contact metric structure (ϕ, ξ, η, g), the g-TanakaWebster connection $\hat{\nabla}^{(k)}$ for a non-zero real number k was given in [5] and [10].

[^0]In particular, if a real hypersurface satisfies $\phi A+A \phi=2 k \phi$, then the g-TanakaWebster connection $\hat{\nabla}^{(k)}$ coincides with the Tanaka-Webster connection.

For a real hypersurface in complex space form $\tilde{M}_{n}(c)$ with constant holomorphic sectional curvature c, many geometers have studied some characterizations by using the g-Tanaka-Webster connection. For instance, when $c>0$, that is, $\tilde{M}_{n}(c)$ is a complex projective space $\mathbb{C} P^{n}$, Kon [10] proved that if the Ricci tensor \hat{S} of the g-Tanaka-Webster connection $\hat{\nabla}^{(k)}$ vanishes identically, then a real hypersurface in $\mathbb{C} P^{n}$ is locally congruent to a geodesic hypersphere with $k^{2} \geq 4 n(n-1)$.

Now let us denote by the complex two-plane Grassmannian $G_{2}\left(\mathbb{C}^{m+2}\right)$ a set of all complex two-dimensional linear subspaces in \mathbb{C}^{m+2}. This Riemannian symmetric space has a remarkable geometric structure. It is the unique compact irreducible Riemannian manifold equipped with both a Kähler structure J and a quaternionic Kähler structure \mathfrak{J} not containing J. In other words, $G_{2}\left(\mathbb{C}^{m+2}\right)$ is the unique compact irreducible Kähler, quaternionic Kähler manifold which is not a hyper-Kähler manifold. The almost contact structure vector field ξ defined by $\xi=-J N$ is said to be a Reeb vector field, where N denotes a local unit normal vector field of M in $G_{2}\left(\mathbb{C}^{m+2}\right)$. The almost contact 3-structure vector fields $\left\{\xi_{1}, \xi_{2}, \xi_{3}\right\}$ for the 3-dimensional distribution \mathfrak{D}^{\perp} of M in $G_{2}\left(\mathbb{C}^{m+2}\right)$ are defined by $\xi_{\nu}=-J_{\nu} N(\nu=1,2,3)$, where J_{ν} denotes a canonical local basis of a quaternionic Kähler structure \mathfrak{J}, such that $T_{x} M=\mathfrak{D} \oplus \mathfrak{D}^{\perp}, x \in M$. Then, naturally we could consider two geometric conditions for a hypersurface M in $G_{2}\left(\mathbb{C}^{m+2}\right)$ that a 1-dimensional distribution $[\xi]=\operatorname{Span}\{\xi\}$ and a 3-dimensional distribution $\mathfrak{D}^{\perp}=\operatorname{Span}\left\{\xi_{1}, \xi_{2}, \xi_{3}\right\}$ are both invariant under the shape operator A of $M([3])$.

By using these two geometric conditions and the results of Alekseevskii [1], Berndt and Suh [3] proved the following:

Theorem A. Let M be a connected real hypersurface in $G_{2}\left(\mathbb{C}^{m+2}\right), m \geq 3$. Then both [$\xi]$ and \mathfrak{D}^{\perp} are invariant under the shape operator of M if and only if
(A) M is an open part of a tube around a totally geodesic $G_{2}\left(\mathbb{C}^{m+1}\right)$ in $G_{2}\left(\mathbb{C}^{m+2}\right)$, or
(B) m is even, say $m=2 n$, and M is an open part of a tube around a totally geodesic $\mathbb{H} P^{n}$ in $G_{2}\left(\mathbb{C}^{m+2}\right)$.

When the Reeb flow on M in $G_{2}\left(\mathbb{C}^{m+2}\right)$ is isometric, we say that the Reeb vector field ξ on M is Killing. This means that the metric tensor g is invariant under the Reeb flow of ξ on M. Berndt and Suh gave a characterization of real hypersurfaces of Type (A) in Theorem A in terms of the Reeb flow on M as follows (see [4]):

Theorem B. Let M be a connected orientable real hypersurface in $G_{2}\left(\mathbb{C}^{m+2}\right)$, $m \geq 3$. Then the Reeb flow on M is isometric if and only if M is an open part of \bar{a} tube around a totally geodesic $G_{2}\left(\mathbb{C}^{m+1}\right)$ in $G_{2}\left(\mathbb{C}^{m+2}\right)$.

Besides, Lee and Suh [11] gave a new characterization of real hypersurfaces of Type (B) in $G_{2}\left(\mathbb{C}^{m+2}\right)$ in terms of the Reeb vector field ξ as follows:

Theorem C. Let M be a connected orientable Hopf real hypersurface in $G_{2}\left(\mathbb{C}^{m+2}\right), m \geq 3$. Then the Reeb vector field ξ belongs to the distribution \mathfrak{D} if and only if M is locally congruent to an open part of a tube around a totally geodesic $\mathbb{H} P^{n}$ in $G_{2}\left(\mathbb{C}^{m+2}\right)$, where $m=2 n$.

On the other hand, using the Riemannian connection, in [13] Suh gave a non-existence theorem of Hopf hypersurfaces in $G_{2}\left(\mathbb{C}^{m+2}\right)$ with parallel shape operator. Moreover, Suh proved a non-existence theorem for Hopf hypersurfaces in $G_{2}\left(\mathbb{C}^{m+2}\right)$ with the \mathfrak{F}-parallel shape operator, where $\mathfrak{F}=[\xi] \cup \mathfrak{D}^{\perp}($ see $[14])$.

In particular, Jeong, Lee and Suh [5] considered a g-Tanaka-Webster parallel shape operator for a real hypersurface in the complex two-plane Grassmannian $G_{2}\left(\mathbb{C}^{m+2}\right)$. In other words, the shape operator A is called g-Tanaka-Webster parallel if it satisfies $\left(\hat{\nabla}_{X}^{(k)} A\right) Y=0$ for any tangent vector fields X and Y on M. Using this notion, the authors gave a non-existence theorem for Hopf hypersurfaces in $G_{2}\left(\mathbb{C}^{m+2}\right)$. Also, the authors considered a more generalized notion weaker than the parallel shape operator in the g-Tanaka-Webster connection of M. When the shape operator A of M in $G_{2}\left(\mathbb{C}^{m+2}\right)$ satisfies $\left(\hat{\nabla}_{\xi}^{(k)} A\right) Y=0$ for any tangent vector field Y on M, we say that the shape operator is g-TanakaWebster Reeb parallel. Using such a notion, the authors gave a characterization of the real hypersurfaces of Type (A) in $G_{2}\left(\mathbb{C}^{m+2}\right)$ as follows (see [6]):

Theorem D. Let M be a connected orientable Hopf hypersurface, $\alpha \neq 2 k$, in $G_{2}\left(\mathbb{C}^{m+2}\right), m \geq 3$. If the shape operator A is generalized Tanaka-Webster Reeb parallel, then M is locally congruent to an open part of a tube around a totally geodesic $G_{2}\left(\mathbb{C}^{m+1}\right)$ in $G_{2}\left(\mathbb{C}^{m+2}\right)$.

Moreover, Jeong, Lee and Suh [7] introduced a notion of the g-TanakaWebster \mathfrak{D}^{\perp}-parallel shape operator for M in $G_{2}\left(\mathbb{C}^{m+2}\right)$. It means that the shape operator A of M satisfies $\left(\hat{\nabla}_{X}^{(k)} A\right) Y=0$ for any X in \mathfrak{D}^{\perp} and Y on M. Naturally, we can see that the g-Tanaka-Webster \mathfrak{D}^{\perp}-parallel is weaker than the g-Tanaka-Webster parallel. By using such a notion of \mathfrak{D}^{\perp}-parallel in the g-Tanaka-Webster connection, the authors gave a characterization of the real hypersurface of Type (B) in $G_{2}\left(\mathbb{C}^{m+2}\right)$.

Specially, Suh [15] asserted a characterization of the real hypersurfaces of type (A) in Theorem A by another geometric Lie invariant, that is, the shape operator A of M in $G_{2}\left(\mathbb{C}^{m+2}\right)$ is invariant under the Reeb flow on M.

On the other hand, we considered another Lie invariant of the shape operator in $G_{2}\left(\mathbb{C}^{m+2}\right)$, namely, a g-Tanaka-Webster invariant shape operator, that is,

$$
\left(\hat{\mathfrak{L}}_{X}^{(k)} A\right) Y=0
$$

for any vector fields X and Y on M in $G_{2}\left(\mathbb{C}^{m+2}\right)$, where $\hat{\mathfrak{L}}^{(k)}$ denotes the g-Tanaka-Webster Lie derivative induced from the g-Tanaka-Webster connection $\hat{\nabla}^{(k)}$. Usually, the notion of the g-Tanaka-Webster invariant is different from any Levi-Civita Lie invariants and gives us much more information than usual covariant parallelisms in the g-Tanaka-Webster connection. By using such a notion of Lie invariant in g-Tanaka-Webster connection, we gave a non-existence theorem for the real hypersurface in $G_{2}\left(\mathbb{C}^{m+2}\right)$ as follows (see [9]):

Theorem E. There does not exist any Hopf hypersurface, $\alpha \neq 2 k$, in $G_{2}\left(\mathbb{C}^{m+2}\right)$ with g-Tanaka-Webster invariant shape operator.

Meanwhile, we consider a new notion of g-Tanaka-Webster Reeb invariant shape operator for M in $G_{2}\left(\mathbb{C}^{m+2}\right)$, that is, $\left(\hat{\mathfrak{L}}_{\xi}^{(k)} A\right) X=0$ for any tangent vector field Y on M. Since $\left(\hat{\mathfrak{L}}_{\xi}^{(k)} A\right) X=\left(\hat{\nabla}_{\xi}^{(k)} A\right) X=0$, from Theorem D we obtain the following Remark.

Remark. Let M be a connected orientable Hopf hypersurface, $\alpha \neq 2 k$, in $G_{2}\left(\mathbb{C}^{m+2}\right), m \geq 3$. If the shape operator A is generalized Tanaka-Webster Reeb invarint, then M is locally congruent to an open part of a tube around a totally geodesic $G_{2}\left(\mathbb{C}^{m+1}\right)$ in $G_{2}\left(\mathbb{C}^{m+2}\right)$.

