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By the Skitovich–Darmois theorem, the Gaussian distribution on the real
line is characterized by the independence of two linear forms of n independent
random variables. The theorem is known to fail for a compact connected
Abelian group even in the case when n = 2. In the paper, it is proved
that a weak analogue of the Skitovich–Darmois theorem holds for some a-
adic solenoids if we consider three independent linear forms of three random
variables.
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1. Introduction

It is well known that the proofs of many characterization theorems of ma-
thematical statistics are reduced to the solving of some functional equations.
Consider the classical Skitovich–Darmois theorem that characterizes Gaussian
distributions on the real line ([9, Ch. 3]): Let ξi, i = 1, 2, . . . , n, n ≥ 2, be
independent random variables, and αj , βj be nonzero constants. Suppose that
the linear forms L1 = α1ξ1+· · ·+αnξn and L2 = β1ξ1+· · ·+βnξn are independent.
Then all random variables ξj are Gaussian.

Let µ̂j(y) be the characteristic functions of the distributions of ξj ,
j = 1, 2, . . . , n. Taking into account that E[eiξjy] = µ̂j(y), it is easy to verify that
the Skitovich–Darmois theorem is equivalent to the following statement: The
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solutions of the Skitovich–Darmois equation
n∏

j=1

µ̂j(αju + βjv) =
n∏

j=1

µ̂j(αju)µ̂j(βjv), u, v ∈ R,

in the class of the normalized continuous positive definite functions are the
characteristic functions of the Gaussian distributions, i.e., µ̂j(y) = exp{iajy −
σjy

2}, aj ∈ R, σj ≥ 0, y ∈ R, j = 1, 2, . . . , n.
This theorem was generalized to various classes of locally compact Abelian

groups (see, for example, [1–6], [10]). In these researches random variables take
values in a locally compact Abelian group X, and coefficients of the linear forms
are topological automorphisms of X. As in the classical case, the characterization
problem is reduced to the solving of the Skitovich–Darmois equation in the class
of the normalized continuous positive definite functions on the character group
of the group X.

In [2], G.M. Feldman and P. Graczyk showed that even a weak analogue of the
Skitovich–Darmois theorem fails for compact connected Abelian groups. Namely,
they proved the following statement: Let X be an arbitrary compact connected
Abelian group. Then there exist topological automorphisms αj , βj , j = 1, 2, of X
and independent random variables ξ1, ξ2 with values in X and distributions that
are not convolutions of the Gaussian and idempotent distributions, whereas the
linear forms L1 = α1ξ1 + α2ξ2 and L2 = β1ξ1 + β2ξ2 are independent.

The aim of this article is to show that a weak analogue of the Skitovich–
Darmois theorem holds for some compact connected Abelian groups if we consider
three linear forms of three random variables. Namely, we will construct an a-adic
solenoid Σa (the full description of these solenoids will be given in Theorem 4.1)
for which the independence of three linear forms of three independent random
variables with values in Σa implies that at least one random variable has an
idempotent distribution.

2. Definitions and Notation

Let X be a second countable locally compact Abelian group. Denote by
Aut(X) the group of the topological automorphisms of X. Let k be an integer.
Denote by fk the mapping fk : X → X defined by the equality fkx = kx. Put
X(k) = fk(X).

Let Y = X∗ be the character group of X. The value of a character y ∈ Y at
x ∈ X denote by (x, y). Let B be a nonempty subset of X. Put

A(Y, B) = {y ∈ Y : (x, y) = 1, x ∈ B}.
The set A(Y, B) is called the annihilator of B in Y . The annihilator A(Y, B) is a
closed subgroup in Y . For each α ∈ Aut(X) define the mapping α̃ : Y → Y by the
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equality (αx, y) = (x, α̃y) for all x ∈ X, y ∈ Y . The mapping α̃ is a topological
automorphism of Y . It is called an adjoint of α. The identity automorphism of
a group X denote by I.

In the paper, we will use standard facts of abstract harmonic analysis (see
[12]). Let µ be a distribution on X. The characteristic function of µ is defined
by the formula

µ̂(y) =
∫

X

(x, y)dµ(y), y ∈ Y.

