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Introduction

The Tanaka–Webster connecton is a unique affine connection on a non-dege-
nerate pseudo-Hermitian CR manifold which associates with the almost contact
structure ([17, 18]). Tanno [17] introduced the generalized Tanaka–Webster (in
short, the g-Tanaka–Webster) connection for contact Riemannian manifolds gene-
ralizing it for non-degenerate integrable CR manifolds. For a real hypersurface in
Kähler manifolds with almost contact metric structure (φ, ξ, η, g), the g-Tanaka–
Webster connection ∇̂(k) for a non-zero real number k was given in [5] and [10].
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In particular, if a real hypersurface satisfies φA + Aφ = 2kφ, then the g-Tanaka–
Webster connection ∇̂(k) coincides with the Tanaka–Webster connection.

For a real hypersurface in complex space form M̃n(c) with constant holomor-
phic sectional curvature c, many geometers have studied some characterizations
by using the g-Tanaka-Webster connection. For instance, when c > 0, that is,
M̃n(c) is a complex projective space CPn, Kon [10] proved that if the Ricci
tensor Ŝ of the g-Tanaka–Webster connection ∇̂(k) vanishes identically, then a
real hypersurface in CPn is locally congruent to a geodesic hypersphere with
k2 ≥ 4n(n− 1).

Now let us denote by the complex two-plane Grassmannian G2(Cm+2) a set
of all complex two-dimensional linear subspaces in Cm+2. This Riemannian sym-
metric space has a remarkable geometric structure. It is the unique compact
irreducible Riemannian manifold equipped with both a Kähler structure J and
a quaternionic Kähler structure J not containing J . In other words, G2(Cm+2)
is the unique compact irreducible Kähler, quaternionic Kähler manifold which is
not a hyper-Kähler manifold. The almost contact structure vector field ξ defined
by ξ = −JN is said to be a Reeb vector field, where N denotes a local unit
normal vector field of M in G2(Cm+2). The almost contact 3-structure vector
fields {ξ1, ξ2, ξ3} for the 3-dimensional distribution D⊥ of M in G2(Cm+2) are
defined by ξν = −JνN (ν = 1, 2, 3), where Jν denotes a canonical local basis of
a quaternionic Kähler structure J, such that TxM = D ⊕ D⊥, x ∈ M . Then,
naturally we could consider two geometric conditions for a hypersurface M in
G2(Cm+2) that a 1-dimensional distribution [ξ] = Span{ξ} and a 3-dimensional
distribution D⊥ = Span{ξ1, ξ2, ξ3} are both invariant under the shape operator A
of M ([3]).

By using these two geometric conditions and the results of Alekseevskii [1],
Berndt and Suh [3] proved the following:

Theorem A. Let M be a connected real hypersurface in G2(Cm+2), m ≥ 3.
Then both [ξ] and D⊥ are invariant under the shape operator of M if and only if

(A) M is an open part of a tube around a totally geodesic G2(Cm+1) in G2(Cm+2),
or

(B) m is even, say m = 2n, and M is an open part of a tube around a totally
geodesic HPn in G2(Cm+2).

When the Reeb flow on M in G2(Cm+2) is isometric, we say that the Reeb
vector field ξ on M is Killing. This means that the metric tensor g is invariant
under the Reeb flow of ξ on M . Berndt and Suh gave a characterization of real
hypersurfaces of Type (A) in Theorem A in terms of the Reeb flow on M as
follows (see [4]):
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Theorem B. Let M be a connected orientable real hypersurface in G2(Cm+2),
m ≥ 3. Then the Reeb flow on M is isometric if and only if M is an open part
of a tube around a totally geodesic G2(Cm+1) in G2(Cm+2).

Besides, Lee and Suh [11] gave a new characterization of real hypersurfaces
of Type (B) in G2(Cm+2) in terms of the Reeb vector field ξ as follows:

Theorem C. Let M be a connected orientable Hopf real hypersurface in
G2(Cm+2), m ≥ 3. Then the Reeb vector field ξ belongs to the distribution D

if and only if M is locally congruent to an open part of a tube around a totally
geodesic HPn in G2(Cm+2), where m = 2n.

On the other hand, using the Riemannian connection, in [13] Suh gave a
non-existence theorem of Hopf hypersurfaces in G2(Cm+2) with parallel shape
operator. Moreover, Suh proved a non-existence theorem for Hopf hypersurfaces
in G2(Cm+2) with the F-parallel shape operator, where F = [ξ] ∪D⊥(see [14]).

In particular, Jeong, Lee and Suh [5] considered a g-Tanaka–Webster parallel
shape operator for a real hypersurface in the complex two-plane Grassmannian
G2(Cm+2). In other words, the shape operator A is called g-Tanaka-Webster
parallel if it satisfies (∇̂(k)

X A)Y = 0 for any tangent vector fields X and Y on
M . Using this notion, the authors gave a non-existence theorem for Hopf hyper-
surfaces in G2(Cm+2). Also, the authors considered a more generalized notion
weaker than the parallel shape operator in the g-Tanaka–Webster connection of
M . When the shape operator A of M in G2(Cm+2) satisfies (∇̂(k)

ξ A)Y = 0 for
any tangent vector field Y on M , we say that the shape operator is g-Tanaka–
Webster Reeb parallel. Using such a notion, the authors gave a characterization
of the real hypersurfaces of Type (A) in G2(Cm+2) as follows (see [6]):

Theorem D. Let M be a connected orientable Hopf hypersurface, α 6= 2k, in
G2(Cm+2), m ≥ 3. If the shape operator A is generalized Tanaka–Webster Reeb
parallel, then M is locally congruent to an open part of a tube around a totally
geodesic G2(Cm+1) in G2(Cm+2).