In this paper, we consider a generalized condition named g-Tanaka-Webster \mathfrak{D}^{\perp}-invariant shape operator, that is, $\hat{\mathfrak{L}}_{\mathfrak{D}^{\perp}}^{(k)} A=0$, where $\mathfrak{D}^{\perp}=\operatorname{Span}\left\{\xi_{1}, \xi_{2}, \xi_{3}\right\}$. This condition is weaker than the Lie invariant in the g-Tanaka-Webster connection mentioned in Theorem E. By using such a notion of the g-TanakaWebster \mathfrak{D}^{\perp}-invariant, we give a classification theorem for the real hypersurface in $G_{2}\left(\mathbb{C}^{m+2}\right)$ as follows:

Main Theorem. Let M be a connected orientable Hopf hypersurface, $\alpha \neq 2 k$, in $G_{2}\left(\mathbb{C}^{m+2}\right), m \geq 3$. If the shape operator A is g-Tanaka-Webster \mathfrak{D}^{\perp}-invariant shape operator, then M is locally congruent to an open part of a tube around a totally geodesic $\mathbb{H} P^{n}$ in $G_{2}\left(\mathbb{C}^{m+2}\right)$ with $\alpha=k$ and $q_{i}(X)=0$ for any tangent vector field $X \in \mathfrak{D}$ and $i=1,2,3$, where $m=2 n$.

1. Riemannian Geometry of $G_{2}\left(\mathbb{C}^{m+2}\right)$

In this section we summarize basic material about $G_{2}\left(\mathbb{C}^{m+2}\right)$, for details we refer to $[2,3]$ and $[4]$. By $G_{2}\left(\mathbb{C}^{m+2}\right)$ we denote the set of all complex two-dimensional linear subspaces in \mathbb{C}^{m+2}. The special unitary group $G=S U(m+2)$ acts transitively on $G_{2}\left(\mathbb{C}^{m+2}\right)$ with stabilizer isomorphic to $K=S(U(2) \times U(m)) \subset G$. Then $G_{2}\left(\mathbb{C}^{m+2}\right)$ can be identified with the homogeneous space G / K. Moreover, we equip it with the unique analytic structure for which the natural action of G on $G_{2}\left(\mathbb{C}^{m+2}\right)$ becomes analytic. Denote by \mathfrak{g} and \mathfrak{k} the Lie algebra of G and K, respectively, and by \mathfrak{m} the orthogonal complement of \mathfrak{k} in \mathfrak{g} with respect to the Cartan-Killing form B of \mathfrak{g}. Then $\mathfrak{g}=\mathfrak{k} \oplus \mathfrak{m}$ is an $A d(K)$-invariant reductive decomposition of \mathfrak{g}. We put $o=e K$ and identify $T_{o} G_{2}\left(\mathbb{C}^{m+2}\right)$ with \mathfrak{m} in the usual manner. Since B is negative definite on \mathfrak{g}, its negative restricted to $\mathfrak{m} \times \mathfrak{m}$ yields a positive definite inner product on \mathfrak{m}. By the $A d(K)$-invariance of B this inner product can be extended to a G-invariant Riemannian metric g on $G_{2}\left(\mathbb{C}^{m+2}\right)$. In this way, $G_{2}\left(\mathbb{C}^{m+2}\right)$ becomes a Riemannian homogeneous space, even a Riemannian symmetric space. For computational reasons we normalize g such that the maximal sectional curvature of $\left(G_{2}\left(\mathbb{C}^{m+2}\right), g\right)$ is eight.

When $m=1, G_{2}\left(\mathbb{C}^{3}\right)$ is isometric to the two-dimensional complex projective space $\mathbb{C} P^{2}$ with constant holomorphic sectional curvature eight. When $m=2$, we note that the isomorphism $\operatorname{Spin}(6) \simeq S U(4)$ yields an isometry between $G_{2}\left(\mathbb{C}^{4}\right)$ and the real Grassmann manifold $G_{2}^{+}\left(\mathbb{R}^{6}\right)$ of the oriented two-dimensional linear subspaces in \mathbb{R}^{6}. In this paper, we will assume $m \geq 3$.

The Lie algebra \mathfrak{k} has the direct sum decomposition $\mathfrak{k}=\mathfrak{s u} u(m) \oplus \mathfrak{s u} u) \oplus \mathfrak{R}$, where \mathfrak{R} is the center of \mathfrak{k}. Viewing \mathfrak{k} as the holonomy algebra of $G_{2}\left(\mathbb{C}^{m+2}\right)$, the center \mathfrak{R} induces a Kähler structure J and the $\mathfrak{s u} u(2)$-part a quaternionic Kähler structure \mathfrak{J} on $G_{2}\left(\mathbb{C}^{m+2}\right)$. If J_{ν} is any almost Hermitian structure in \mathfrak{J}, then $J J_{\nu}=J_{\nu} J$, and $J J_{\nu}$ is a symmetric endomorphism with $\left(J J_{\nu}\right)^{2}=I$ and $\operatorname{tr}\left(J J_{\nu}\right)=0$ for $\nu=1,2,3$.

A canonical local basis $\left\{J_{1}, J_{2}, J_{3}\right\}$ of \mathfrak{J} consists of three local almost Hermitian structures J_{ν} in \mathfrak{J} such that $J_{\nu} J_{\nu+1}=J_{\nu+2}=-J_{\nu+1} J_{\nu}$, where the index ν is taken modulo three. Since \mathfrak{J} is parallel with respect to the Riemannian connection $\tilde{\nabla}$ of $\left(G_{2}\left(\mathbb{C}^{m+2}\right), g\right)$, there exist for any canonical local basis $\left\{J_{1}, J_{2}, J_{3}\right\}$ of \mathfrak{J} three local one-forms q_{1}, q_{2}, q_{3} such that

$$
\begin{equation*}
\tilde{\nabla}_{X} J_{\nu}=q_{\nu+2}(X) J_{\nu+1}-q_{\nu+1}(X) J_{\nu+2} \tag{1.1}
\end{equation*}
$$

for all vector fields X on $G_{2}\left(\mathbb{C}^{m+2}\right)$.

The Riemannian curvature tensor \tilde{R} of $G_{2}\left(\mathbb{C}^{m+2}\right)$ is locally given by

$$
\begin{align*}
\tilde{R}(X, Y) Z= & g(Y, Z) X-g(X, Z) Y+g(J Y, Z) J X \\
& -g(J X, Z) J Y-2 g(J X, Y) J Z \\
& +\sum_{\nu=1}^{3}\left\{g\left(J_{\nu} Y, Z\right) J_{\nu} X-g\left(J_{\nu} X, Z\right) J_{\nu} Y-2 g\left(J_{\nu} X, Y\right) J_{\nu} Z\right\} \tag{1.2}\\
& +\sum_{\nu=1}^{3}\left\{g\left(J_{\nu} J Y, Z\right) J_{\nu} J X-g\left(J_{\nu} J X, Z\right) J_{\nu} J Y\right\},
\end{align*}
$$

where $\left\{J_{1}, J_{2}, J_{3}\right\}$ denotes a canonical local basis of \mathfrak{J}.
Now we derive some basic formulas and the Codazzi equation for a real hypersurface in $G_{2}\left(\mathbb{C}^{m+2}\right)$ (see $\left.[3,4],[11-14]\right)$.

Let M be a real hypersurface of $G_{2}\left(\mathbb{C}^{m+2}\right)$, that is, a hypersurface of $G_{2}\left(\mathbb{C}^{m+2}\right)$ with real codimension one. The induced Riemannian metric on M will also be denoted by g, and ∇ denotes the Riemannian connection of (M, g). Let N be a local unit normal vector field of M and A the shape operator of M with respect to N.

Now let us put

$$
\begin{equation*}
J X=\phi X+\eta(X) N, \quad J_{\nu} X=\phi_{\nu} X+\eta_{\nu}(X) N \tag{1.3}
\end{equation*}
$$

for any tangent vector field X of a real hypersurface M in $G_{2}\left(\mathbb{C}^{m+2}\right)$, where N denotes a unit normal vector field of M in $G_{2}\left(\mathbb{C}^{m+2}\right)$. From the Kähler structure J of $G_{2}\left(\mathbb{C}^{m+2}\right)$ there exists an almost contact metric structure (ϕ, ξ, η, g) induced on M in such a way that

$$
\phi^{2} X=-X+\eta(X) \xi, \quad \eta(\xi)=1, \quad \phi \xi=0, \quad \eta(X)=g(X, \xi)
$$

for any vector field X on M. Furthermore, let $\left\{J_{1}, J_{2}, J_{3}\right\}$ be a canonical local basis of \mathfrak{J}. Then the quaternionic Kähler structure J_{ν} of $G_{2}\left(\mathbb{C}^{m+2}\right)$, together with the condition $J_{\nu} J_{\nu+1}=J_{\nu+2}=-J_{\nu+1} J_{\nu}$ from Sec. 1, induces an almost contact metric 3 -structure ($\phi_{\nu}, \xi_{\nu}, \eta_{\nu}, g$) on M as follows:

$$
\begin{align*}
& \phi_{\nu}^{2} X=-X+\eta_{\nu}(X) \xi_{\nu}, \quad \eta_{\nu}\left(\xi_{\nu}\right)=1, \quad \phi_{\nu} \xi_{\nu}=0, \\
& \phi_{\nu+1} \xi_{\nu}=-\xi_{\nu+2}, \quad \phi_{\nu} \xi_{\nu+1}=\xi_{\nu+2}, \\
& \phi_{\nu} \phi_{\nu+1} X=\phi_{\nu+2} X+\eta_{\nu+1}(X) \xi_{\nu}, \tag{1.4}\\
& \phi_{\nu+1} \phi_{\nu} X=-\phi_{\nu+2} X+\eta_{\nu}(X) \xi_{\nu+1}
\end{align*}
$$

for any vector field X tangent to M. Moreover, from the commuting property of $J_{\nu} J=J J_{\nu}, \nu=1,2,3$ from Sec. 1 and (1.3), the relation between these two
contact metric structures (ϕ, ξ, η, g) and $\left(\phi_{\nu}, \xi_{\nu}, \eta_{\nu}, g\right), \nu=1,2,3$, can be given by

$$
\begin{align*}
& \phi \phi_{\nu} X=\phi_{\nu} \phi X+\eta_{\nu}(X) \xi-\eta(X) \xi_{\nu} \\
& \eta_{\nu}(\phi X)=\eta\left(\phi_{\nu} X\right), \quad \phi \xi_{\nu}=\phi_{\nu} \xi \tag{1.5}
\end{align*}
$$