Put Fµ = {y ∈ Y : µ̂(y) = 1}. Then Fµ is a subgroup of Y , and the function
µ̂(y) is Fµ-invariant, i.e., µ̂(y + h) = µ̂(y), y ∈ Y, h ∈ Fµ.

Denote by Ex the degenerate distribution concentrated at x. Let K be a
compact subgroup of X. Denote by mK the Haar distribution on K. Denote
by I(X) the set of shifts of these distributions, i.e., the distributions of the form
mK ∗Ex, where K is a compact subgroup of X, x ∈ X. The distributions of the
class I(X) are called idempotent. Note that the characteristic function of mK is
of the form

m̂K(y) =

{
1, y ∈ A(Y, K),
0, y 6∈ A(Y, K).

A distribution µ on the group X is called Gaussian ([13], ch. 5) if its charac-
teristic function can be represented in the form

µ̂(y) = (x, y) exp{−ϕ(y)}, y ∈ Y,

where ϕ(y) is a continuous nonnegative function satisfying the equation

ϕ(u + v) + ϕ(u− v) = 2(ϕ(u) + ϕ(v)), u, v ∈ Y.

Denote by Γ(X) the set of Gaussian distributions on X.
Denote by Z the infinite cyclic group, by R the additive group of real numbers,

by T the circle group, by Q the additive group of rational numbers with the
discrete topology, by ∆a the group of a-adic integers, by Z(m) the group of
residue modulo m.

Let a = (a0, a1, . . . , an, . . .) be a fixed but arbitrary infinite sequence of natu-
ral numbers, where all ai > 1. Consider the group R×∆a. Let B be a subgroup
of R × ∆a of the form B = {(n, nu)}∞n=−∞, where u = (1, 0, . . . , 0, . . .). The
factor-group Σa = (R × ∆a)/B is called an a-adic solenoid. The group Σa is
a compact connected Abelian group having dimension 1. Moreover, Σ∗

a
∼= Ha,

where
Ha = { m

a0a1 · · · an
: n = 0, 1, . . . ; m ∈ Z}

is a subgroup of Q. Denote by P the set of prime numbers.
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3. Lemmas

Let X be a locally compact Abelian group. Put Y = X∗, α̃ij ∈ Aut(Y ), i, j =
1, 2, . . . , n. Let fi(y) be some functions on Y . Recall that the Skitovich–Darmois
equation is an equation of the form

n∏

i=1

fi




n∑

j=1

α̃ijuj


 =

n∏

i=1

n∏

j=1

fi(α̃ijuj), uj ∈ Y. (1)

The proof of the main theorem is reduced to the studying of the solutions of this
equation. In order to prove the main result, we need some lemmas.

Lemma 3.1. ([11]). Let X be a second countable locally compact Abelian
group, ξi, i = 1, 2, . . . , n, be independent random variables with values in X and
distributions µi. The linear forms Lj =

∑n
i=1 αijξi, j = 1, 2, . . . , n, where αij ∈

Aut(X), are independent if and only if the characteristic functions µ̂i(y), i =
1, 2, . . . , n, satisfy equation (1), which takes the form

n∏

i=1

µ̂i




n∑

j=1

α̃ijuj


 =

n∏

i=1

n∏

j=1

µ̂i(α̃ijuj), uj ∈ Y. (2)

Lemma 3.2. ([11]). Let X be a direct product of the groups Z(pkp), where kp ≥
0, i.e., X = Pp∈PZ(pkp). Let ξi, i = 1, 2, . . . , n, be independent random variables
with values in X and distributions µi. Then the independence of the linear forms
Lj =

∑n
i=1 αijξi, where αij ∈ Aut(X), α1j = αi1 = I, i, j = 1, 2, . . . , n, implies

that µi = Exi ∗mK , where K is a compact subgroup of X, xi ∈ X, i = 1, 2, . . . , n.

