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1. Introduction

The two-phase Hele–Shaw problem (the Muskat problem) describes the evo-
lution of an interface between two immiscible incompressible fluids (for example,
water and oil). The motion of fluids is governed by the Darcy law, stating that
the velocities of fluids are proportional to the pressure gradients, and the law of
mass conservation [25]. The Muskat problem with a regular initial interface was
studied by L. Jiang and Y. Chen [19], F. Yi [30, 31], F. Otto [26], S. Howison
[18], D. Ambrose [1], M. Siegel, R. Caflish and S. Howison [28], S.P. Degtyarev
[12], J. Escher and B.V. Matioc [14].

Weak and variational solutions for the one-phase Hele–Shaw problem were
studied by C. Elliott and J.R. Ockendon [13], E. Di Benedetto and A. Friedman
[6]. Y.E. Hohlov and S.Howison [17] constructed explicit solutions to the Hele–
Shaw problem. B.V. Bazaliy [4] and J. Escher and G. Simonett [15] proved
the existence of classical solutions to the Hele–Shaw problem with regular initial
data. Preliminary arguments show that if the initial interface in the one-phase
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Hele–Shaw problem has an angle point, then the behaviour of the free boundary
depends on the angle value. Moreover, J.R. King, A.A. Lacey, and J.L. Vazquez
[20] found that under certain sufficient conditions the angle value is preserved
for some time (the ”waiting time” phenomenon). In [29], N. Vasylyeva gave a
strong proof of the solvability in the weighted Hölder classes for the one-phase
Hele–Shaw problem with the ”waiting time” property. The similar problem with
surface tension was considered by A. Friedman and B.V. Bazaliy [5]. We remark
that introduction of the surface tension in one- or two-phase Hele–Shaw problems
leads to the regularization of the free boundary problem. The surface tension
variation of the Muskat problem was previously studied by us in [7]. In the
present paper we apply the same method, but the model problem corresponding
to the angle point of the initial interface and the related linear equation turned out
to be more complicated. As in [7], our purpose is to formulate a set of sufficient
conditions under which the problem has a solution in the weighted Hölder classes
with the ”waiting time” property.

The paper is organized as follows. In Section 2, we formulate our problem,
reduce the problem with unknown boundary to a problem in a fixed domain,
define the weighted Hölder spaces and state the main result, Theorem 2.1. In
Subsection 2.4, we represent our problem in the form =z = f(x, t)+F1(z), where
z = (θ1, θ2, σ) and = is a linear operator, the vector f(x, t) is constructed by using
initial data, and F1 is a nonlinear operator. Section 3 is devoted to studying the
model problems in the plane corners and in the half-spaces. Then, in Section 4,
using the technique of the regularizer for parabolic systems [22] together with
the results of Section 3, we prove the one-to-one solvability to the linear problem
=z = f(x, t), Theorem 4.1. In Section 5, we prove the main results by using
Theorem 4.1 and the fixed point theorem.

2. The Statement of the Problem and the Main Result

2.1. The mathematical model

Let Ω be a double-connected bounded open domain in R2 with the boundary
∂Ω = Γ1

⋃
Γ2, Γ1

⋂
Γ2 = ∅ (see Figure 1 below). Let Γ(t), for each t ∈ [0, T ], be

a simple closed curve Γ(t) ⊂ Ω that separates Ω into two subdomains Ω1(t) and
Ω2(t) such that Ω = Ω1(t)

⋃
Γ(t)

⋃
Ω2(t), and ∂Ωi = Γi

⋃
Γ(t), i = 1, 2.