On the other hand, from the Kähler structure J, that is, $\tilde{\nabla} J=0$ and the quaternionic Kähler structure J_{ν}, together with the Gauss and Weingarten equations, it follows that

$$
\begin{gather*}
\left(\nabla_{X} \phi\right) Y=\eta(Y) A X-g(A X, Y) \xi, \quad \nabla_{X} \xi=\phi A X \tag{1.6}\\
\nabla_{X} \xi_{\nu}=q_{\nu+2}(X) \xi_{\nu+1}-q_{\nu+1}(X) \xi_{\nu+2}+\phi_{\nu} A X \tag{1.7}\\
\left(\nabla_{X} \phi_{\nu}\right) Y=-q_{\nu+1}(X) \phi_{\nu+2} Y+q_{\nu+2}(X) \phi_{\nu+1} Y \tag{1.8}\\
+\eta_{\nu}(Y) A X-g(A X, Y) \xi_{\nu}
\end{gather*}
$$

Using expression (1.2) for the curvature tensor \tilde{R} of $G_{2}\left(\mathbb{C}^{m+2}\right)$, the equation of Codazzi becomes:

$$
\begin{align*}
\left(\nabla_{X} A\right) Y-\left(\nabla_{Y} A\right) X= & \eta(X) \phi Y-\eta(Y) \phi X-2 g(\phi X, Y) \xi \\
& +\sum_{\nu=1}^{3}\left\{\eta_{\nu}(X) \phi_{\nu} Y-\eta_{\nu}(Y) \phi_{\nu} X-2 g\left(\phi_{\nu} X, Y\right) \xi_{\nu}\right\} \\
& +\sum_{\nu=1}^{3}\left\{\eta_{\nu}(\phi X) \phi_{\nu} \phi Y-\eta_{\nu}(\phi Y) \phi_{\nu} \phi X\right\} \tag{1.9}\\
& +\sum_{\nu=1}^{3}\left\{\eta(X) \eta_{\nu}(\phi Y)-\eta(Y) \eta_{\nu}(\phi X)\right\} \xi_{\nu}
\end{align*}
$$

Now we introduce the notion of the g-Tanaka-Webster connection (see [10]).
As stated above, the Tanaka-Webster connection is the canonical affine connection defined on a non-degenerate pseudo-Hermitian CR-manifold (see [16, 18]). In [17], Tanno defined the g-Tanaka-Webster connection for contact metric manifolds by the canonical connection. It coincides with the Tanaka-Webster connection if the associated CR-structure is integrable.

From now on, we will introduce the g-Tanaka-Webster connection due to Tanno [17] for real hypersurfaces in Kähler manifolds by naturally extending the canonical affine connection to a non-degenerate pseudo-Hermitian CR manifold.

Now let us recall that the g-Tanaka-Webster connection $\hat{\nabla}$ was defined by Tanno [17] for contact metric manifolds as follows:

$$
\hat{\nabla}_{X} Y=\nabla_{X} Y+\left(\nabla_{X} \eta\right)(Y) \xi-\eta(Y) \nabla_{X} \xi-\eta(X) \phi Y
$$

for all vector fields X and Y.
By taking (1.6) into account, the g-Tanaka-Webster connection $\hat{\nabla}^{(k)}$ for real hypersurfaces of Kähler manifolds is defined by

$$
\begin{equation*}
\hat{\nabla}_{X}^{(k)} Y=\nabla_{X} Y+g(\phi A X, Y) \xi-\eta(Y) \phi A X-k \eta(X) \phi Y \tag{1.10}
\end{equation*}
$$

for a non-zero real number k (see [5] and [10]) (Note that $\hat{\nabla}^{(k)}$ is invariant under the choice of the orientation. Namely, we may take $-k$ instead of k in (1.10) for the opposite orientation $-N$).

2. Key Lemmas

In this section, we will prove that the Reeb vector field ξ belongs to either the distribution \mathfrak{D} or the distribution \mathfrak{D}^{\perp} for M in $G_{2}\left(\mathbb{C}^{m+2}\right)$ with g-Tanaka-Webster \mathfrak{D}^{\perp}-invariant shape operator.

In [9], from the definition of the g-Tanaka-Webster connection (1.10), we have the following:

$$
\begin{aligned}
\left(\hat{\mathfrak{L}}_{X}^{(k)} A\right) Y= & \left(\nabla_{X} A\right) Y+g(\phi A X, A Y) \xi-\eta(A Y) \phi A X-k \eta(X) \phi A Y \\
& -g(\phi A X, Y) A \xi+\eta(Y) A \phi A X+k \eta(X) A \phi Y \\
& -\nabla_{A Y} X-g\left(\phi A^{2} Y, X\right) \xi+\eta(X) \phi A^{2} Y+k \eta(A Y) \phi X \\
& +A \nabla_{Y} X+g(\phi A Y, X) A \xi-\eta(X) A \phi A Y-k \eta(Y) A \phi X
\end{aligned}
$$

for any tangent vector fields X and Y on M.
The shape operator A is said to be generalized Tanaka-Webster \mathfrak{D}^{\perp}-invariant if $\left(\hat{\mathfrak{L}}_{X}^{(k)} A\right) Y=0$ for any tangent vector fields $X \in \mathfrak{D}^{\perp}$ and $Y \in T M$. Let M be a Hopf hypersurface in $G_{2}\left(\mathbb{C}^{m+2}\right)$ with generalized Tanaka-Webster \mathfrak{D}^{\perp}-invariant shape operator. This becomes

$$
\begin{align*}
0= & \left(\hat{\mathfrak{L}}_{X}^{(k)} A\right) Y \\
= & \left(\nabla_{X} A\right) Y+g(\phi A X, A Y) \xi-\alpha \eta(Y) \phi A X-k \eta(X) \phi A Y \\
& -\alpha g(\phi A X, Y) \xi+\eta(Y) A \phi A X+k \eta(X) A \phi Y \tag{2.1}\\
& -\nabla_{A Y} X-g\left(\phi A^{2} Y, X\right) \xi+\eta(X) \phi A^{2} Y+\alpha k \eta(Y) \phi X \\
& +A \nabla_{Y} X+\alpha g(\phi A Y, X) \xi-\eta(X) A \phi A Y-k \eta(Y) A \phi X
\end{align*}
$$

for any tangent vector fields X and Y on M.
Applying $X=\xi_{\mu} \in \mathfrak{D}^{\perp}$ and $Y=X$ in (2.1), we get

$$
\begin{align*}
0= & \left(\hat{\mathfrak{L}}_{\xi_{\mu}}^{(k)} A\right) X \\
= & \left(\nabla_{\xi_{\mu}} A\right) X+g\left(\phi A \xi_{\mu}, A X\right) \xi-\alpha \eta(X) \phi A \xi_{\mu}-k \eta\left(\xi_{\mu}\right) \phi A X \\
& -\alpha g\left(\phi A \xi_{\mu}, X\right) \xi+\eta(X) A \phi A \xi_{\mu}+k \eta\left(\xi_{\mu}\right) A \phi X \tag{2.2}\\
& -\nabla_{A X} \xi_{\mu}-g\left(\phi A^{2} X, \xi_{\mu}\right) \xi+\eta\left(\xi_{\mu}\right) \phi A^{2} X+\alpha k \eta(X) \phi \xi_{\mu} \\
& +A \nabla_{X} \xi_{\mu}+\alpha g\left(\phi A X, \xi_{\mu}\right) \xi-\eta\left(\xi_{\mu}\right) A \phi A X-k \eta(X) A \phi \xi_{\mu} .
\end{align*}
$$

Using (2.2), we can assert the following:
Lemma 2.1. Let M be a Hopf hypersurface in $G_{2}\left(\mathbb{C}^{m+2}\right)$. If M has the g-Tanaka-Webster \mathfrak{D}^{\perp}-invariant shape operator, then the principal curvature $\alpha=$ $g(A \xi, \xi)$ is constant along the direction of $\xi_{\mu}, \mu=1,2,3$.

Proof. Replacing X by ξ in (2.2), we have

$$
\begin{aligned}
0= & \left(\hat{\mathfrak{L}}_{\xi_{\mu}}^{(k)} A\right) \xi \\
= & \left(\nabla_{\xi_{\mu}} A\right) \xi+g\left(\phi A \xi_{\mu}, A \xi\right) \xi-\alpha \eta(\xi) \phi A \xi_{\mu}-k \eta\left(\xi_{\mu}\right) \phi A \xi \\
& -\alpha g\left(\phi A \xi_{\mu}, \xi\right) \xi+\eta(\xi) A \phi A \xi_{\mu}+k \eta\left(\xi_{\mu}\right) A \phi \xi \\
& -\nabla_{A \xi} \xi_{\mu}-g\left(\phi A^{2} \xi, \xi_{\mu}\right) \xi+\eta\left(\xi_{\mu}\right) \phi A^{2} \xi+\alpha k \eta(\xi) \phi \xi_{\mu} \\
& +A \nabla_{\xi} \xi_{\mu}+\alpha g\left(\phi A \xi, \xi_{\mu}\right) \xi-\eta\left(\xi_{\mu}\right) A \phi A \xi-k \eta(\xi) A \phi \xi_{\mu} .
\end{aligned}
$$

Then using $A \xi=\alpha \xi$, we obtain

$$
\begin{aligned}
0= & \left(\nabla_{\xi_{\mu}} A\right) \xi \\
& -\alpha \phi A \xi_{\mu}+A \phi A \xi_{\mu}-\alpha \nabla_{\xi} \xi_{\mu}+\alpha k \phi \xi_{\mu}+A \nabla_{\xi} \xi_{\mu}-k A \phi \xi_{\mu} \\
= & -A \phi A \xi_{\mu}+\left(\xi_{\mu} \alpha\right) \xi+\alpha \phi A \xi_{\mu} \\
& -\alpha \phi A \xi_{\mu}+A \phi A \xi_{\mu}-\alpha \nabla_{\xi} \xi_{\mu}+\alpha k \phi \xi_{\mu}+A \nabla_{\xi} \xi_{\mu}-k A \phi \xi_{\mu} \\
= & \left(\xi_{\mu} \alpha\right) \xi-\alpha \nabla_{\xi} \xi_{\mu}+\alpha k \phi \xi_{\mu}+A \nabla_{\xi} \xi_{\mu}-k A \phi \xi_{\mu} .
\end{aligned}
$$

Taking inner product with ξ, we get

$$
\xi_{\mu} \alpha=0
$$

for $\mu=1,2,3$. Thus we have our assertion.
Now we introduce the lemma as follows:
Lemma 2.2. Let M be a Hopf hypersurface in $G_{2}\left(\mathbb{C}^{m+2}\right)$. If M has the g-Tanaka-Webster \mathfrak{D}^{\perp}-invariant shape operator, then the Reeb vector field ξ belongs to either the distribution \mathfrak{D} or the distribution \mathfrak{D}^{\perp}.