Taking into account that X = Pp∈PZ(pkp) if and only if Y is a weak direct
product of the groups Z(pkp), where kp ≥ 0, i.e., Y = P∗

p∈PZ(pkp), by Lemmas
3.1 and 3.2 we obtain

Corollary 3.3. Let Y be a discrete Abelian group of the form Y = P∗
p∈PZ(pkp),

where kp ≥ 0. Let µ̂i(y), i = 1, 2, . . . , n, n ≥ 2, be the characteristic functions
on Y satisfying Eq. (2), where α̃ij ∈ Aut(Y ), α̃1j = α̃i1 = I, i, j = 1, 2, . . . , n.
Then µ̂i(y) = (xi, y)m̂K(y), y ∈ Y, where K is a compact subgroup of X, xi ∈ X,
i = 1, 2, . . . , n.

The following lemma states that an analogue of the Skitovich–Darmois the-
orem for three linear forms of three independent random variables holds on the
circle group if we assume that the characteristic functions of the random variables
do not vanish.
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Lemma 3.4. ([8]) Assume that X = T, αij ∈ Aut(X), i, j = 1, 2, 3. Let
ξi, i = 1, 2, 3, be independent random variables with values in X and distributions
µi such that their characteristic functions do not vanish. Suppose that Lj =∑3

i=1 αijξi, j = 1, 2, 3, are independent. Then µi = Exi , xi ∈ X, i = 1, 2, 3.

By Lemmas 3.1 and 3.4, we obtain

Corollary 3.5. Assume that Y = Z. Let µ̂i(y), i = 1, 2, 3, n ≥ 2, be non-
vanishing characteristic functions on Y satisfying the equation

µ̂1(u1 + u2 + u3)µ̂2(u1 − u2 − u3)µ̂3(u1 + u2 − u3)

= µ̂1(u1)µ̂1(u2)µ̂1(u3)µ̂2(u1)µ̂2(−u2)µ̂2(−u3)µ̂3(u1)µ̂3(u2)µ̂3(−u3),

ui ∈ Y, i = 1, 2, 3. (3)

Then µ̂i(y) = (xi, y), xi ∈ X, i = 1, 2, 3, y ∈ Y .

The following lemma for the case n = 2 has been proved earlier (see, for
example, [7], Lemma 13.20). The proof for the arbitrary n is almost the same.

Lemma 3.6. Let X be a second countable compact Abelian group. Suppose
that there exists an automorphism δ ∈ Aut(X) and an element ỹ ∈ Y such that
the following conditions are satisfied:

i) Ker(I − δ̃) = {0};
ii) (I − δ̃)Y ∩ {0;±ỹ,±2ỹ} = {0};
iii) δ̃ỹ 6= −ỹ.
Then for all n ≥ 2 there exist independent identically distributed random

variables ξi, i = 1, 2, . . . , n, with values in X and distribution µ 6∈ I(X) ∗ Γ(X)
such that the linear forms Lj = ξ1 +

∑n
i=2 δijξi, j = 1, 2, . . . , n, where δij = I, i 6=

j, δii = δ, are independent.

It is convenient for us to formulate the following simple statement as a lemma.

Lemma 3.7. Let Y be a second countable discrete Abelian group, H be a
subgroup of Y , and f(y) be a function on Y of the form

f(y) =

{
1, y ∈ H;
c, y 6∈ H,

(4)

where 0 < c < 1. Then f(y) is a positive definite function.

P r o o f. Consider the distribution µ = cE0 + (1 − c)mG on the group X,
where G = A(X, H). It is easy to see that f(y) = µ̂(y). Hence, f(y) is a positive
definite function.

The following lemma for n = 2 was proved in [2].
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Lemma 3.8. Let X be a second countable compact connected Abelian group
such that f2 ∈ Aut(X). Then there exist independent random variables ξi, i =
1, 2, . . . , n, with values in X and distributions µi 6∈ I(X) ∗ Γ(X), and automor-
phisms αij ∈ Aut(X) such that the linear forms Lj =

∑n
i=1 αijξi, j = 1, 2, . . . , n,

are independent.