In the two-phase Hele–Shaw problem we are looking for the fluid domain Ωi(t)
and the fluid pressure pi(y, t), y ∈ Ωi(t), t ∈ [0, T ], i = 1, 2, such that

∆ypi = 0 in Ωi(t), i = 1, 2, t ∈ [0, T ], (2.1)

p1 − p2 = 0 on Γ(t), (2.2)

Vn = −k1
∂p1

∂n
= −k2

∂p2

∂n
on Γ(t), (2.3)
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pi = ψi(y) on ΓiT = Γi × [0, T ], (2.4)

Ωi(0), Γ(0) are given. (2.5)

Here ∆y = ∂2

∂y2
1

+ ∂2

∂y2
2
, n is the normal to Γ(t) directed in Ω1(t), Vn is the velocity

of points Γ(t) in the direction of n; k1 and k2 are positive constants, ki = k̄
µi

,

where k̄ = const > 0 is the permeability of the porous medium and µi is the
fluid viscosity in Ωi(t), i = 1, 2, µi are positive constants; ψi(y) are given positive
functions.

If we consider, for example, a physical problem where Ω1(t) is occupied by
water and Ω2(t) is filled by oil, then µ2 > µ1, and hence, k = k2

k1
< 1.

Fig. 1. Problem (M)

We will suppose that Γ(0) has an angle point of opening δ, δ ∈ (0, π), and the
origin of the coordinate system (y1, y2) is placed at the vertex of this corner (see
Figure 1). For the sake of simplicity, we consider problem (2.1)–(2.5) under the
assumption that Ωi(0) and Γ(0) are symmetric with respect to the y2− axis, ψi(y)
are even functions in y1, and we seek a symmetric solution with the condition

∂pi

∂y1
|y1=0 = 0, i = 1, 2. (2.6)

One can see that (2.1) and (2.2), together with the second equality in (2.3),
define the transition problem with the interface Γ(t), and the first equality in
(2.3) serves to find the unknown curve Γ(t) that is called the free boundary.

We denote the Muscat problem (2.1)–(2.6) as Problem (M).
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2.2. Reducing to a fixed domain

As in [5] and [7], we use the Hanzawa method [16] to reduce the free boundary
Muskat problem to a problem in a fixed domain. Let Ωi(0) ∩ {y1 > 0} = Ωi,
Γ = Γ(0) ∩ {y1 ≥ 0}, Γ ∈ C%+α, % be an integer and % ≥ 3, α ∈ (0, 1), and ω
be some parameter along Γ (for example, the arc length of Γ). The position of a
point on Γ we define as m̄(ω). Let n(ω) be the normal to Γ directed in Ω1, and
l̄(ω) be the C%+α (% ≥ 2) vector field on Γ which is transversal to Γ such that
l̄(ω) = (0,−1) in the ε0-neighborhood of O = (0, 0) and l̄(ω) = n(ω) out of the
2ε0-neighborhood of O.

For sufficiently small γ0 > 0, ω-lines: m̄(ω)+ηl̄(ω), |η| < 2γ0, do not intersect
each other, and Γ1 ∪ Γ2. The mapping (ω, η) → y = y(ω, η) defined by

y = (y1, y2) = m̄(ω) + ηl̄(ω)

is a diffeomorphism from M = W × (−γ0, γ0) onto

N = {y : y = m̄(ω) + ηl̄(ω), (ω, η) ∈ M}.

The inverse mapping Σ : N → M is

Σ : y → (ω(y), η(y)).

We assume that the free boundary in Problem (M) has the form

Γρ(t) = {(y, t) : y(ω, t) = m̄(ω) + ρ(ω, t)l̄(ω), t ∈ [0, T ]},

where |ρ(ω, t)| < γ0/4, ρ(ω, 0) = 0. It means that the free boundary equation is
given by

Φρ(y, t) = η(y)− ρ(ω, t) = 0, (y, t) ∈ N × [0, T ]. (2.7)

The surface Γρ(t) splits ΩT = Ω× [0, T ] into domains Ωi(t). Let χ(λ) ∈ C∞
0 (R1),