Proof. We assume that

$$
\begin{equation*}
\xi=\eta\left(X_{0}\right) X_{0}+\eta\left(\xi_{1}\right) \xi_{1} \tag{}
\end{equation*}
$$

for some unit vector field $X_{0} \in \mathfrak{D}$, and $\eta\left(\xi_{1}\right) \eta\left(X_{0}\right) \neq 0$.
By Berdnt and Suh (see [3], p. 6), under the assumption that M is Hopf, we know

$$
\begin{equation*}
Y \alpha=(\xi \alpha) \eta(Y)-4 \sum_{\nu=1}^{3} \eta_{\nu}(\xi) \eta_{\nu}(\phi Y) \tag{2.3}
\end{equation*}
$$

for any tangent vector field Y on M. Applying $Y=\xi_{\mu}, \mu=1,2,3$ in (2.3), we get

$$
\xi_{\mu} \alpha=(\xi \alpha) \eta\left(\xi_{\mu}\right)-4 \sum_{\nu=1}^{3} \eta_{\nu}(\xi) \eta_{\nu}\left(\phi \xi_{\mu}\right)
$$

Using Lemma 2.1 and $\left({ }^{*}\right)$, this equation can be reduced to

$$
\begin{equation*}
(\xi \alpha) \eta\left(\xi_{\mu}\right)-4 \eta_{1}(\xi) \eta_{1}\left(\phi \xi_{\mu}\right)=0 \tag{2.4}
\end{equation*}
$$

On the other hand, we obtain

$$
\begin{aligned}
\eta_{1}\left(\phi \xi_{\mu}\right) & =-g\left(\xi_{\mu}, \phi_{1}\left(\eta\left(X_{0}\right) X_{0}+\eta\left(\xi_{1}\right) \xi_{1}\right)\right) \\
& =\eta\left(X_{0}\right) g\left(\phi_{1} \xi_{\mu}, X_{0}\right) \\
& =0
\end{aligned}
$$

because of $X_{0} \in \mathfrak{D}$. Therefore, we rewrite (2.4) in the form

$$
(\xi \alpha) \eta\left(\xi_{\mu}\right)=0 \text { for } \mu=1,2,3,
$$

that is, $\xi \alpha=0$ or $\eta\left(\xi_{\mu}\right)=0$ for $\mu=1,2,3$.
Case I: $\eta\left(\xi_{\mu}\right)=0$ for $\mu=1,2,3$.
Since the assumptions of $\left({ }^{*}\right), \eta\left(\xi_{2}\right)=0$ and $\eta\left(\xi_{3}\right)=0$ are obvious.
Case II: $\quad \xi \alpha=0$.
Substituting X_{0} for Y in (2.3) and using $\left(^{*}\right)$, we have

$$
X_{0} \alpha=-4 \eta_{1}(\xi) \eta_{1}\left(\phi X_{0}\right)=0 .
$$

Thus we obtain $X_{0} \alpha=0$.
Subcase II-1: $\alpha=0$.
Applying $\alpha=0$ and $\left(^{*}\right)$ in (2.3), we get

$$
-4 \eta_{1}(\xi) \eta_{1}(\phi Y)=0
$$

Since $\eta_{1}(\xi) \neq 0$, we obtain

$$
\begin{aligned}
0 & =\eta_{1}(\phi Y) \\
& =-g\left(Y, \phi_{1}\left(\eta\left(X_{0}\right) X_{0}+\eta\left(\xi_{1}\right) \xi_{1}\right)\right) \\
& =-\eta\left(X_{0}\right) g\left(Y, \phi_{1} X_{0}\right)
\end{aligned}
$$

for any tangent vector field Y on M. Because of $\eta\left(X_{0}\right) \neq 0$, we have $\phi_{1} X_{0}=0$. It gives us a contradiction.

Subcase II-2: $\alpha \neq 0$.
Using (1.9) and (2.2), we get

$$
\begin{align*}
0= & \left(\hat{\mathfrak{L}}_{\xi_{\mu}}^{(k)} A\right) X \\
= & \left(\nabla_{X} A\right) \xi_{\mu}+\eta\left(\xi_{\mu}\right) \phi X-\eta(X) \phi \xi_{\mu}-2 g\left(\phi \xi_{\mu}, X\right) \xi \\
& +\sum_{\nu=1}^{3}\left\{\eta_{\nu}\left(\xi_{\mu}\right) \phi_{\nu} X-\eta_{\nu}(X) \phi_{\nu} \xi_{\mu}-2 g\left(\phi_{\nu} \xi_{\mu}, X\right) \xi_{\nu}\right\} \\
& +\sum_{\nu=1}^{3}\left\{\eta_{\nu}\left(\phi \xi_{\mu}\right) \phi_{\nu} \phi X-\eta_{\nu}(\phi X) \phi_{\nu} \phi \xi_{\mu}\right\} \tag{2.5}\\
& +\sum_{\nu=1}^{3}\left\{\eta\left(\xi_{\mu}\right) \eta_{\nu}(\phi X)-\eta(X) \eta_{\nu}\left(\phi \xi_{\mu}\right)\right\} \xi_{\nu} \\
& +g\left(\phi A \xi_{\mu}, A X\right) \xi-\alpha \eta(X) \phi A \xi_{\mu}-k \eta\left(\xi_{\mu}\right) \phi A X \\
& -\alpha g\left(\phi A \xi_{\mu}, X\right) \xi+\eta(X) A \phi A \xi_{\mu}+k \eta\left(\xi_{\mu}\right) A \phi X \\
& -\nabla_{A X} \xi_{\mu}-g\left(\phi A^{2} X, \xi_{\mu}\right) \xi+\eta\left(\xi_{\mu}\right) \phi A^{2} X+\alpha k \eta(X) \phi \xi_{\mu} \\
& +A \nabla_{X} \xi_{\mu}+\alpha g\left(\phi A X, \xi_{\mu}\right) \xi-\eta\left(\xi_{\mu}\right) A \phi A X-k \eta(X) A \phi \xi_{\mu}
\end{align*}
$$

for any tangent vector field X on M.
In [8], Jeong, Machado, Perez and Suh introduced the following
Lemma A. Let M be a Hopf real hypersurface in $G_{2}\left(\mathbb{C}^{m+2}\right)$. If the principal curvature α is constant along the direction of ξ, then the distribution \mathfrak{D} or \mathfrak{D}^{\perp} component of the structure vector field ξ is invariant by the shape operator.

Since $\xi \alpha=0$, the distribution \mathfrak{D} or \mathfrak{D}^{\perp} component of the structure vector field ξ is invariant by the shape operator. Thus we write

$$
\begin{aligned}
\alpha\left(\eta\left(X_{0}\right) X_{0}+\eta\left(\xi_{1}\right) \xi_{1}\right) & =\alpha \xi \\
& =A \xi \\
& =\eta\left(X_{0}\right) A X_{0}+\eta\left(\xi_{1}\right) A \xi_{1} .
\end{aligned}
$$

Therefore, we get

$$
\begin{equation*}
A X_{0}=\alpha X_{0} \quad \text { and } A \xi_{1}=\alpha \xi_{1} . \tag{2.6}
\end{equation*}
$$

Applying $X=X_{0}$ and $\mu=1$ in (2.5), we have

$$
\begin{aligned}
0= & \left(\hat{\mathfrak{L}}_{\xi_{1}}^{(k)} A\right) X_{0} \\
= & \left(\nabla_{X_{0}} A\right) \xi_{1}+\eta\left(\xi_{1}\right) \phi X_{0}-\eta\left(X_{0}\right) \phi \xi_{1}-2 g\left(\phi \xi_{1}, X_{0}\right) \xi \\
& +\sum_{\nu=1}^{3}\left\{\eta_{\nu}\left(\xi_{1}\right) \phi_{\nu} X_{0}-\eta_{\nu}\left(X_{0}\right) \phi_{\nu} \xi_{1}-2 g\left(\phi_{\nu} \xi_{1}, X_{0}\right) \xi_{\nu}\right\}
\end{aligned}
$$

$$
\begin{aligned}
& +\sum_{\nu=1}^{3}\left\{\eta_{\nu}\left(\phi \xi_{1}\right) \phi_{\nu} \phi X_{0}-\eta_{\nu}\left(\phi X_{0}\right) \phi_{\nu} \phi \xi_{1}\right\} \\
& +\sum_{\nu=1}^{3}\left\{\eta\left(\xi_{1}\right) \eta_{\nu}\left(\phi X_{0}\right)-\eta\left(X_{0}\right) \eta_{\nu}\left(\phi \xi_{1}\right)\right\} \xi_{\nu} \\
& +g\left(\phi A \xi_{1}, A X_{0}\right) \xi-\alpha \eta\left(X_{0}\right) \phi A \xi_{1}-k \eta\left(\xi_{1}\right) \phi A X_{0} \\
& -\alpha g\left(\phi A \xi_{1}, X_{0}\right) \xi+\eta\left(X_{0}\right) A \phi A \xi_{1}+k \eta\left(\xi_{1}\right) A \phi X_{0} \\
& -\nabla_{A X_{0}} \xi_{1}-g\left(\phi A^{2} X_{0}, \xi_{1}\right) \xi+\eta\left(\xi_{1}\right) \phi A^{2} X_{0}+\alpha k \eta\left(X_{0}\right) \phi \xi_{1} \\
& +A \nabla_{X_{0}} \xi_{1}+\alpha g\left(\phi A X_{0}, \xi_{1}\right) \xi-\eta\left(\xi_{1}\right) A \phi A X_{0}-k \eta\left(X_{0}\right) A \phi \xi_{1} .
\end{aligned}
$$