P r o o f. There are two cases possible:
1. fp ∈ Aut(X) for all prime numbers p;
2.fp 6∈ Aut(X) for a prime number p.
1. Consider the first case. It is well known that if X is a compact Abelian

group X such that fp ∈ Aut(X) for all prime p, then

X ∼= (Σa)n, (5)

where a = (2, 3, 4, . . .), ([12, (25.8)]). It is obvious that it suffices to prove the
lemma for the group of the form X = Σa, a = (2, 3, 4, . . .). Then the group
Y is topologically isomorphic to the group Q. Let p and q be different prime
numbers. Let H be a subgroup of Y of the form H = {m

qk }m,k∈Z. Put G =

H∗,K = A(G,H(p)). Since the numbers p and q are relatively prime, it follows
that H 6= H(p). On the group H, consider the function

f(y) =

{
1, y ∈ H(p),

c, y 6∈ H(p),
(6)

where 0 < c < 1. By Lemma 3.7, f(y) is a positive definite function.
On the group Y , consider the function

g(y) =

{
f(y), y ∈ H,

0, y 6∈ H.
(7)

The function g(y) is a positive definite function ([7, Theorem 2.12]). By the
Bohner theorem, there exists a distribution µ ∈ M1(X) such that µ̂(u) = g(y).
It is obvious that µ 6∈ I(X) ∗ Γ(X).

Let ξi be independent random variables with values in X and distribution µ.
Put s = p2 + q. From the conditions of the lemma it follows that s ∈ Aut(X).
Let us show that the linear forms

L1 = ξ1 + pξ2 + pξ3 + · · ·+ pξn,

L2 = pξ1 + sξ2 + p2ξ3 + · · ·+ p2ξn,

L3 = pξ1 + p2ξ2 + sξ3 + · · ·+ p2ξn,

Journal of Mathematical Physics, Analysis, Geometry, 2013, vol. 9, No. 4 587



I.P. Mazur

· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·
Ln = pξ1 + p2ξ2 + p2ξ3 + · · ·+ sξn

are independent. By Lemma 3.1, it suffices to show that there holds the following
equation:

µ̂(u1 + pu2 + pu3 + · · ·+ pun)µ̂(pu1 + su2 + p2u3 + · · ·+ p2un)× · · ·

×µ̂(pu1 + p2u2 + · · ·+ sun) = µ̂(u1)µ̂(pu2)µ̂(pu3) · · · µ̂(sun). (8)

From (6), it follows that

g(y + pt) = g(y), y, t ∈ H. (9)

Using (9), it is easy to show that if ui ∈ H, then Eq. (8) becomes an equality.
Thus it suffices to consider the case where ui 6∈ H for some i. It is easy to see
that in this case the right-hand side of Eq. (8) vanishes.

Let us show that the left-hand side of Eq. (8) vanishes too. Assume the
converse, i.e., that the left-hand side of Eq. (8) does not vanish. Then there
holds the following system of equations:





u1 + pu2 + pu3 + . . . + pun = h1,

pu1 + su2 + p2u3 + . . . + p2un = h2,

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

pu1 + p2u2 + p2u3 + . . . + sun = hn,

(10)

where hi ∈ H.
Add the first equation of the system (10) multiplied by (−p) to each equation

of the system (10) starting from the second one. We obtain that qui = hi −
ph1, i = 2, 3, . . . , n. Thus, ui ∈ H, i = 2, 3, . . . , n. From this and from the first
equation of the system (10) it follows that that u1 ∈ H. Finally we obtain that
ui ∈ H, i = 1, 2, . . . , n, which contradicts the assumption.

2. Assume that
fp 6∈ Aut(X) (11)

for some prime number p. Suppose that p is the smallest natural number satis-
fying condition (11). Since X is a connected group, we have X(n) = X for all
natural n. Hence, if fp 6∈ Aut(X), then Kerfp 6= {0}.

From the condition of the lemma it follows that p ≥ 3. Put a = 1−p. Since p
is the smallest natural number satisfying condition (11), we obtain f−a ∈ Aut(X).
Hence fa ∈ Aut(X). Note that Kerfp = A(X, Y (p)). It implies that Y (p) 6= Y .
Let ỹ ∈ Y (p) and verify that the automorphism δ = fa and the element ỹ satisfy
the conditions of Lemma 3.6. We have f̃a = fa and I − f̃a = f̃p. Since Y is a
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torsion-free group, it follows that Ker(I − f̃a) = {0}, i.e., condition (i) holds.
Thus (I − f̃a)Y = Y (p). From p ≥ 3, it follows that the numbers 2 and p are
relatively prime. Hence there are the integers m and n such that 2m + pn = 1.
Thus y = 2my + pny. Therefore, if ỹ 6∈ Y (p), then 2ỹ 6∈ Y (p) too. It implies
that condition (ii) holds. Taking into account that Y is a torsion-free group, it
is obvious that condition (iii) holds. We use Lemma 3.6 to obtain the assertion
of the lemma.