Moreover, Jeong, Lee and Suh [7] introduced a notion of the g-Tanaka–
Webster D⊥-parallel shape operator for M in G2(Cm+2). It means that the
shape operator A of M satisfies (∇̂(k)

X A)Y = 0 for any X in D⊥ and Y on M .
Naturally, we can see that the g-Tanaka–Webster D⊥-parallel is weaker than
the g-Tanaka–Webster parallel. By using such a notion of D⊥-parallel in the
g-Tanaka–Webster connection, the authors gave a characterization of the real
hypersurface of Type (B) in G2(Cm+2).
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Specially, Suh [15] asserted a characterization of the real hypersurfaces of type
(A) in Theorem A by another geometric Lie invariant, that is, the shape operator
A of M in G2(Cm+2) is invariant under the Reeb flow on M .

On the other hand, we considered another Lie invariant of the shape operator
in G2(Cm+2), namely, a g-Tanaka–Webster invariant shape operator, that is,

(L̂(k)
X A)Y = 0

for any vector fields X and Y on M in G2(Cm+2), where L̂(k) denotes the
g-Tanaka–Webster Lie derivative induced from the g-Tanaka–Webster connection
∇̂(k). Usually, the notion of the g-Tanaka–Webster invariant is different from any
Levi–Civita Lie invariants and gives us much more information than usual covari-
ant parallelisms in the g-Tanaka–Webster connection. By using such a notion of
Lie invariant in g-Tanaka–Webster connection, we gave a non-existence theorem
for the real hypersurface in G2(Cm+2) as follows (see [9]):

Theorem E. There does not exist any Hopf hypersurface, α 6= 2k, in G2(Cm+2)
with g-Tanaka–Webster invariant shape operator.

Meanwhile, we consider a new notion of g-Tanaka–Webster Reeb invariant
shape operator for M in G2(Cm+2), that is, (L̂(k)

ξ A)X = 0 for any tangent vector

field Y on M . Since (L̂(k)
ξ A)X = (∇̂(k)

ξ A)X = 0, from Theorem D we obtain the
following Remark.

Remark. Let M be a connected orientable Hopf hypersurface, α 6= 2k, in
G2(Cm+2), m ≥ 3. If the shape operator A is generalized Tanaka–Webster Reeb
invarint, then M is locally congruent to an open part of a tube around a totally
geodesic G2(Cm+1) in G2(Cm+2).

In this paper, we consider a generalized condition named g-Tanaka–Webster
D⊥-invariant shape operator, that is, L̂

(k)

D⊥A = 0, where D⊥ = Span{ξ1, ξ2, ξ3}.
This condition is weaker than the Lie invariant in the g-Tanaka–Webster con-
nection mentioned in Theorem E. By using such a notion of the g-Tanaka–
Webster D⊥-invariant, we give a classification theorem for the real hypersurface
in G2(Cm+2) as follows:

Main Theorem. Let M be a connected orientable Hopf hypersurface, α 6= 2k,
in G2(Cm+2), m ≥ 3. If the shape operator A is g-Tanaka–Webster D⊥-invariant
shape operator, then M is locally congruent to an open part of a tube around a
totally geodesic HPn in G2(Cm+2) with α = k and qi(X) = 0 for any tangent
vector field X ∈ D and i = 1, 2, 3, where m = 2n.
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1. Riemannian Geometry of G2(Cm+2)

In this section we summarize basic material about G2(Cm+2), for details we
refer to [2, 3] and [4]. By G2(Cm+2) we denote the set of all complex two-dimen-
sional linear subspaces in Cm+2. The special unitary group G = SU(m + 2) acts
transitively on G2(Cm+2) with stabilizer isomorphic to K = S(U(2)×U(m)) ⊂ G.
Then G2(Cm+2) can be identified with the homogeneous space G/K. Moreover,
we equip it with the unique analytic structure for which the natural action of G
on G2(Cm+2) becomes analytic. Denote by g and k the Lie algebra of G and K,
respectively, and by m the orthogonal complement of k in g with respect to the
Cartan–Killing form B of g. Then g = k ⊕ m is an Ad(K)-invariant reductive
decomposition of g. We put o = eK and identify ToG2(Cm+2) with m in the
usual manner. Since B is negative definite on g, its negative restricted to m×m

yields a positive definite inner product on m. By the Ad(K)-invariance of B
this inner product can be extended to a G-invariant Riemannian metric g on
G2(Cm+2). In this way, G2(Cm+2) becomes a Riemannian homogeneous space,
even a Riemannian symmetric space. For computational reasons we normalize g
such that the maximal sectional curvature of (G2(Cm+2), g) is eight.

When m = 1, G2(C3) is isometric to the two-dimensional complex projective
space CP 2 with constant holomorphic sectional curvature eight. When m = 2, we
note that the isomorphism Spin(6) ' SU(4) yields an isometry between G2(C4)
and the real Grassmann manifold G+

2 (R6) of the oriented two-dimensional linear
subspaces in R6. In this paper, we will assume m≥3.

The Lie algebra k has the direct sum decomposition k = su(m) ⊕ su(2) ⊕R,
where R is the center of k. Viewing k as the holonomy algebra of G2(Cm+2),
the center R induces a Kähler structure J and the su(2)-part a quaternionic
Kähler structure J on G2(Cm+2). If Jν is any almost Hermitian structure in J,
then JJν = JνJ , and JJν is a symmetric endomorphism with (JJν)2 = I and
tr(JJν) = 0 for ν = 1, 2, 3.