Since $g\left(\phi \xi_{1}, X_{0}\right)=0, \eta_{\nu}\left(\phi \xi_{1}\right)=\eta_{\nu}\left(\phi X_{0}\right)=0$ for $\nu=1,2,3$ and $\phi \xi_{1}=\eta\left(X_{0}\right) \phi_{1} X_{0}$, by using (2.6), the above equation can be reduced to

$$
\begin{aligned}
0= & \left(\nabla_{X_{0}} A\right) \xi_{1}+\eta\left(\xi_{1}\right) \phi X_{0}-\eta^{2}\left(X_{0}\right) \phi_{1} X_{0}+\phi_{1} X_{0} \\
& +\alpha^{2} g\left(\phi \xi_{1}, X_{0}\right) \xi-\alpha^{2} \eta^{2}\left(X_{0}\right) \phi_{1} X_{0}-\alpha k \eta\left(\xi_{1}\right) \phi X_{0} \\
& -\alpha^{2} g\left(\phi \xi_{1}, X_{0}\right) \xi+\alpha \eta^{2}\left(X_{0}\right) A \phi_{1} X_{0}+k \eta\left(\xi_{1}\right) A \phi X_{0} \\
& -\alpha \nabla_{X_{0}} \xi_{1}-\alpha^{2} g\left(\phi X_{0}, \xi_{1}\right) \xi+\alpha^{2} \eta\left(\xi_{1}\right) \phi X_{0}+\alpha k \eta^{2}\left(X_{0}\right) \phi_{1} X_{0} \\
& +A \nabla_{X_{0}} \xi_{1}+\alpha^{2} g\left(\phi X_{0}, \xi_{1}\right) \xi-\alpha \eta\left(\xi_{1}\right) A \phi X_{0}-k \eta^{2}\left(X_{0}\right) A \phi_{1} X_{0} .
\end{aligned}
$$

Using the assumption $\xi=\eta\left(X_{0}\right) X_{0}+\eta\left(\xi_{1}\right) \xi_{1}$ such that $\eta\left(X_{0}\right) \eta\left(\xi_{1}\right) \neq 0$, we get $\phi X_{0}=-\eta\left(\xi_{1}\right) \phi_{1} X_{0}$. Then we rewrite

$$
\begin{aligned}
0= & \left(\nabla_{X_{0}} A\right) \xi_{1}-\eta^{2}\left(\xi_{1}\right) \phi_{1} X_{0}-\eta^{2}\left(X_{0}\right) \phi_{1} X_{0}+\phi_{1} X_{0} \\
& -\alpha^{2} \eta^{2}\left(X_{0}\right) \phi_{1} X_{0}+\alpha k \eta^{2}\left(\xi_{1}\right) \phi_{1} X_{0} \\
& +\alpha \eta^{2}\left(X_{0}\right) A \phi_{1} X_{0}-k \eta^{2}\left(\xi_{1}\right) A \phi_{1} X_{0} \\
& -\alpha \nabla_{X_{0}} \xi_{1}-\alpha^{2} \eta^{2}\left(\xi_{1}\right) \phi_{1} X_{0}+\alpha k \eta^{2}\left(X_{0}\right) \phi_{1} X_{0} \\
& +A \nabla_{X_{0}} \xi_{1}+\alpha \eta^{2}\left(\xi_{1}\right) A \phi_{1} X_{0}-k \eta^{2}\left(X_{0}\right) A \phi_{1} X_{0} .
\end{aligned}
$$

Because of $\eta^{2}\left(X_{0}\right)+\eta^{2}\left(\xi_{1}\right)=1$, we get

$$
\begin{aligned}
0= & \left(\nabla_{X_{0}} A\right) \xi_{1}-\alpha^{2} \phi_{1} X_{0}+\alpha k \phi_{1} X_{0}+(\alpha-k) A \phi_{1} X_{0} \\
& -\alpha \nabla_{X_{0}} \xi_{1}+A \nabla_{X_{0}} \xi_{1} \\
= & -\alpha(\alpha-k) \phi_{1} X_{0}+(\alpha-k) A \phi_{1} X_{0} \\
= & (\alpha-k)\left\{-\alpha+\frac{\alpha^{2}+4 \eta^{2}\left(X_{0}\right)}{\alpha}\right\} \phi_{1} X_{0}
\end{aligned}
$$

where $A \phi_{1} X_{0}=\frac{\alpha^{2}+4 \eta^{2}\left(X_{0}\right)}{\alpha} \phi_{1} X_{0}$, due to Berndt and Suh [4]. Thus we have

$$
(\alpha-k) \frac{4 \eta^{2}\left(X_{0}\right)}{\alpha} \phi_{1} X_{0}=0
$$

Therefore we obtain

$$
\begin{equation*}
\alpha=k \text {, where } k \text { is a nonzero real number. } \tag{2.7}
\end{equation*}
$$

Applying (2.7) in (2.3), we get

$$
-4 \eta_{1}(\xi) \eta_{1}(\phi Y)=0
$$

for any tangent vector field Y on M.
Then, by using the assumption $\xi=\eta\left(X_{0}\right) X_{0}+\eta\left(\xi_{1}\right) \xi_{1}$ such that $\eta\left(\xi_{1}\right) \eta\left(X_{0}\right) \neq 0$, we write

$$
\eta_{1}(\phi Y)=-g\left(\phi \xi_{1}, Y\right)=0
$$

for any tangent vector field Y on M. Thus we get

$$
\phi \xi_{1}=\eta\left(X_{0}\right) \phi_{1} X_{0}=0,
$$

that is, $\phi_{1} X_{0}=0$. This gives a contradiction. Hence we complete the proof of this lemma.

3. The Proof of the Main Theorem

From now on, let us assume that M is a Hopf hypersurface in $G_{2}\left(\mathbb{C}^{m+2}\right)$ with g-Tanaka-Webster \mathfrak{D}^{\perp}-invariant shape operator, that is $\left(\hat{\mathfrak{L}}_{\xi_{\mu}}^{(k)} A\right) X=0$ for $\mu=1,2,3$. Then, by Lemma 2.2, we consider the following two cases, that is, $\xi \in \mathfrak{D}^{\perp}$ or $\xi \in \mathfrak{D}$.

First, we consider the case $\xi \in \mathfrak{D}^{\perp}$. From this, without loss of generality, we may put $\xi=\xi_{1}$. By setting $\mu=1$, we have

$$
0=\left(\hat{\mathfrak{L}}_{\xi_{1}}^{(k)} A\right) X=\left(\hat{\mathfrak{L}}_{\xi}^{(k)} A\right) X=\left(\hat{\nabla}_{\xi}^{(k)} A\right) X
$$

for any tangent vector field X on M.
In [7], Jeong, Lee and Suh introduced the following:
Lemma B. Let M be a Hopf hypersurface, $\alpha \neq 2 k$, in $G_{2}\left(\mathbb{C}^{m+2}\right), m \geq 3$, with g-Tanaka-Webster \mathfrak{D}^{\perp}-parallel shape operator. If the Reeb vector ξ belongs to the distribution \mathfrak{D}^{\perp}, then the shape operator A commutes with the structure tensor ϕ.

Due to Berdnt and Suh [4], the Reeb flow on M is isometric if and only if the structure tensor field ϕ commutes with the shape operator A of M, that is, $A \phi=\phi A$. Thus, from Lemma B and Theorem B we have the following:

R emark 3.1. Let M be a Hopf hypersurface, $\alpha \neq 2 k$, in $G_{2}\left(\mathbb{C}^{m+2}\right)$, $m \geq 3$ with g-Tanaka-Webster \mathfrak{D}^{\perp}-invariant shape operator. If the Reeb vector ξ belongs to the distribution \mathfrak{D}^{\perp}, then M is locally congruent to an open part of a tube around a totally geodesic $G_{2}\left(\mathbb{C}^{m+1}\right)$ in $G_{2}\left(\mathbb{C}^{m+2}\right)$.

Then, by using Remark 3.1, we assume that M is a real hypersurface of Type (A) in $G_{2}\left(\mathbb{C}^{m+2}\right)$. Then let us check whether the shape operator A of M is \mathfrak{D}^{\perp}-invariant in the g-Tanaka-Webster connection. In order to show this problem, we introduce a proposition due to Berndt and Suh [3] as follows:

Proposition A. Let M be a connected real hypersurface of $G_{2}\left(\mathbb{C}^{m+2}\right)$. Suppose that $A \mathfrak{D} \subset \mathfrak{D}, A \xi=\alpha \xi$, and ξ is tangent to \mathfrak{D}^{\perp}. Let $J_{1} \in \mathfrak{J}$ be the almost Hermitian structure such that $J N=J_{1} N$. Then M has three (if $r=\pi / 2 \sqrt{8}$) or four (otherwise) distinct constant principal curvatures

$$
\alpha=\sqrt{8} \cot (\sqrt{8} r), \quad \beta=\sqrt{2} \cot (\sqrt{2} r), \quad \lambda=-\sqrt{2} \tan (\sqrt{2} r), \quad \mu=0
$$

with some $r \in(0, \pi / \sqrt{8})$. The corresponding multiplicities are

$$
m(\alpha)=1, \quad m(\beta)=2, \quad m(\lambda)=2 m-2=m(\mu)
$$

and the corresponding eigenspaces are

$$
\begin{aligned}
& T_{\alpha}=\mathbb{R} \xi=\mathbb{R} J N=\mathbb{R} \xi_{1}=\operatorname{Span}\{\xi\}=\operatorname{Span}\left\{\xi_{1}\right\}, \\
& T_{\beta}=\mathbb{C}^{\perp} \xi=\mathbb{C}^{\perp} N=\mathbb{R} \xi_{2} \oplus \mathbb{R} \xi_{3}=\operatorname{Span}\left\{\xi_{2}, \xi_{3}\right\}, \\
& T_{\lambda}=\left\{X \mid X \perp \mathbb{H} \xi, J X=J_{1} X\right\}, \\
& T_{\mu}=\left\{X \mid X \perp \mathbb{H} \xi, \quad J X=-J_{1} X\right\},
\end{aligned}
$$

where $\mathbb{R} \xi, \mathbb{C} \xi$ and $\mathbb{H} \xi$ respectively denote real, complex and quaternionic spans of the structure vector field ξ, and $\mathbb{C}^{\perp} \xi$ denotes the orthogonal complement of $\mathbb{C} \xi$ in $\mathbb{H} \xi$.