4. Main Theorem

Theorem 4.1. Let X = Σa be an a-adic solenoid.
1. Assume that fp 6∈ Aut(X) for all prime numbers p. Let ξi, i = 1, 2, 3, be

independent random variables with values in X and distributions µi. Then the
independence of the linear forms Lj =

∑3
i=1 αijξi, where αij ∈ Aut(X), i, j =

1, 2, 3, implies that at least one distribution µi ∈ I(X).
2. Assume that fp ∈ Aut(X) for a prime number p. Then there are in-

dependent random variables ξi, i = 1, 2, 3, with values in X and distributions
µi 6∈ Γ(X) ∗ I(X), and automorphisms αij ∈ Aut(X) such that the linear forms
Lj =

∑3
i=1 αijξi, j = 1, 2, 3, are independent.

It should be noted that an example of a group such that fp 6∈ Aut(X) for
all prime numbers p is the group Σa,a = (2, 3, 5, 7, . . .). Its character group is
Σ∗

a
∼= { m

p1p2···pk
: m ∈ Z, where pj are different prime numbers}.

An example of a group such that fp ∈ Aut(X) for a prime number p is the
group Σa,a = (2, 2, 2 . . .). Its character group is Σ∗

a
∼= {m

2k : m, k ∈ Z}.
The proof of Theorem 4.1 is divided into two parts. In the first part we use

Corollaries 3.3 and 3.5. In the second part we use Lemma 3.8.
P r o o f. 1. Suppose that fp 6∈ Aut(X) for all prime numbers p. This implies

that Aut(X) = {I,−I}. It is easy to show that the case of arbitrary linear forms
Lj is reduced to the case where Lj are of the form

L1 = ξ1 + ξ2 + ξ3,

L2 = ξ1 − ξ2 + ξ3, (12)

L3 = ξ1 − ξ2 − ξ3.

Note that Y is topologically isomorphic to a subgroup of Q. To avoid intro-
ducing new notation, we will suppose that Y is a subgroup of Q. By Lemma
3.1, the independence of the linear forms (12) implies that Eq. (3), where Y is a
subgroup of Q, holds.

Note that since f2 6∈ Aut(X), we have that the partition of Y into the cosets
of Y (2) consists of two cosets: Y (2) and ỹ + Y (2), where ỹ 6∈ Y (2).
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Put Ni = {y ∈ Y : µ̂i(y) 6= 0}, N = ∩3
i=1Ni. We infer from (3) that N is a

subgroup in Y . Moreover, it is easy to see from (3) that N has a property:

if 2y ∈ N, then y ∈ N. (13)

There are two cases: N 6= {0} and N = {0}.
A. Assume that N 6= {0}. Suppose that t1 and t2 belong to the same coset

of Y (2) in Y . Then there exists û1 and û2 such that û1 + û2 = t1, û1 − û2 = t2.
Putting first u1 = û1, u2 = û2, u3 = 0 in (3), then u1 = û1, u2 = −û2, u3 = 0 in
(3), and equating the right-hand sides of the obtained equations, we get

|µ̂1(t1)||µ̂2(t2)||µ̂3(t1)| = |µ̂1(t2)||µ̂2(t1)||µ̂3(t2)|.

Reasoning in the same way, it is easy to see that if t1 and t2 belong to the same
coset of Y (2) in Y , then there holds the equation

|µ̂i1(t1)||µ̂i2(t2)||µ̂i3(t2)| = |µ̂i1(t2)||µ̂i2(t1)||µ̂i3(t1)|, (14)

where all ij are pairwise different.
Put νi = µi ∗ µ̄i, i = 1, 2, . . . , n. Then ν̂i(y) = |µ̂i(y)|2, y ∈ Y . The functions

ν̂i(y) are nonnegative and also satisfy equation (3). It suffices to show that ν̂i(y)
are characteristic functions of the idempotent distributions. This implies that
µ̂i(y) are also characteristic functions of the idempotent distributions.