A canonical local basis {J1, J2, J3} of J consists of three local almost Hermi-
tian structures Jν in J such that JνJν+1 = Jν+2 = −Jν+1Jν , where the index ν
is taken modulo three. Since J is parallel with respect to the Riemannian con-
nection ∇̃ of (G2(Cm+2), g), there exist for any canonical local basis {J1, J2, J3}
of J three local one-forms q1, q2, q3 such that

∇̃XJν = qν+2(X)Jν+1 − qν+1(X)Jν+2 (1.1)

for all vector fields X on G2(Cm+2).
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The Riemannian curvature tensor R̃ of G2(Cm+2) is locally given by

R̃(X,Y )Z = g(Y, Z)X − g(X, Z)Y + g(JY, Z)JX

− g(JX, Z)JY − 2g(JX, Y )JZ

+
3∑

ν=1

{
g(JνY, Z)JνX − g(JνX,Z)JνY − 2g(JνX,Y )JνZ

}

+
3∑

ν=1

{
g(JνJY, Z)JνJX − g(JνJX, Z)JνJY

}
,

(1.2)

where {J1, J2, J3} denotes a canonical local basis of J.
Now we derive some basic formulas and the Codazzi equation for a real hy-

persurface in G2(Cm+2) (see [3, 4], [11–14]).
Let M be a real hypersurface of G2(Cm+2), that is, a hypersurface of G2(Cm+2)

with real codimension one. The induced Riemannian metric on M will also be
denoted by g, and ∇ denotes the Riemannian connection of (M, g). Let N be a
local unit normal vector field of M and A the shape operator of M with respect
to N .

Now let us put

JX = φX + η(X)N, JνX = φνX + ην(X)N (1.3)

for any tangent vector field X of a real hypersurface M in G2(Cm+2), where N
denotes a unit normal vector field of M in G2(Cm+2). From the Kähler structure
J of G2(Cm+2) there exists an almost contact metric structure (φ, ξ, η, g) induced
on M in such a way that

φ2X = −X + η(X)ξ, η(ξ) = 1, φξ = 0, η(X) = g(X, ξ)

for any vector field X on M . Furthermore, let {J1, J2, J3} be a canonical local
basis of J. Then the quaternionic Kähler structure Jν of G2(Cm+2), together
with the condition JνJν+1 = Jν+2 = −Jν+1Jν from Sec. 1, induces an almost
contact metric 3-structure (φν , ξν , ην , g) on M as follows :

φ2
νX = −X + ην(X)ξν , ην(ξν) = 1, φνξν = 0,

φν+1ξν = −ξν+2, φνξν+1 = ξν+2,

φνφν+1X = φν+2X + ην+1(X)ξν ,

φν+1φνX = −φν+2X + ην(X)ξν+1

(1.4)

for any vector field X tangent to M . Moreover, from the commuting property
of JνJ = JJν , ν = 1, 2, 3 from Sec. 1 and (1.3), the relation between these two
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contact metric structures (φ, ξ, η, g) and (φν , ξν , ην , g), ν = 1, 2, 3, can be given
by

φφνX = φνφX + ην(X)ξ − η(X)ξν ,

ην(φX) = η(φνX), φξν = φνξ.
(1.5)

On the other hand, from the Kähler structure J , that is, ∇̃J = 0 and the
quaternionic Kähler structure Jν , together with the Gauss and Weingarten equa-
tions, it follows that

(∇Xφ)Y = η(Y )AX − g(AX,Y )ξ, ∇Xξ = φAX, (1.6)

∇Xξν = qν+2(X)ξν+1 − qν+1(X)ξν+2 + φνAX, (1.7)

(∇Xφν)Y =− qν+1(X)φν+2Y + qν+2(X)φν+1Y

+ ην(Y )AX − g(AX,Y )ξν .
(1.8)

Using expression (1.2) for the curvature tensor R̃ of G2(Cm+2), the equation of
Codazzi becomes :

(∇XA)Y − (∇Y A)X = η(X)φY − η(Y )φX − 2g(φX, Y )ξ

+
3∑

ν=1

{
ην(X)φνY − ην(Y )φνX − 2g(φνX, Y )ξν

}

+
3∑

ν=1

{
ην(φX)φνφY − ην(φY )φνφX

}

+
3∑

ν=1

{
η(X)ην(φY )− η(Y )ην(φX)

}
ξν .

(1.9)

Now we introduce the notion of the g-Tanaka–Webster connection (see [10]).
As stated above, the Tanaka–Webster connection is the canonical affine con-

nection defined on a non-degenerate pseudo-Hermitian CR-manifold (see [16,
18]). In [17], Tanno defined the g-Tanaka–Webster connection for contact metric
manifolds by the canonical connection. It coincides with the Tanaka–Webster
connection if the associated CR-structure is integrable.

From now on, we will introduce the g-Tanaka–Webster connection due to
Tanno [17] for real hypersurfaces in Kähler manifolds by naturally extending the
canonical affine connection to a non-degenerate pseudo-Hermitian CR manifold.

Now let us recall that the g-Tanaka-Webster connection ∇̂ was defined by
Tanno [17] for contact metric manifolds as follows :

∇̂XY = ∇XY + (∇Xη)(Y )ξ − η(Y )∇Xξ − η(X)φY
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for all vector fields X and Y .
By taking (1.6) into account, the g-Tanaka–Webster connection ∇̂(k) for real

hypersurfaces of Kähler manifolds is defined by

∇̂(k)
X Y = ∇XY + g(φAX, Y )ξ − η(Y )φAX − kη(X)φY (1.10)

for a non-zero real number k (see [5] and [10]) (Note that ∇̂(k) is invariant under
the choice of the orientation. Namely, we may take −k instead of k in (1.10) for
the opposite orientation −N).

2. Key Lemmas

In this section, we will prove that the Reeb vector field ξ belongs to either the
distribution D or the distribution D⊥ for M in G2(Cm+2) with g-Tanaka–Webster
D⊥-invariant shape operator.