Case A: $\xi \in \mathfrak{D}^{\perp}$.
Applying $\mu=2$ in (2.5), we get

$$
\begin{aligned}
0= & \left(\nabla_{X} A\right) \xi_{2}+\eta\left(\xi_{2}\right) \phi X-\eta(X) \phi \xi_{2}-2 g\left(\phi \xi_{2}, X\right) \xi \\
& +\sum_{\nu=1}^{3}\left\{\eta_{\nu}\left(\xi_{2}\right) \phi_{\nu} X-\eta_{\nu}(X) \phi_{\nu} \xi_{2}-2 g\left(\phi_{\nu} \xi_{2}, X\right) \xi_{\nu}\right\} \\
& +\sum_{\nu=1}^{3}\left\{\eta_{\nu}\left(\phi \xi_{2}\right) \phi_{\nu} \phi X-\eta_{\nu}(\phi X) \phi_{\nu} \phi \xi_{2}\right\} \\
& +\sum_{\nu=1}^{3}\left\{\eta\left(\xi_{2}\right) \eta_{\nu}(\phi X)-\eta(X) \eta_{\nu}\left(\phi \xi_{2}\right)\right\} \xi_{\nu} \\
& +g\left(\phi A \xi_{2}, A X\right) \xi-\alpha \eta(X) \phi A \xi_{2}-k \eta\left(\xi_{2}\right) \phi A X \\
& -\alpha g\left(\phi A \xi_{2}, X\right) \xi+\eta(X) A \phi A \xi_{2}+k \eta\left(\xi_{2}\right) A \phi X \\
& -\nabla_{A X} \xi_{2}-g\left(\phi A^{2} X, \xi_{2}\right) \xi+\eta\left(\xi_{2}\right) \phi A^{2} X+\alpha k \eta(X) \phi \xi_{2} \\
& +A \nabla_{X} \xi_{2}+\alpha g\left(\phi A X, \xi_{2}\right) \xi-\eta\left(\xi_{2}\right) A \phi A X-k \eta(X) A \phi \xi_{2} .
\end{aligned}
$$

By setting $X \in T_{\lambda}$ and $\xi=\xi_{1} \in \mathfrak{D}^{\perp}$, we have

$$
\begin{aligned}
0= & \left(\nabla_{X} A\right) \xi_{2}+\phi_{2} X-\phi_{3} \phi X+\beta \lambda g\left(\phi \xi_{2}, X\right) \xi-\alpha \beta g\left(\phi \xi_{2}, X\right) \xi \\
& -\lambda \nabla_{X} \xi_{2}-\lambda^{2} g\left(\phi X, \xi_{2}\right) \xi+A \nabla_{X} \xi_{2}+\alpha \lambda g\left(\phi X, \xi_{2}\right) \xi .
\end{aligned}
$$

Since $X \in T_{\lambda}, g\left(\phi X, \xi_{2}\right)=-g\left(X, \phi \xi_{2}\right)=0$.
Using $\left(\nabla_{X} A\right) \xi_{2}+A \nabla_{X} \xi_{2}=\beta \nabla_{X} \xi_{2}$, we obatin

$$
\begin{align*}
0 & =(\beta-\lambda) \nabla_{X} \xi_{2} \\
& =(\beta-\lambda)\left(q_{1}(X) \xi_{3}-q_{3}(X) \xi_{1}+\phi_{2} A X\right) . \tag{3.1}
\end{align*}
$$

On the other hand, we know that

$$
\begin{aligned}
\phi A X & =\nabla_{X} \xi \\
& =\nabla_{X} \xi_{1} \\
& =q_{3}(X) \xi_{2}-q_{2}(X) \xi_{3}+\phi_{1} A X .
\end{aligned}
$$

Taking inner product with ξ_{2}, we have

$$
g\left(\phi A X, \xi_{2}\right)=q_{3}(X)+g\left(\phi_{1} A X, \xi_{2}\right),
$$

that is,

$$
q_{3}(X)=2 \lambda g\left(X, \xi_{3}\right)=0 .
$$

Because of $q_{3}(Y)=0$, equation (3.1) reduces to

$$
\begin{equation*}
(\beta-\lambda)\left(q_{1}(X) \xi_{3}+\lambda \phi_{2} X\right)=0 . \tag{3.2}
\end{equation*}
$$

Taking inner product with ξ_{3} in (3.2), we rewrite

$$
(\beta-\lambda) q_{1}(X)=0
$$

Since $\beta-\lambda>0$ by Proposition A, $q_{1}(X)=0$. Consequently, from (3.2) we get

$$
(\beta-\lambda) \lambda \phi_{2} X=0,
$$

that is, $\phi_{2} X=0$. This gives a contradiction. So we give a proof of our main theorem for $\xi \in \mathfrak{D}^{\perp}$.

On the other hand, from Theorem C we have the following:
Remark 3.2. Let M be a Hopf hypersurface in $G_{2}\left(\mathbb{C}^{m+2}\right)$ with g-TanakaWebster \mathfrak{D}^{\perp} - invariant shape operator. If the Reeb vector ξ belongs to the distribution \mathfrak{D}, then M is locally congruent to an open part of a tube around a totally geodesic $\mathbb{H} P^{n}$ in $G_{2}\left(\mathbb{C}^{m+2}\right)$.

Now let us consider that M is a Hopf hypersurface of Type (B) in $G_{2}\left(\mathbb{C}^{m+2}\right)$. Then, using Remark 3.2 and Proposition B due to Berndt and Suh [3], we can check whether the shape operator A of M satisfies \mathfrak{D}^{\perp}-invariant in the g-TanakaWebster connection. First of all, we introduce the proposition given by Berndt and Suh in [3] as follows:

Proposition B. Let M be a connected real hypersurface in $G_{2}\left(\mathbb{C}^{m+2}\right)$. Suppose that $A \mathfrak{D} \subset \mathfrak{D}, A \xi=\alpha \xi$, and ξ is tangent to \mathfrak{D}. Then the quaternionic dimension m of $G_{2}\left(\mathbb{C}^{m+2}\right)$ is even, say $m=2 n$, and M has five distinct constant principal curvatures

$$
\alpha=-2 \tan (2 r), \quad \beta=2 \cot (2 r), \quad \gamma=0, \quad \lambda=\cot (r), \quad \mu=-\tan (r)
$$

with some $r \in(0, \pi / 4)$. The corresponding multiplicities are

$$
m(\alpha)=1, \quad m(\beta)=3=m(\gamma), \quad m(\lambda)=4 n-4=m(\mu)
$$

and the corresponding eigenspaces are

$$
\begin{aligned}
& T_{\alpha}=\mathbb{R} \xi=\operatorname{Span}\{\xi\}, \\
& T_{\beta}=\mathfrak{J} J \xi=\operatorname{Span}\left\{\xi_{\nu} \mid \nu=1,2,3\right\}, \\
& T_{\gamma}=\mathfrak{J} \xi=\operatorname{Span}\left\{\phi_{\nu} \xi \mid \nu=1,2,3\right\}, \\
& T_{\lambda}, \quad T_{\mu},
\end{aligned}
$$

where

$$
T_{\lambda} \oplus T_{\mu}=(\mathbb{H} \mathbb{C} \xi)^{\perp}, \quad \mathfrak{J} T_{\lambda}=T_{\lambda}, \quad \mathfrak{J} T_{\mu}=T_{\mu}, \quad J T_{\lambda}=T_{\mu} .
$$

The distribution $(\mathbb{H C} \mathcal{C})^{\perp}$ is the orthogonal complement of $\mathbb{H C} \mathcal{C}$, where $\mathbb{H} \mathbb{C} \xi=$ $\mathbb{R} \xi \oplus \mathbb{R} J \xi \oplus \mathfrak{J} \xi \oplus \mathfrak{J} J \xi$.

Case B: $\xi \in \mathfrak{D}$.

Applying $\xi \in \mathfrak{D}$ in (2.5), we get

$$
\begin{align*}
0= & \left(\hat{\mathfrak{L}}_{\xi_{\mu}}^{(k)} A\right) X \\
= & \left(\nabla_{X} A\right) \xi_{\mu}-\eta(X) \phi \xi_{\mu}-2 g\left(\phi \xi_{\mu}, X\right) \xi+\phi_{\mu} X \\
& +\sum_{\nu=1}^{3}\left\{-\eta_{\nu}(X) \phi_{\nu} \xi_{\mu}-2 g\left(\phi_{\nu} \xi_{\mu}, X\right) \xi_{\nu}-\eta_{\nu}(\phi X) \phi_{\nu} \phi \xi_{\mu}\right\} \tag{3.3}\\
& +g\left(\phi A \xi_{\mu}, A X\right) \xi-\alpha \eta(X) \phi A \xi_{\mu}-\alpha g\left(\phi A \xi_{\mu}, X\right) \xi+\eta(X) A \phi A \xi_{\mu} \\
& -\nabla_{A X} \xi_{\mu}-g\left(\phi A^{2} X, \xi_{\mu}\right) \xi+\alpha k \eta(X) \phi \xi_{\mu} \\
& +A \nabla_{X} \xi_{\mu}+\alpha g\left(\phi A X, \xi_{\mu}\right) \xi-k \eta(X) A \phi \xi_{\mu}
\end{align*}
$$

for any tangent vector field X on M.