Now we will show that Ni = N, i = 1, 2, 3. Assume the converse. Then there
exists y1 ∈ Ni1 such that either y1 6∈ Ni2 or y1 6∈ Ni3 , where all ij are pairwise
different. Put t1 = y1, t2 = y2, where y2 ∈ N and y1,y2 belong to the same coset
of Y (2) in Y , in (14). We can make such a choice. Indeed, on the one hand,
N ∩ Y (2) 6= {0} because N is a subgroup and N 6= {0} by the assumption. On
the other hand, there exists y 6= 0 such that y ∈ N ∩ (ỹ + Y (2)). Indeed, if
N ⊂ Y (2), then, taking into account (13), we infer that there exists y′ ∈ Y such
that y = 2ky′. This contradicts to the fact that there are no y ∈ Y such that y is
infinitely divisible by 2. We infer that the left-hand side of Eq. (14) is equal to
a positive number, and the right-hand side of Eq. (14) is equal to zero. This is
a contradiction. So we have that Ni = N, i = 1, 2, 3.

Note that if y ∈ N , then ν̂i(y) = 1, i = 1, 2, 3. Indeed, let y0 ∈ N . Consider
the subgroup H of Y generated by y0. Note that H ∼= Z. Consider the restriction
of Eq. (3) to the subgroup H. Using Corollary 3.5, we obtain that ν̂i(y) = 1, i =
1, 2, 3, y ∈ H.

Taking into account that the characteristic functions ν̂i(y) are N -invariant,
consider the equation induced by equation (3) on the factor-group Y/N . Put
fi([y]) = ν̂i([y]). Note that if H is an arbitrary nontrivial subgroup of Y , then
Y/H is topologically isomorphic to a group of the form P∗

p∈PZ(pkp), where kp ≥ 0.
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In particular, this holds for the factor-group Y/N . Hence, by Corollary 3.3, we
can conclude that fi([y]) are characteristic functions of some idempotent distri-
butions. This implies that all distributions µi are idempotent.

B. Consider the case N = {0}.
First putting u2 = 0, u3 = u1 = y, then u3 = 0, u1 = u2 = y, and finally

u1 = 0, u2 = u3 = y in (3), we get respectively:

µ̂1(2y) = µ̂2
1(y)|µ̂2(y)|2|µ̂3(y)|2, y ∈ Y. (15)

µ̂2(2y) = |µ̂1(y)|2µ̂2
2(y)|µ̂3(y)|2, y ∈ Y. (16)

µ̂3(2y) = |µ̂1(y)|2|µ̂2(y)|2µ̂2
3(y), y ∈ Y. (17)

Note that
µ̂i(2y) = 0, y ∈ Y, y 6= 0, i = 1, 2, 3. (18)

Indeed, if µ̂i0(2y0) 6= 0 for some y0 ∈ Y, y0 6= 0, and i0, then from Eqs. (15)–(17)
it follows that µ̂i(y0) 6= 0, i = 1, 2, 3. This contradicts to N 6= {0}.

Show that at least one distribution µi = mX . Assume the converse. Then
there exists t1 6= 0, t2 6= 0, t3 6= 0 such that

µ̂1(±t1)µ̂2(±t2)µ̂3(±t3) 6= 0. (19)

From equality (18) it follows that ti ∈ ỹ + Y (2). From N = {0} it follows that
±ti, i = 1, 2, 3, do not coincide. Without loss of generality, assume that t1 6= ±t2.
Note that for all elements y′, y′′ ∈ ỹ + Y (2) we have y′ + y′′ ∈ Y (2). Moreover, for
any two elements y′, y′′ ∈ ỹ+Y (2) there are two possibilities: either y′+y′′ ∈ Y (4)

or y′ − y′′ ∈ Y (4).
Put yi = ti, i = 1, 2, 3, if t1 + t2 ∈ Y (4), and put y1 = t1, y2 = −t2, y3 = t3 if

t1 − t2 ∈ Y (4). Note that y1 + y2 ∈ Y (4), y1 + y2 6= 0. For an element y0 ∈ Y (2)

denote by y0

2 an element of Y such that 2y0

2 = y0. Thus we have that y1+y2

2 ∈
Y (2), y1+y2

2 6= 0.
Consider the system of the equations





u1 + u2 + u3 = y1,

u1 − u2 − u3 = y2,

u1 + u2 − u3 = y3.