In [9], from the definition of the g-Tanaka–Webster connection (1.10), we have
the following:

(L̂(k)
X A)Y = (∇XA)Y + g(φAX, AY )ξ − η(AY )φAX − kη(X)φAY

− g(φAX, Y )Aξ + η(Y )AφAX + kη(X)AφY

−∇AY X − g(φA2Y, X)ξ + η(X)φA2Y + kη(AY )φX

+ A∇Y X + g(φAY, X)Aξ − η(X)AφAY − kη(Y )AφX

for any tangent vector fields X and Y on M .
The shape operator A is said to be generalized Tanaka–Webster D⊥-invariant

if (L̂(k)
X A)Y = 0 for any tangent vector fields X ∈ D⊥ and Y ∈ TM . Let M be a

Hopf hypersurface in G2(Cm+2) with generalized Tanaka–Webster D⊥-invariant
shape operator. This becomes

0 = (L̂(k)
X A)Y

= (∇XA)Y + g(φAX, AY )ξ − αη(Y )φAX − kη(X)φAY

− αg(φAX, Y )ξ + η(Y )AφAX + kη(X)AφY

−∇AY X − g(φA2Y, X)ξ + η(X)φA2Y + αkη(Y )φX

+ A∇Y X + αg(φAY, X)ξ − η(X)AφAY − kη(Y )AφX

(2.1)

for any tangent vector fields X and Y on M .
Applying X = ξµ ∈ D⊥ and Y = X in (2.1), we get

0 = (L̂(k)
ξµ

A)X

= (∇ξµA)X + g(φAξµ, AX)ξ − αη(X)φAξµ − kη(ξµ)φAX

− αg(φAξµ, X)ξ + η(X)AφAξµ + kη(ξµ)AφX

−∇AXξµ − g(φA2X, ξµ)ξ + η(ξµ)φA2X + αkη(X)φξµ

+ A∇Xξµ + αg(φAX, ξµ)ξ − η(ξµ)AφAX − kη(X)Aφξµ.

(2.2)
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Using (2.2), we can assert the following:

Lemma 2.1. Let M be a Hopf hypersurface in G2(Cm+2). If M has the
g-Tanaka–Webster D⊥-invariant shape operator, then the principal curvature α =
g(Aξ, ξ) is constant along the direction of ξµ, µ = 1, 2, 3.

P r o o f. Replacing X by ξ in (2.2), we have

0 = (L̂(k)
ξµ

A)ξ

= (∇ξµA)ξ + g(φAξµ, Aξ)ξ − αη(ξ)φAξµ − kη(ξµ)φAξ

− αg(φAξµ, ξ)ξ + η(ξ)AφAξµ + kη(ξµ)Aφξ

−∇Aξξµ − g(φA2ξ, ξµ)ξ + η(ξµ)φA2ξ + αkη(ξ)φξµ

+ A∇ξξµ + αg(φAξ, ξµ)ξ − η(ξµ)AφAξ − kη(ξ)Aφξµ.

Then using Aξ = αξ, we obtain

0 =(∇ξµA)ξ
− αφAξµ + AφAξµ − α∇ξξµ + αkφξµ + A∇ξξµ − kAφξµ

=−AφAξµ + (ξµα)ξ + αφAξµ

− αφAξµ + AφAξµ − α∇ξξµ + αkφξµ + A∇ξξµ − kAφξµ

=(ξµα)ξ − α∇ξξµ + αkφξµ + A∇ξξµ − kAφξµ.

Taking inner product with ξ, we get

ξµα = 0

for µ = 1, 2, 3. Thus we have our assertion.

Now we introduce the lemma as follows:

Lemma 2.2. Let M be a Hopf hypersurface in G2(Cm+2). If M has the
g-Tanaka–Webster D⊥-invariant shape operator, then the Reeb vector field ξ be-
longs to either the distribution D or the distribution D⊥.

P r o o f. We assume that

ξ = η(X0)X0 + η(ξ1)ξ1 (*)

for some unit vector field X0 ∈ D, and η(ξ1)η(X0) 6= 0.
By Berdnt and Suh (see [3], p. 6), under the assumption that M is Hopf, we
know

Y α = (ξα)η(Y )− 4
3∑

ν=1

ην(ξ)ην(φY ) (2.3)
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for any tangent vector field Y on M . Applying Y = ξµ, µ = 1, 2, 3 in (2.3), we
get

ξµα = (ξα)η(ξµ)− 4
3∑

ν=1

ην(ξ)ην(φξµ)

Using Lemma 2.1 and (*), this equation can be reduced to

(ξα)η(ξµ)− 4η1(ξ)η1(φξµ) = 0. (2.4)

On the other hand, we obtain

η1(φξµ) = −g(ξµ, φ1(η(X0)X0 + η(ξ1)ξ1))
= η(X0)g(φ1ξµ, X0)
= 0

because of X0 ∈ D. Therefore, we rewrite (2.4) in the form

(ξα)η(ξµ) = 0 for µ = 1, 2, 3,

that is, ξα = 0 or η(ξµ) = 0 for µ = 1, 2, 3.
Case I : η(ξµ) = 0 for µ = 1, 2, 3.

Since the assumptions of (*), η(ξ2) = 0 and η(ξ3) = 0 are obvious.
Case II : ξα = 0.

Substituting X0 for Y in (2.3) and using (*), we have

X0α = −4η1(ξ)η1(φX0) = 0.

Thus we obtain X0α = 0.
Subcase II-1 : α = 0.

Applying α = 0 and (*) in (2.3), we get

−4η1(ξ)η1(φY ) = 0.