χ(λ) = 1 if |λ| < γ0/3 and χ(λ) = 0 if |λ| > γ0, |χ′| ≤ const/γ0, const < 2. We
will use the coordinates (ω, η) to define the diffeomorphism

eρ : (x, t) → (y, t)

from XT = R2 × [0, T ] onto YT = R2 × [0, T ] by setting




ω(y) = ω(x),
η(y) = λ(x) + χ(λ(x))ρ(ω(x), t), if (ω(x), λ(x)) ∈ N,
y = x, otherwise,

(2.8)

such that the transform e−1
ρ maps Ωi(t) onto Ωi × [0, T ] = ΩiT and Γρ(t) onto

Γ× [0, T ] = ΓT , the free boundary is given by eρ({λ(x) = 0}), and ω(x), λ(x) are
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the coordinates in XT similar to the coordinates ω(y), η(y) in YT . The change of
variables gives the new desired functions

vi(x1, x2, t) = pi(y, t) ◦ eρ(x, t), i = 1, 2, (2.9)

which satisfy the equations

∇2
ρvi(x, t) = 0 in ΩiT , (2.10)

v1(x, t)− v2(x, t) = 0 on ΓT , (2.11)

vi = ψi(x) on ΓiT , (2.12)
∂vi

∂x1
= 0 on x1 = 0, (2.13)

where we take into account that y = x near ΓiT . Here ∇ρ = (E∗
ρ)−1∇x, where

Eρ is the Jacobi matrix of the mapping y = eρ(x, t), ∇x = ( ∂
∂x1

, ∂
∂x2

). It follows
from (2.7) that the unit normal to Γρ(t) is

n =
∇yΦρ

|∇yΦρ| ,

and therefore

Vn = −
∂Φρ

∂t

|∇yΦρ| =
∂ρ(ω,t)

∂t

|∇yΦρ| .

Now we can conclude that equation (2.3) takes the form

∂ρ(ω, t)
∂t

= −k1(∇yp1,∇yΦρ) = −k2(∇yp2,∇yΦρ), (2.14)

ρ(ω, 0) = 0. (2.15)

Since Φρ = 0 on Γ(t), we get

(∇ypi,∇yΦρ) = (∇ρvi,∇ρΦρ) = S(ω, ρ, ρω)
∂vi

∂λ
+ S1(ω, ρ, ρω)

∂vi

∂ω
,

where S(ω, ρ, ρω), S1(ω, ρ, ρω) are some specific smooth functions

S(ω, ρ, ρω) = (∇ρλ,∇ρλ), S1(ω, ρ, ρω) = (∇ρω,∇ρλ).

Thus our initial free boundary Muskat problem is reduced to the problem in
the fixed domain for the functions vi(x1, x2, t), i = 1, 2, and ρ(ω, t) that satisfy
equations (2.10)–(2.15). We denote this problem as (M1):

∇2
ρvi(x, t) = 0 in ΩiT , i = 1, 2,

v1(x, t)− v2(x, t) = 0 on ΓT ,

−ρt(ω, t) = k1(∇ρv1,∇ρΦρ) = k2(∇ρv2,∇ρΦρ) on ΓT ,

vi = ψi(x) on ΓiT ,
∂vi

∂x1
|x1=0 = 0, ρ(ω, 0) = 0. (2.16)
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2.3. Weighted Hölder spaces and the main result

Let D be a given domain in R2 with a corner point at the origin of coordinates
and let DT = D× [0, T ]. Denote the distance from the origin of coordinates to the
point y ∈ D̄ by r(y). We set r(y, x) = min{r(y), r(x)}, x, y ∈ D̄. Let s be a given
number, % be an integer, % ≥ 0, α ∈ (0, 1). The Banach space E%+α,α,α

s (D̄T ) is
the set of the functions u(x, t) with the finite norm

‖u‖E%+α,α,α
s (D̄T ) =

%∑

|l|=0

[sup
D̄T

r|l|−s(x)|Dl
xu(x, t)|+ 〈Dl

xu(x, t)〉(α)
x,s−|l|,DT

+〈Dl
xu(x, t)〉(α)