Case B-I: $\quad X=\xi \in T_{\alpha}$.
By putting $X=\xi$ in (3.3), we have

$$
\begin{aligned}
0= & \left(\nabla_{\xi} A\right) \xi_{\mu}-\phi \xi_{\mu}+\phi_{\mu} \xi-\alpha \phi A \xi_{\mu}+A \phi A \xi_{\mu} \\
& -\nabla_{A \xi} \xi_{\mu}+\alpha k \phi \xi_{\mu}+A \nabla_{\xi} \xi_{\mu}-k A \phi \xi_{\mu} .
\end{aligned}
$$

Using $A \xi=\alpha \xi, A \xi_{\mu}=\beta \xi_{\mu}$ and $A \phi \xi_{\mu}=\gamma \phi \xi_{\mu}=0$, it can be reduced to

$$
\left(\nabla_{\xi} A\right) \xi_{\mu}-\alpha \beta \phi \xi_{\mu}-\alpha \nabla_{\xi} \xi_{\mu}+\alpha k \phi \xi_{\mu}+A \nabla_{\xi} \xi_{\mu}=0
$$

Since $\left(\nabla_{\xi} A\right) \xi_{\mu}+A \nabla_{\xi} \xi_{\mu}=\beta \nabla_{\xi} \xi_{\mu}$ and $\nabla_{\xi} \xi_{\mu}=q_{\mu+2}(\xi) \xi_{\mu+1}-q_{\mu+1}(\xi) \xi_{\mu+2}+\phi_{\mu} A \xi$, we rewrite

$$
(\beta-\alpha)\left\{q_{\mu+2}(\xi) \xi_{\mu+1}-q_{\mu+1}(\xi) \xi_{\mu+2}\right\}+\alpha(k-\alpha) \phi_{\mu} \xi=0
$$

Consequently, we get

$$
(\beta-\alpha) q_{\mu+1}(\xi)=0,(\beta-\alpha) q_{\mu+2}(\xi)=0 \text { and } \alpha(k-\alpha)=0 .
$$

From constant principal curvatures of Proposition B, that is, $\beta-\alpha>0$ and $\alpha<0$, we obtain

$$
q_{\mu+1}(\xi)=0, \quad q_{\mu+2}(\xi)=0 \text { and } \alpha=k
$$

that is, $\alpha=k$ and $q_{i}(\xi)=0, i=1,2,3$.
Case B-II : $X \in T_{\beta}$, where $T_{\beta}=\operatorname{Span}\left\{\xi_{i} \mid i=1,2,3\right\}$.
By setting $X=\xi_{i}, i=1,2,3$ in (3.3), we have

$$
\begin{aligned}
0= & \left(\nabla_{\xi_{i}} A\right) \xi_{\mu}-\eta\left(\xi_{i}\right) \phi \xi_{\mu}-2 g\left(\phi \xi_{\mu}, \xi_{i}\right) \xi+\phi_{\mu} \xi_{i} \\
& +\sum_{\nu=1}^{3}\left\{-\eta_{\nu}\left(\xi_{i}\right) \phi_{\nu} \xi_{\mu}-2 g\left(\phi_{\nu} \xi_{\mu}, \xi_{i}\right) \xi_{\nu}-\eta_{\nu}\left(\phi \xi_{i}\right) \phi_{\nu} \phi \xi_{\mu}\right\} \\
& +g\left(\phi A \xi_{\mu}, A \xi_{i}\right) \xi-\alpha \eta\left(\xi_{i}\right) \phi A \xi_{\mu}-\alpha g\left(\phi A \xi_{\mu}, \xi_{i}\right) \xi+\eta\left(\xi_{i}\right) A \phi A \xi_{\mu} \\
& -\beta \nabla_{\xi_{i}} \xi_{\mu}-g\left(\phi A^{2} \xi_{i}, \xi_{\mu}\right) \xi+\alpha k \eta\left(\xi_{i}\right) \phi \xi_{\mu} \\
& +A \nabla_{\xi_{i}} \xi_{\mu}+\alpha g\left(\phi A \xi_{i}, \xi_{\mu}\right) \xi-k \eta\left(\xi_{i}\right) A \phi \xi_{\mu} \\
= & \left(\nabla_{\xi_{i}} A\right) \xi_{\mu}+\phi_{\mu} \xi_{i}+\sum_{\nu=1}^{3}\left\{-\eta_{\nu}\left(\xi_{i}\right) \phi_{\nu} \xi_{\mu}-2 g\left(\phi_{\nu} \xi_{\mu}, \xi_{i}\right) \xi_{\nu}\right\} \\
& -\beta \nabla_{\xi_{i}} \xi_{\mu}+A \nabla_{\xi_{i}} \xi_{\mu} .
\end{aligned}
$$

Since $\left(\nabla_{\xi_{i}} A\right) \xi_{\mu}+A \nabla_{\xi_{i}} \xi_{\mu}=\beta \nabla_{\xi_{i}} \xi_{\mu}$, it can be reduced to

$$
\begin{equation*}
\phi_{\mu} \xi_{i}+\sum_{\nu=1}^{3}\left\{-\eta_{\nu}\left(\xi_{i}\right) \phi_{\nu} \xi_{\mu}-2 g\left(\phi_{\nu} \xi_{\mu}, \xi_{i}\right) \xi_{\nu}\right\}=0 \tag{3.4}
\end{equation*}
$$

Subcase II-1 : $i=\mu$ in (3.4).

$$
\phi_{\mu} \xi_{\mu}+\sum_{\nu=1}^{3}\left\{-\eta_{\nu}\left(\xi_{\mu}\right) \phi_{\nu} \xi_{\mu}-2 g\left(\phi_{\nu} \xi_{\mu}, \xi_{\mu}\right) \xi_{\nu}\right\}=0
$$

Subcase II-2 : $i=\mu+1$ in (3.4).

$$
\begin{aligned}
\phi_{\mu} \xi_{\mu+1} & +\sum_{\nu=1}^{3}\left\{-\eta_{\nu}\left(\xi_{\mu+1}\right) \phi_{\nu} \xi_{\mu}-2 g\left(\phi_{\nu} \xi_{\mu}, \xi_{\mu+1}\right) \xi_{\nu}\right\} \\
& =\xi_{\mu+2}-\phi_{\mu+1} \xi_{\mu}-2 \xi_{\mu+2} \\
& =0
\end{aligned}
$$

Subcase II-3: $i=\mu+2$ in (3.4).

$$
\begin{aligned}
\phi_{\mu} \xi_{\mu+2} & +\sum_{\nu=1}^{3}\left\{-\eta_{\nu}\left(\xi_{\mu+2}\right) \phi_{\nu} \xi_{\mu}-2 g\left(\phi_{\nu} \xi_{\mu}, \xi_{\mu+2}\right) \xi_{\nu}\right\} \\
& =-\xi_{\mu+1}-\phi_{\mu+2} \xi_{\mu}+2 \xi_{\mu+1} \\
& =0
\end{aligned}
$$

Summing up the above three subcases, we note that the shape operator A of M is \mathfrak{D}^{\perp}-invariant on T_{β} in the g-Tanaka-Webster connection.

Case B-III : $\quad X \in T_{\gamma}$, where $T_{\gamma}=\operatorname{Span}\left\{\phi_{i} \xi \mid i=1,2,3\right\}$. By putting $X=\phi_{i} \xi$ in (3.3), we have

$$
\begin{aligned}
0= & \left(\nabla_{\phi_{i} \xi} A\right) \xi_{\mu}-\eta\left(\phi_{i} \xi\right) \phi \xi_{\mu}-2 g\left(\phi \xi_{\mu}, \phi_{i} \xi\right) \xi+\phi_{\mu} \phi_{i} \xi \\
& +\sum_{\nu=1}^{3}\left\{-\eta_{\nu}\left(\phi_{i} \xi\right) \phi_{\nu} \xi_{\mu}-2 g\left(\phi_{\nu} \xi_{\mu}, \phi_{i} \xi\right) \xi_{\nu}-\eta_{\nu}\left(\phi \phi_{i} \xi\right) \phi_{\nu} \phi \xi_{\mu}\right\} \\
& +g\left(\phi A \xi_{\mu}, A \phi_{i} \xi\right) \xi-\alpha \eta\left(\phi_{i} \xi\right) \phi A \xi_{\mu}-\alpha g\left(\phi A \xi_{\mu}, \phi_{i} \xi\right) \xi+\eta\left(\phi_{i} \xi\right) A \phi A \xi_{\mu} \\
& -\nabla_{A \phi_{i} \xi} \xi_{\mu}-g\left(\phi A^{2} \phi_{i} \xi, \xi_{\mu}\right) \xi+\alpha k \eta\left(\phi_{i} \xi\right) \phi \xi_{\mu} \\
& +A \nabla_{\phi_{i} \xi} \xi_{\mu}+\alpha g\left(\phi A \phi_{i} \xi, \xi_{\mu}\right) \xi-k \eta\left(\phi_{i} \xi\right) A \phi \xi_{\mu}
\end{aligned}
$$

Since $\gamma=0,\left(\nabla_{\phi_{i} \xi} A\right) \xi_{\mu}+A \nabla_{\phi_{i} \xi} \xi_{\mu}=\beta \nabla_{\phi_{i} \xi} \xi_{\mu}$ and $\nabla_{\phi_{i} \xi} \xi_{\mu}=q_{\mu+2}\left(\phi_{i} \xi\right) \xi_{\mu+1}-$ $q_{\mu+1}\left(\phi_{i} \xi\right) \xi_{\mu+2}+\phi_{\mu} A \phi_{i} \xi$, this equation reduces to

$$
\begin{align*}
& \beta\left\{q_{\mu+2}\left(\phi_{i} \xi\right) \xi_{\mu+1}-q_{\mu+1}\left(\phi_{i} \xi\right) \xi_{\mu+2}\right\}-2 g\left(\phi \xi_{\mu}, \phi_{i} \xi\right) \xi \\
& \quad+\phi_{\mu} \phi_{i} \xi-\sum_{\nu=1}^{3} \eta_{\nu}\left(\phi \phi_{i} \xi\right) \phi_{\nu} \phi \xi_{\mu}-\alpha \beta g\left(\phi \xi_{\mu}, \phi_{i} \xi\right) \xi=0 \tag{3.5}
\end{align*}
$$

Subcase III-1: $i=\mu$ in (3.5).