Since η1(ξ) 6= 0, we obtain

0 = η1(φY )
= −g(Y, φ1(η(X0)X0 + η(ξ1)ξ1))
= −η(X0)g(Y, φ1X0)

for any tangent vector field Y on M . Because of η(X0) 6= 0, we have φ1X0 = 0.
It gives us a contradiction.
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Subcase II-2 : α 6= 0.
Using (1.9) and (2.2), we get

0 = (L̂(k)
ξµ

A)X

= (∇XA)ξµ + η(ξµ)φX − η(X)φξµ − 2g(φξµ, X)ξ

+
3∑

ν=1

{
ην(ξµ)φνX − ην(X)φνξµ − 2g(φνξµ, X)ξν

}

+
3∑

ν=1

{
ην(φξµ)φνφX − ην(φX)φνφξµ

}

+
3∑

ν=1

{
η(ξµ)ην(φX)− η(X)ην(φξµ)

}
ξν

+ g(φAξµ, AX)ξ − αη(X)φAξµ − kη(ξµ)φAX

− αg(φAξµ, X)ξ + η(X)AφAξµ + kη(ξµ)AφX

−∇AXξµ − g(φA2X, ξµ)ξ + η(ξµ)φA2X + αkη(X)φξµ

+ A∇Xξµ + αg(φAX, ξµ)ξ − η(ξµ)AφAX − kη(X)Aφξµ

(2.5)

for any tangent vector field X on M .

In [8], Jeong, Machado, Perez and Suh introduced the following

Lemma A. Let M be a Hopf real hypersurface in G2(Cm+2). If the principal
curvature α is constant along the direction of ξ, then the distribution D or D⊥

component of the structure vector field ξ is invariant by the shape operator.

Since ξα = 0, the distribution D or D⊥ component of the structure vector
field ξ is invariant by the shape operator. Thus we write

α(η(X0)X0 + η(ξ1)ξ1) = αξ

= Aξ

= η(X0)AX0 + η(ξ1)Aξ1.

Therefore, we get
AX0 = αX0 and Aξ1 = αξ1. (2.6)

Applying X = X0 and µ = 1 in (2.5), we have

0 = (L̂(k)
ξ1

A)X0

= (∇X0A)ξ1 + η(ξ1)φX0 − η(X0)φξ1 − 2g(φξ1, X0)ξ

+
3∑

ν=1

{
ην(ξ1)φνX0 − ην(X0)φνξ1 − 2g(φνξ1, X0)ξν

}
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+
3∑

ν=1

{
ην(φξ1)φνφX0 − ην(φX0)φνφξ1

}

+
3∑

ν=1

{
η(ξ1)ην(φX0)− η(X0)ην(φξ1)

}
ξν

+ g(φAξ1, AX0)ξ − αη(X0)φAξ1 − kη(ξ1)φAX0

− αg(φAξ1, X0)ξ + η(X0)AφAξ1 + kη(ξ1)AφX0

−∇AX0ξ1 − g(φA2X0, ξ1)ξ + η(ξ1)φA2X0 + αkη(X0)φξ1

+ A∇X0ξ1 + αg(φAX0, ξ1)ξ − η(ξ1)AφAX0 − kη(X0)Aφξ1.

Since g(φξ1, X0) = 0, ην(φξ1) = ην(φX0) = 0 for ν = 1, 2, 3 and φξ1 = η(X0)φ1X0,
by using (2.6), the above equation can be reduced to

0 = (∇X0A)ξ1 + η(ξ1)φX0 − η2(X0)φ1X0 + φ1X0

+ α2g(φξ1, X0)ξ − α2η2(X0)φ1X0 − αkη(ξ1)φX0

− α2g(φξ1, X0)ξ + αη2(X0)Aφ1X0 + kη(ξ1)AφX0

− α∇X0ξ1 − α2g(φX0, ξ1)ξ + α2η(ξ1)φX0 + αkη2(X0)φ1X0

+ A∇X0ξ1 + α2g(φX0, ξ1)ξ − αη(ξ1)AφX0 − kη2(X0)Aφ1X0.

Using the assumption ξ = η(X0)X0 + η(ξ1)ξ1 such that η(X0)η(ξ1) 6= 0, we get
φX0 = −η(ξ1)φ1X0. Then we rewrite

0 = (∇X0A)ξ1 − η2(ξ1)φ1X0 − η2(X0)φ1X0 + φ1X0

− α2η2(X0)φ1X0 + αkη2(ξ1)φ1X0

+ αη2(X0)Aφ1X0 − kη2(ξ1)Aφ1X0

− α∇X0ξ1 − α2η2(ξ1)φ1X0 + αkη2(X0)φ1X0

+ A∇X0ξ1 + αη2(ξ1)Aφ1X0 − kη2(X0)Aφ1X0.

Because of η2(X0) + η2(ξ1) = 1, we get

0 = (∇X0A)ξ1 − α2φ1X0 + αkφ1X0 + (α− k)Aφ1X0

− α∇X0ξ1 + A∇X0ξ1

= −α(α− k)φ1X0 + (α− k)Aφ1X0

= (α− k)
{
− α +

α2 + 4η2(X0)
α

}
φ1X0,

where Aφ1X0 =
α2 + 4η2(X0)

α
φ1X0, due to Berndt and Suh [4].

Thus we have

(α− k)
4η2(X0)

α
φ1X0 = 0.
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Therefore we obtain

α = k, where k is a nonzero real number. (2.7)

Applying (2.7) in (2.3), we get

−4η1(ξ)η1(φY ) = 0

for any tangent vector field Y on M .
Then, by using the assumption ξ = η(X0)X0+η(ξ1)ξ1 such that η(ξ1)η(X0) 6= 0,

we write
η1(φY ) = −g(φξ1, Y ) = 0

for any tangent vector field Y on M . Thus we get

φξ1 = η(X0)φ1X0 = 0,

that is, φ1X0 = 0. This gives a contradiction. Hence we complete the proof of
this lemma.