t,s−|l|,DT
+ [Dl

xu(x, t)](α,α)
s−|l|,DT

],

where

〈u〉(α)
x,s,DT

= sup
(x̄, t), (x, t) ∈ D̄T ,
|x− x̄| < r(x, x̄)/2

rα−s(x, x̄)
|u(x̄, t)− u(x, t)|

|x− x̄|α ,

〈u〉(α)
t,s,DT

= sup
(x,t),(x,τ)∈D̄T

r−s(x)
|u(x, t)− u(x, τ)|

|t− τ |α ,

and

[u](α,α)
s,DT

= sup
x̄, x ∈ D̄, t, τ ∈ [0, T ],
|x− x̄| < r(x, x̄)/2

rα−s(x, x̄)
|u(x̄, t)− u(x, t)− u(x̄, τ) + u(x, τ)|

|x̄− x|α|t− τ |α .

We introduce the space E%+α,α,α
s (∂DT ) in a similar way. For the functions u(x)

independent of t we use the space E%+α
s (D̄) with the finite norm

‖u‖E%+α
s (D̄) =

%∑

|l|=0

[sup
D̄

r|l|−s(x)|Dl
xu(x)|+ 〈Dl

xu(x)〉(α)
x,s−|l|,D],

where
〈u〉(α)

x,s,D = sup
x̄, x ∈ D̄,

|x− x̄| < r(x, x̄)/2

rα−s(x, x̄)
|u(x̄)− u(x)|
|x− x̄|α .

If the domain D does not contain a corner point, the definition of the space
E%+α,α,α

s (D̄T ) remains as before with r(x) ≡ 1. In this case we use the notation
E%+α,α,α(D̄T ).
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For the functions f(ω, t) defined on ΓT , we will use the weighted Hölder space
N2+α

s,γ (ΓT ) with the norm

‖f‖N2+α
s,γ (ΓT ) = ‖r1+γf‖

E2+α,α,α
s (Γ̄T )

+ ‖ft‖E1+α,α,α
s−1 (Γ̄T )

,

where γ is some positive number.
We define the functions vi0(x) = vi(x, 0) as a solution of the transmission

problem
∆vi0 = 0 in Ωi, i = 1, 2,

v10 − v20 = 0, k1
∂v10

∂n
= k2

∂v20

∂n
on Γ,

vi0 = ψi(x) on Γi,
∂vi0

∂x1
|x1=0 = 0. (2.17)

By Theorem 1.1 and Remark 3.1 from [8], there exists a unique solution
(v10(x), v20(x)) to problem (2.17), and

‖vi0‖E3+α
2+γ (Ω̄i)

≤ const(‖ψ1‖E3+α(Γ̄1) + ‖ψ2‖E3+α(Γ̄2)), (2.18)

where α ∈ (0, 1), and

γ ∈ (1 +
1
2
, 1 +

π + 3δ

2π − δ
) if δ ∈ (0, π/7);

γ ∈ (1 +
3δ

π − δ
, 1 +

π + 3δ

2π − δ
) if δ ∈ (π/7, π/4). (2.19)

Theorem 2.1. Let k = k2
k1

, α ∈ (0, 1/2), ψi ∈ C3+α(Γ̄i), i = 1, 2; Γ and
Γi ∈ C3+α satisfy the assumptions mentioned in Subsections 2.1 and 2.2; the
initial pressures (v10(x), v20(x)) be given with (2.17) and inequality (2.18) hold;