$$
\begin{aligned}
& \beta q_{\mu+2}\left(\phi_{\mu} \xi\right) \xi_{\mu+1}-\beta q_{\mu+1}\left(\phi_{\mu} \xi\right) \xi_{\mu+2}-2 \xi+\phi_{\mu}^{2} \xi+\phi_{\mu}^{2} \xi-\alpha \beta \xi \\
& =\beta q_{\mu+2}\left(\phi_{\mu} \xi\right) \xi_{\mu+1}-\beta q_{\mu+1}\left(\phi_{\mu} \xi\right) \xi_{\mu+2}-(\alpha \beta+4) \xi=0 .
\end{aligned}
$$

Since $\beta>0$ and $\alpha \beta+4=0$, we have

$$
q_{\mu+1}\left(\phi_{\mu} \xi\right)=0 \quad \text { and } \quad q_{\mu+2}\left(\phi_{\mu} \xi\right)=0, \mu=1,2,3
$$

Subcase III-2: $i=\mu+1$ in (3.5).

$$
\begin{aligned}
& \beta q_{\mu+2}\left(\phi_{\mu+1} \xi\right) \xi_{\mu+1}-\beta q_{\mu+1}\left(\phi_{\mu+1} \xi\right) \xi_{\mu+2}+\phi_{\mu} \phi_{\mu+1} \xi+\phi_{\mu+1} \phi_{\mu} \xi \\
& =\beta q_{\mu+2}\left(\phi_{\mu+1} \xi\right) \xi_{\mu+1}-\beta q_{\mu+1}\left(\phi_{\mu+1} \xi\right) \xi_{\mu+2}=0,
\end{aligned}
$$

because of $\phi_{\mu} \phi_{\mu+1} \xi=\phi_{\mu+2} \xi+\eta_{\mu+1}(\xi) \xi_{\mu}$ and $\phi_{\mu+1} \phi_{\mu} \xi=-\phi_{\mu+2} \xi+\eta_{\mu}(\xi) \xi_{\mu+1}$. Since $\beta>0$, we obtain

$$
q_{\mu+1}\left(\phi_{\mu+1} \xi\right)=0 \quad \text { and } \quad q_{\mu+2}\left(\phi_{\mu+1} \xi\right)=0, \mu=1,2,3
$$

Subcase III-3: $i=\mu+2$ in (3.5).

$$
\begin{aligned}
& \beta q_{\mu+2}\left(\phi_{\mu+2} \xi\right) \xi_{\mu+1}-\beta q_{\mu+1}\left(\phi_{\mu+2} \xi\right) \xi_{\mu+2}+\phi_{\mu} \phi_{\mu+2} \xi+\phi_{\mu+2} \phi_{\mu} \xi \\
& =\beta q_{\mu+2}\left(\phi_{\mu+2} \xi\right) \xi_{\mu+1}-\beta q_{\mu+1}\left(\phi_{\mu+2} \xi\right) \xi_{\mu+2}=0 .
\end{aligned}
$$

Since $\beta>0$, we rewrite

$$
q_{\mu+1}\left(\phi_{\mu+2} \xi\right)=0 \quad \text { and } \quad q_{\mu+2}\left(\phi_{\mu+2} \xi\right)=0, \mu=1,2,3
$$

From the above three subcases, we get $q_{i}(X)=0, i=1,2,3$ for any tangent vector field $X \in T_{\gamma}$.

Case B-IV : $X \in T_{\lambda}$.
By putting $X \in T_{\lambda}$ in (3.3), we have

$$
\begin{aligned}
0 & =\left(\nabla_{X} A\right) \xi_{\mu}+\phi_{\mu} X-\lambda \nabla_{X} \xi_{\mu}+A \nabla_{X} \xi_{\mu} \\
& =\beta \nabla_{X} \xi_{\mu}+\phi_{\mu} X-\lambda \nabla_{X} \xi_{\mu} \\
& =(\beta-\lambda)\left\{q_{\mu+2}(X) \xi_{\mu+1}-q_{\mu+1}(X) \xi_{\mu+2}+\phi_{\mu} A X\right\}+\phi_{\mu} X \\
& =(\beta-\lambda) q_{\mu+2}(X) \xi_{\mu+1}-(\beta-\lambda) q_{\mu+1}(X) \xi_{\mu+2}-\left(\lambda^{2}-\beta \lambda-1\right) \phi_{\mu} X .
\end{aligned}
$$

Since $\beta-\lambda=2 \cot (2 r)-\cot (r)=-\tan (r)=\mu<0$ with some $r \in\left(0, \frac{\pi}{4}\right)$ and $\lambda^{2}-\beta \lambda-1=0$, we obtain

$$
q_{\mu+1}(X)=0 \quad \text { and } \quad q_{\mu+2}(X)=0, \mu=1,2,3
$$

that is, $q_{i}(X)=0, i=1,2,3$ for any tangent vector field $X \in T_{\lambda}$.

Case B-V : $\quad X \in T_{\mu}$.
By setting $X \in T_{\mu}$ in (3.3), we get

$$
\begin{aligned}
0 & =\left(\nabla_{X} A\right) \xi_{\mu}+\phi_{\mu} X-\mu \nabla_{X} \xi_{\mu}+A \nabla_{X} \xi_{\mu} \\
& =\beta \nabla_{X} \xi_{\mu}+\phi_{\mu} X-\mu \nabla_{X} \xi_{\mu} \\
& =(\beta-\mu) q_{\mu+2}(X) \xi_{\mu+1}-(\beta-\mu) q_{\mu+1}(X) \xi_{\mu+2}-\left(\mu^{2}-\beta \mu-1\right) \phi_{\mu} X .
\end{aligned}
$$

Since $\beta-\mu=\lambda=\cot (r)>0$ with some $r \in\left(0, \frac{\pi}{4}\right)$ and $\mu^{2}-\beta \mu-1=0$, we have

$$
q_{\mu+1}(X)=0 \quad \text { and } \quad q_{\mu+2}(X)=0, \mu=1,2,3
$$

that is, $q_{i}(X)=0, i=1,2,3$ for any tangent vector field $X \in T_{\mu}$.
Hence, summing up all the cases mentioned above, we give a complete proof of our Main Theorem in Introduction.

References

[1] D.V. Alekseevskii, Compact Quaternion Spaces. - Funct. Anal. Appl. 2 (1968), 106-114.
[2] J. Berndt, Riemannian Geometry of Complex Two-Plane Grassmannian. - Rend. Sem. Mat. Univ. Politec. Torino 55 (1997), 19-83.
[3] J. Berndt and Y.J. Suh, Real Hypersurfaces in Complex Two-Plane Grassmannians. - Monatshefte für Math. 127 (1999), 1-14.
[4] J. Berndt and Y.J. Suh, Isometric Flows on Real Hypersurfaces in Complex TwoPlane Grassmannians. - Monatshefte für Math. 137 (2002), 87-98.
[5] I. Jeong, H. Lee, and Y.J. Suh, Real Hypersurfaces in Complex Two-Plane Grassmannians with Generalized Tanaka-Webster Parallel Shape Operator. - Kodai Math. J. 34 (2011), 352-366.
[6] I. Jeong, H. Lee, M. Kimura, and Y.J. Suh, Real Hypersurfaces in Complex TwoPlane Grassmannians with Generalized Tanaka-Webster Reeb Parallel Shape Operator. Monatshefte für Math. 170 (2013), in press.
[7] I. Jeong, H. Lee, and Y.J. Suh, Real Hypersurfaces in Complex Two-Plane Grassmannians with Generalized Tanaka-Webster \mathfrak{D}^{\perp}-parallel Shape Operator. - Intern. J. Geom. Methods Mod. Phys. 9 (2012) No. 4.
[8] I. Jeong, C.J.G. Machado, J.D. Pérez, and Y.J. Suh, Real Hypersurfaces in Complex Two-Plane Grassmannians with \mathfrak{D}^{\perp}-parallel Structure Jacobi Operator. Intern. J. Math. World Scientific Publ., Singapore 22 (2011), No. 5, 655-673.
[9] I. Jeong, E. Pak, and Y.J. Suh, Real Hypersurfaces in Complex Two-Plane Grassmannians with Generalized Tanaka-Webster Invariant Shape Operator. - J. Math. Phys., Anal., Geom. 9 (2013), No. 3, 360-378.
[10] M. Kon, Real Hypersurfaces in Complex Space Forms and the Generalized-TanakaWebster Connection. Proc. 13th Intern. Workshop Differential Geometry and Related Fields Y.J. Suh, J. Berndt and Y.S. Choi (Eds.), NIMS, 2009, 145-159.
[11] H. Lee and Y.J. Suh, Real Hypersurfaces of Type B in Complex Two-Plane Grassmannians Related to the Reeb Vector. - Bull. Korean Math. Soc. 47 (2010), No. 3, 551-561.
[12] J.D. Pérez and Y.J. Suh, The Ricci Tensor of Real Hypersurfaces in Complex Two-Plane Grassmannians. - J. Korean Math. Soc. 44 (2007), 211-235.
[13] Y.J. Suh, Real Hypersurfaces in Complex Two-Plane Grassmannians with Parallel Shape Operator. - Bull. of Austral. Math. Soc. 68 (2003), 493-502.
[14] Y.J. Suh, Real Hypersurfaces in Complex Two-Plane Grassmannians with Parallel Shape Operator II. - J. Korean Math. Soc. 41 (2004), 535-565.
[15] Y.J. Suh, Real Hypersurfaces in Complex Two-Plane Grassmannians with Vanishing lie Derivative. - Canad. Math. Bull. 49 (2006), 134-143.
[16] N. Tanaka, On Non-degenerate Real Hypersurfaces, Graded Lie Algebras and Cartan Connections. - Jpn. J. Math. 20 (1976), 131-190.
[17] S. Tanno, Variational Problems on Contact Riemannian Manifolds. - Trans. Amer. Math. Soc. 314 (1989), No. 1, 349-379.
[18] S.M. Webster, Pseudo-Hermitian Structures on a Real Hypersurface. - J. Diff. Geom. 13 (1978), 25-41.

[^0]: This work was supported by grant Proj. No. NRF-2011-220-C00002 from National Research Foundation of Korea and the first author by grant Proj. No. NRF-2011-0013381. The second and third authors were supported by Proj. No. NRF-2012-R1A2A2A-01043023.