3. The Proof of the Main Theorem

From now on, let us assume that M is a Hopf hypersurface in G2(Cm+2)
with g-Tanaka–Webster D⊥-invariant shape operator, that is (L̂(k)

ξµ
A)X = 0 for

µ = 1, 2, 3. Then, by Lemma 2.2, we consider the following two cases, that is,
ξ ∈ D⊥ or ξ ∈ D.

First, we consider the case ξ ∈ D⊥. From this, without loss of generality, we
may put ξ = ξ1. By setting µ = 1, we have

0 = (L̂(k)
ξ1

A)X = (L̂(k)
ξ A)X = (∇̂(k)

ξ A)X

for any tangent vector field X on M .
In [7], Jeong, Lee and Suh introduced the following:

Lemma B. Let M be a Hopf hypersurface, α 6= 2k, in G2(Cm+2), m ≥ 3,
with g-Tanaka-Webster D⊥-parallel shape operator. If the Reeb vector ξ belongs
to the distribution D⊥, then the shape operator A commutes with the structure
tensor φ.

Due to Berdnt and Suh [4], the Reeb flow on M is isometric if and only if
the structure tensor field φ commutes with the shape operator A of M , that is,
Aφ = φA. Thus, from Lemma B and Theorem B we have the following :

R e m a r k 3.1. Let M be a Hopf hypersurface, α 6= 2k, in G2(Cm+2),
m ≥ 3 with g-Tanaka–Webster D⊥-invariant shape operator. If the Reeb vector
ξ belongs to the distribution D⊥, then M is locally congruent to an open part of
a tube around a totally geodesic G2(Cm+1) in G2(Cm+2).
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Then, by using Remark 3.1, we assume that M is a real hypersurface of
Type (A) in G2(Cm+2). Then let us check whether the shape operator A of
M is D⊥-invariant in the g-Tanaka–Webster connection. In order to show this
problem, we introduce a proposition due to Berndt and Suh [3] as follows:

Proposition A. Let M be a connected real hypersurface of G2(Cm+2). Sup-
pose that AD ⊂ D, Aξ = αξ, and ξ is tangent to D⊥. Let J1 ∈ J be the almost
Hermitian structure such that JN = J1N . Then M has three ( if r = π/2

√
8 ) or

four (otherwise) distinct constant principal curvatures

α =
√

8 cot(
√

8r), β =
√

2 cot(
√

2r), λ = −
√

2 tan(
√

2r), µ = 0

with some r ∈ ( 0, π/
√

8 ). The corresponding multiplicities are

m(α) = 1, m(β) = 2, m(λ) = 2m− 2 = m(µ),

and the corresponding eigenspaces are

Tα = Rξ = RJN = Rξ1 = Span{ ξ } = Span{ ξ1 },
Tβ = C⊥ξ = C⊥N = Rξ2 ⊕ Rξ3 = Span{ ξ2, ξ3 },
Tλ = {X|X ⊥ Hξ, JX = J1X },
Tµ = {X|X ⊥ Hξ, JX = −J1X },

where Rξ, Cξ and Hξ respectively denote real, complex and quaternionic spans of
the structure vector field ξ, and C⊥ξ denotes the orthogonal complement of Cξ in
Hξ.

Case A : ξ ∈ D⊥.
Applying µ = 2 in (2.5), we get

0 = (∇XA)ξ2 + η(ξ2)φX − η(X)φξ2 − 2g(φξ2, X)ξ

+
3∑

ν=1

{
ην(ξ2)φνX − ην(X)φνξ2 − 2g(φνξ2, X)ξν

}

+
3∑

ν=1

{
ην(φξ2)φνφX − ην(φX)φνφξ2

}

+
3∑

ν=1

{
η(ξ2)ην(φX)− η(X)ην(φξ2)

}
ξν

+ g(φAξ2, AX)ξ − αη(X)φAξ2 − kη(ξ2)φAX

− αg(φAξ2, X)ξ + η(X)AφAξ2 + kη(ξ2)AφX

−∇AXξ2 − g(φA2X, ξ2)ξ + η(ξ2)φA2X + αkη(X)φξ2

+ A∇Xξ2 + αg(φAX, ξ2)ξ − η(ξ2)AφAX − kη(X)Aφξ2.
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By setting X ∈ Tλ and ξ = ξ1 ∈ D⊥, we have

0 = (∇XA)ξ2 + φ2X − φ3φX + βλg(φξ2, X)ξ − αβg(φξ2, X)ξ

− λ∇Xξ2 − λ2g(φX, ξ2)ξ + A∇Xξ2 + αλg(φX, ξ2)ξ.

Since X ∈ Tλ, g(φX, ξ2) = −g(X, φξ2) = 0.
Using (∇XA)ξ2 + A∇Xξ2 = β∇Xξ2, we obatin

0 = (β − λ)∇Xξ2

= (β − λ)(q1(X)ξ3 − q3(X)ξ1 + φ2AX).
(3.1)

On the other hand, we know that

φAX = ∇Xξ

= ∇Xξ1

= q3(X)ξ2 − q2(X)ξ3 + φ1AX.

Taking inner product with ξ2, we have

g(φAX, ξ2) = q3(X) + g(φ1AX, ξ2),

that is,
q3(X) = 2λg(X, ξ3) = 0.

Because of q3(Y ) = 0, equation (3.1) reduces to

(β − λ)(q1(X)ξ3 + λφ2X) = 0. (3.2)

Taking inner product with ξ3 in (3.2), we rewrite

(β − λ)q1(X) = 0.