(20)

Taking into account that yi ∈ ỹ+Y (2), i = 1, 2, 3, it is easy to see that the system
of equations (20) has the following solutions:





u1 = y1+y2

2 ,

u2 = y3−y2

2 ,

u3 = y1−y3

2

(21)
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Put the solutions of (21) in Eq. (3). Taking into account (19), we infer that the
right-hand side of (3) is not equal to 0. This implies that

µ̂1

(
y1 + y2

2

)
µ̂2

(
y3 − y2

2

)
µ̂3

(
y1 − y3

2

)
6= 0. (22)

It follows from inequality (22) that µ1(y1+y2

2 ) 6= 0. However, we have y1+y2

2 ∈
Y (2), which contradicts to (18).

Note that we have also proved that if N 6= {0}, then all distributions µi

are idempotent, and if N = {0}, then at least one distribution µi is the Haar
distribution on X.

2. Now consider the case fp ∈ Aut(X) for some prime p. If f2 ∈ Aut(X),
then the statement follows from Lemma 3.8. Assume that f2 6∈ Aut(X). Then
two cases, p− 1 = 4k and p + 1 = 4k, are possible. Let us study the first case.

Consider the function ρ(x) on X defined by the equation

ρ(x) = 1 + Re(x, y0),

where y0 ∈ Y, y0 6∈ Y (2). It is obvious that ρ(x) ≥ 0, x ∈ X, and
∫
X ρ(x)dmX(x) =

1. Let µ be a distribution on X with the density ρ(x) with respect to mX . It is
also obvious that µ 6∈ Γ(X)∗I(X). The characteristic function of the distribution
µ is of the form

µ̂(y) =





1, y = 0,
1
2 , y = ±y0,

0, y 6∈ {0, y0,−y0}.
(23)

Let ξi, i = 1, 2, 3, be independent identically distributed random variables
with values in X and distribution µ. Let us verify that the linear forms L1 =
ξ1 + ξ2 + ξ3, L2 = ξ1 + pξ2 + ξ3, L3 = ξ1 + ξ2 + pξ3 are independent. By Lemma
3.1, it suffices to prove that µ̂(y) satisfies Eq. (2), which takes the form

µ̂(u + v + t)µ̂(u + pv + t)µ̂(u + v + pt) = µ̂3(u)µ̂2(v)µ̂2(t)µ̂(pv)µ̂(pt), (24)

where u, v, t ∈ Y . We will show that Eq. (24) holds. Certainly it suffices to
consider the case where at least two of three elements u, v, t are not equal to 0.
It is easy to see that in this case the right-hand side of Eq. (24) is equal to 0.
Let us show that the left-hand side of Eq. (24) is also equal to 0.

Suppose that there are some elements u, v, t such that the left-hand side of
Eq. (24) does not vanish. Then there exist hi ∈ {0, y0,−y0}, i = 1, 2, 3, such that
u, v, t satisfy the system of the equations





u + v + t = h1,

u + pv + t = h2,

u + v + pt = h3.

(25)
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From (25), it is easy to obtain

(p− 1)v, (p− 1)t ∈ {0,±y0,±2y0}. (26)

Relationship (26) fails because (p − 1) = 4k, but y0 6∈ Y (2). From this it
follows that the left-hand side of equation (24) is equal to 0.

The second case can be studied in a similar way, but we have to consider the
linear forms L1 = ξ1 + ξ2 + ξ3, L2 = ξ1 − pξ2 + ξ3, L3 = ξ1 + ξ2 − pξ3.

The theorem is completely proved.
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