0 < k < 1 and
∂vi0

∂n
< 0 on Γ, i = 1, 2; (2.20)

i)

s ∈
(

max{2 + 1/2,
b∗1

π−δ ,
a∗1

π−δ},
5π

2π − δ

)
if δ ∈ (0, π/5),

ii)

s ∈
(

max{ 2π
π−δ ,

b∗2
π−δ ,

a∗2
π−δ},

5π

2π − δ

)
if δ ∈ (π/5, π/4),
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where numbers b∗j and a∗j , j = 1, 2, are some positive constants depending on ini-
tial data (more detailed definitions of these numbers are given in Section 3). Then
for some T there exists a unique solution (v1(x, t), v2(x, t), ρ(ω, t)) of problem
(2.16) for t ∈ [0, T ] such that vi(x, t) ∈ E2+α,α,α

s (Ω̄iT ), i = 1, 2, ρ(ω, t) ∈ N2+α
s,γ .

It should be remarked that condition (2.20) means that a more viscous fluid
is displaced by a less viscous fluid, and then the Muskat problem (2.1)–(2.5)
without surface tension is well-posed (see [28] and [1]).

Corollary 2.1. Note that under assumptions of Theorem 2.1 the initial corner
point O does not move and the geometry of the initial shape of the free boundary
near O is preserved in time. In other words, the results of Theorem 2.1 guarantee
the existence of the ”waiting time” for angle δ ∈ (0, π/4) in the Muskat problem
(2.1)–(2.5) in the case of zero surface tension.

2.4. A perturbation form of system (M1)

In this subsection, we linearize the system M1 on the initial data and rewrite
it as a system =z = F(z), where = is a linear operator and F(z) is a nonlinear
perturbation.

From (2.14) for t = 0, we have

∂ρ

∂t
(ω, 0) = −k1

(
S(ω, 0, 0)

∂v10

∂λ
+ S1(ω, 0, 0)

∂v10

∂ω

)

= −k2

(
S(ω, 0, 0)

∂v20

∂λ
+ S1(ω, 0, 0)

∂v20

∂ω

)
. (2.21)

Let a function m(ω, t) be such that

m(ω, 0) = 0,
∂m(ω, t)

∂t
|t=0 =

∂ρ

∂t
(ω, 0).

As an example of the function m(ω, t), we can take m(ω, t) = t∂ρ
∂t (ω, 0).

We introduce the new unknown functions in the following way:

σ(ω, t) = ρ(ω, t)−m(ω, t), (2.22)

θi(x, t) = vi(x, t)− vi0(x)− (∇xvi0 · ēσ), (2.23)

where
ēσ =

∂x

∂λ
χ(λ)σ(ω, t), x = (x1, x2). (2.24)
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Now we rewrite the system (M1) in terms of the functions σ(ω, t), θi(x, t), i = 1, 2,
and after some calculations get the problem in the form:

∂2θi

∂x2
1

+
∂2θi

∂x2
2

= F0i(θi, σ) in ΩiT , (2.25)

θ1(x, t)− θ2(x, t) = ∇xv10 · ēσ −∇xv20 · ēσ ≡ σA(x) on ΓT , (2.26)

∂σ

∂t
= −k1

[
a(x)

∂θ1

∂n
+ a1(x)

∂σ

∂ω

]
+ F1(θ1, σ) on ΓT , (2.27)

∂θ1

∂n
− k

∂θ2

∂n
+ a2(x)

∂σ

∂ω
= F2(θ1, θ2, σ) on ΓT , (2.28)

∂θi

∂x1
|x1=0 = −∂(∇xvi0 · ēσ)

∂x1
≡ F3(σ), θi(x, t) = 0 on ΓiT , (2.29)

σ(ω, 0) =
∂σ(ω, t)

∂t

∣∣
t=0

= 0, θi(x, 0) = 0. (2.30)

The properties of the functions A(x), ai(x), a(x) F0i, i = 1, 2, F1, F2 will be
described later on.

R e m a r k 2.1. Note that F3(σ) ≡ 0 if we look for the solution in the class
of σ ∈ N2+α

s,γ and take into account definition (2.24) of the vector ēσ.