Since β − λ > 0 by Proposition A, q1(X) = 0. Consequently, from (3.2) we get

(β − λ)λφ2X = 0,

that is, φ2X = 0. This gives a contradiction. So we give a proof of our main
theorem for ξ ∈ D⊥.

On the other hand, from Theorem C we have the following:

R e m a r k 3.2. Let M be a Hopf hypersurface in G2(Cm+2) with g-Tanaka–
Webster D⊥- invariant shape operator. If the Reeb vector ξ belongs to the distri-
bution D, then M is locally congruent to an open part of a tube around a totally
geodesic HPn in G2(Cm+2).
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Now let us consider that M is a Hopf hypersurface of Type (B) in G2(Cm+2).
Then, using Remark 3.2 and Proposition B due to Berndt and Suh [3], we can
check whether the shape operator A of M satisfies D⊥-invariant in the g-Tanaka–
Webster connection. First of all, we introduce the proposition given by Berndt
and Suh in [3] as follows:

Proposition B. Let M be a connected real hypersurface in G2(Cm+2). Sup-
pose that AD ⊂ D, Aξ = αξ, and ξ is tangent to D. Then the quaternionic
dimension m of G2(Cm+2) is even, say m = 2n, and M has five distinct constant
principal curvatures

α = −2 tan(2r), β = 2 cot(2r), γ = 0, λ = cot(r), µ = − tan(r)

with some r ∈ ( 0, π/4 ). The corresponding multiplicities are

m(α) = 1, m(β) = 3 = m(γ), m(λ) = 4n− 4 = m(µ)

and the corresponding eigenspaces are

Tα = Rξ = Span{ ξ },
Tβ = JJξ = Span{ ξν | ν = 1, 2, 3 },
Tγ = Jξ = Span{φνξ | ν = 1, 2, 3 },
Tλ, Tµ,

where
Tλ ⊕ Tµ = (HCξ)⊥, JTλ = Tλ, JTµ = Tµ, JTλ = Tµ.

The distribution (HCξ)⊥ is the orthogonal complement of HCξ, where HCξ =
Rξ ⊕ RJξ ⊕ Jξ ⊕ JJξ.

Case B : ξ ∈ D.
Applying ξ ∈ D in (2.5), we get

0 = (L̂(k)
ξµ

A)X

= (∇XA)ξµ − η(X)φξµ − 2g(φξµ, X)ξ + φµX

+
3∑

ν=1

{
− ην(X)φνξµ − 2g(φνξµ, X)ξν − ην(φX)φνφξµ

}

+ g(φAξµ, AX)ξ − αη(X)φAξµ − αg(φAξµ, X)ξ + η(X)AφAξµ

−∇AXξµ − g(φA2X, ξµ)ξ + αkη(X)φξµ

+ A∇Xξµ + αg(φAX, ξµ)ξ − kη(X)Aφξµ

(3.3)

for any tangent vector field X on M .
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Case B-I : X = ξ ∈ Tα.
By putting X = ξ in (3.3), we have

0 = (∇ξA)ξµ − φξµ + φµξ − αφAξµ + AφAξµ

−∇Aξξµ + αkφξµ + A∇ξξµ − kAφξµ.

Using Aξ = αξ, Aξµ = βξµ and Aφξµ = γφξµ = 0, it can be reduced to

(∇ξA)ξµ − αβφξµ − α∇ξξµ + αkφξµ + A∇ξξµ = 0.

Since (∇ξA)ξµ +A∇ξξµ = β∇ξξµ and ∇ξξµ = qµ+2(ξ)ξµ+1−qµ+1(ξ)ξµ+2 +φµAξ,
we rewrite

(β − α)
{

qµ+2(ξ)ξµ+1 − qµ+1(ξ)ξµ+2

}
+ α(k − α)φµξ = 0.

Consequently, we get

(β − α)qµ+1(ξ) = 0, (β − α)qµ+2(ξ) = 0 and α(k − α) = 0.

From constant principal curvatures of Proposition B, that is, β − α > 0 and
α < 0, we obtain

qµ+1(ξ) = 0, qµ+2(ξ) = 0 and α = k,

that is, α = k and qi(ξ) = 0, i = 1, 2, 3.

Case B-II : X ∈ Tβ, where Tβ = Span{ ξi | i = 1, 2, 3 }.
By setting X = ξi, i = 1, 2, 3 in (3.3), we have

0 = (∇ξiA)ξµ − η(ξi)φξµ − 2g(φξµ, ξi)ξ + φµξi

+
3∑

ν=1

{
− ην(ξi)φνξµ − 2g(φνξµ, ξi)ξν − ην(φξi)φνφξµ

}

+ g(φAξµ, Aξi)ξ − αη(ξi)φAξµ − αg(φAξµ, ξi)ξ + η(ξi)AφAξµ

− β∇ξiξµ − g(φA2ξi, ξµ)ξ + αkη(ξi)φξµ

+ A∇ξiξµ + αg(φAξi, ξµ)ξ − kη(ξi)Aφξµ

= (∇ξiA)ξµ + φµξi +
3∑

ν=1

{
− ην(ξi)φνξµ − 2g(φνξµ, ξi)ξν

}

− β∇ξi
ξµ + A∇ξi

ξµ.

Since (∇ξiA)ξµ + A∇ξiξµ = β∇ξiξµ, it can be reduced to

φµξi +
3∑

ν=1

{
− ην(ξi)φνξµ − 2g(φνξµ, ξi)ξν

}
= 0. (3.4)
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Subcase II-1 : i = µ in (3.4).

φµξµ +
3∑

ν=1

{
− ην(ξµ)φνξµ − 2g(φνξµ, ξµ)ξν

}
= 0.

Subcase II-2 : i = µ + 1 in (3.4).

φµξµ+1 +
3∑

ν=1

{
− ην(ξµ+1)φνξµ − 2g(φνξµ, ξµ+1)ξν

}

= ξµ+2 − φµ+1ξµ − 2ξµ+2

= 0.

Subcase II-3 : i = µ + 2 in (3.4).

φµξµ+2 +
3∑

ν=1

{
− ην(ξµ+2)φνξµ − 2g(φνξµ, ξµ+2)ξν

}

= −ξµ+1 − φµ+2ξµ + 2ξµ+1

= 0.

Summing up the above three subcases, we note that the shape operator A of
M is D⊥-invariant on Tβ in the g-Tanaka–Webster connection.

Case B-III : X ∈ Tγ , where Tγ = Span{φiξ | i = 1, 2, 3 }.
By putting X = φiξ in (3.3), we have

0 = (∇φiξA)ξµ − η(φiξ)φξµ − 2g(φξµ, φiξ)ξ + φµφiξ

+
3∑

ν=1

{
− ην(φiξ)φνξµ − 2g(φνξµ, φiξ)ξν − ην(φφiξ)φνφξµ

}

+ g(φAξµ, Aφiξ)ξ − αη(φiξ)φAξµ − αg(φAξµ, φiξ)ξ + η(φiξ)AφAξµ

−∇Aφiξξµ − g(φA2φiξ, ξµ)ξ + αkη(φiξ)φξµ

+ A∇φiξξµ + αg(φAφiξ, ξµ)ξ − kη(φiξ)Aφξµ.

Since γ = 0, (∇φiξA)ξµ + A∇φiξξµ = β∇φiξξµ and ∇φiξξµ = qµ+2(φiξ)ξµ+1 −
qµ+1(φiξ)ξµ+2 + φµAφiξ, this equation reduces to

β
{

qµ+2(φiξ)ξµ+1 − qµ+1(φiξ)ξµ+2

}
− 2g(φξµ, φiξ)ξ

+ φµφiξ −
3∑

ν=1

ην(φφiξ)φνφξµ − αβg(φξµ, φiξ)ξ = 0.
(3.5)
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Subcase III-1 : i = µ in (3.5).

βqµ+2(φµξ)ξµ+1 − βqµ+1(φµξ)ξµ+2 − 2ξ + φ2
µξ + φ2

µξ − αβξ

= βqµ+2(φµξ)ξµ+1 − βqµ+1(φµξ)ξµ+2 − (αβ + 4)ξ = 0.

Since β > 0 and αβ + 4 = 0, we have

qµ+1(φµξ) = 0 and qµ+2(φµξ) = 0, µ = 1, 2, 3.

Subcase III-2 : i = µ + 1 in (3.5).

βqµ+2(φµ+1ξ)ξµ+1 − βqµ+1(φµ+1ξ)ξµ+2 + φµφµ+1ξ + φµ+1φµξ

= βqµ+2(φµ+1ξ)ξµ+1 − βqµ+1(φµ+1ξ)ξµ+2 = 0,

because of φµφµ+1ξ = φµ+2ξ + ηµ+1(ξ)ξµ and φµ+1φµξ = −φµ+2ξ + ηµ(ξ)ξµ+1.
Since β > 0, we obtain

qµ+1(φµ+1ξ) = 0 and qµ+2(φµ+1ξ) = 0, µ = 1, 2, 3.

Subcase III-3 : i = µ + 2 in (3.5).

βqµ+2(φµ+2ξ)ξµ+1 − βqµ+1(φµ+2ξ)ξµ+2 + φµφµ+2ξ + φµ+2φµξ

= βqµ+2(φµ+2ξ)ξµ+1 − βqµ+1(φµ+2ξ)ξµ+2 = 0.

Since β > 0, we rewrite

qµ+1(φµ+2ξ) = 0 and qµ+2(φµ+2ξ) = 0, µ = 1, 2, 3.

From the above three subcases, we get qi(X) = 0, i = 1, 2, 3 for any tangent
vector field X ∈ Tγ .

Case B-IV : X ∈ Tλ.
By putting X ∈ Tλ in (3.3), we have

0 = (∇XA)ξµ + φµX − λ∇Xξµ + A∇Xξµ

= β∇Xξµ + φµX − λ∇Xξµ

= (β − λ)
{

qµ+2(X)ξµ+1 − qµ+1(X)ξµ+2 + φµAX
}

+ φµX

= (β − λ)qµ+2(X)ξµ+1 − (β − λ)qµ+1(X)ξµ+2 − (λ2 − βλ− 1)φµX.

Since β − λ = 2 cot(2r) − cot(r) = − tan(r) = µ < 0 with some r ∈ (0, π
4 ) and

λ2 − βλ− 1 = 0, we obtain

qµ+1(X) = 0 and qµ+2(X) = 0, µ = 1, 2, 3,

that is, qi(X) = 0, i = 1, 2, 3 for any tangent vector field X ∈ Tλ.
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Case B-V : X ∈ Tµ.
By setting X ∈ Tµ in (3.3), we get

0 = (∇XA)ξµ + φµX − µ∇Xξµ + A∇Xξµ

= β∇Xξµ + φµX − µ∇Xξµ

= (β − µ)qµ+2(X)ξµ+1 − (β − µ)qµ+1(X)ξµ+2 − (µ2 − βµ− 1)φµX.

Since β − µ = λ = cot(r) > 0 with some r ∈ (0, π
4 ) and µ2 − βµ− 1 = 0, we have

qµ+1(X) = 0 and qµ+2(X) = 0, µ = 1, 2, 3,

that is, qi(X) = 0, i = 1, 2, 3 for any tangent vector field X ∈ Tµ.

Hence, summing up all the cases mentioned above, we give a complete proof
of our Main Theorem in Introduction.
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