Let

F̄1(θ1, σ) = F1(θ1, σ)+k1a1(x)
Aω(x)
A(x)

σ, F̄2(θ1, θ2, σ) = F2(θ1, θ2, σ)+a2(x)
Aω(x)
A(x)

σ,

A1(x) =
a1(x)
A(x)

, A2(x) =
a2(x)
A(x)

.

Then we can rewrite conditions (2.27) and (2.28) as

∂σ

∂t
= −k1a(x)

∂θ1

∂n
− k1a1(x)

∂σ

∂ω
− k1

a1(x)Aω(x)
A(x)

σ + F̄1(θ1, σ) on ΓT , (2.31)

∂θ1

∂n
− k

∂θ2

∂n
+ a2(x)

∂σ

∂ω
+ a2(x)

Aω(x)
A(x)

σ = F̄2(θ1, θ2, σ) on ΓT . (2.32)

After that we can find the term σω from condition (2.26) and substitute it into
(2.31), (2.32). Thus we have got the following system (M2):

∂2θi

∂x2
1

+
∂2θi

∂x2
2

= F0i(θi, σ) in ΩiT , i = 1, 2, (2.33)

θ1(x, t)− θ2(x, t) = A(x)σ on ΓT , (2.34)
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∂σ

∂t
= −k1a(x)

∂θ1

∂n
− k1A1(x)

(
∂θ1

∂ω
− ∂θ2

∂ω

)
+ F̄1(θ1, σ) on ΓT , (2.35)

∂θ1

∂n
− k

∂θ2

∂n
+ A2(x)

(
∂θ1

∂ω
− ∂θ2

∂ω

)
= F̄2(θ1, θ2, σ) on ΓT , (2.36)

∂θi

∂x1
|x1=0 = 0, θi(x, t) = 0 on ΓiT , (2.37)

σ(ω, 0) =
∂σ(ω, t)

∂t
|t=0 = 0, θi(x, 0) = 0. (2.38)

Now the system (M2) can be written as

=z = F(z), where z = (θ1, θ2, σ). (2.39)

Note that if we freeze the functional arguments in the functions F0i(θi, σ), F̄1(θ1, σ),
F̄2(θ1, θ2, σ), then system (2.39) or (2.33)–(2.38) will be a linear system with vari-
able coefficients, which will be studied in detail in Section 4.

To illustrate the system (M2), we describe it in a vicinity of the angle point
O = (0, 0) where l̄(ω) = (0,−1). Let y2 = ϕ(y1) with ϕ′(y1) > 0 be the equation
of Γ = Γ(0) in the mentioned above vicinity, where ϕ(0) = 0 and ϕ′(0) = cot δ

2 .
As a parameter along Γ(0), here we take ω(y) = y1, and transformation (2.8)
takes the form

y1 = x1, y2 = x2 − χ(z)ρ(x1, t), z = x2 − ϕ(x1). (2.40)

From (2.40) it follows that

∂x1

∂y1
= 1,

∂x1

∂y2
= 0,

∂x2

∂y2
=

1
1− χzρ

,
∂x2

∂y1
= −χzρϕx1 − χρx1

1− χzρ
,

∂2x2

∂y2
2

=
χzzρ

(1− χzρ)3
,

∂2x2

∂y2
1

=
−χzz(∂x2

∂y1
− ∂ϕ

∂x1
) ∂ϕ

∂x1
ρ− χzρ

∂2ϕ
∂x2

1
− χz

∂ρ
∂x1

∂ϕ
∂x1

+ χz(∂x2
∂y1

− ∂ϕ
∂x1

) ∂ρ
∂x1

+ χ ∂2ρ
∂x2

1

1− χzρ

−
[
χzz

(
∂x2

∂y1
− ∂ϕ

∂x1

)
ρ + χz

∂ρ

∂x1

]
χzρ

∂ϕ
∂x1

− χ ∂ρ
∂x1

(1− χzρ)2
.

As before, we set

pi(y1, y2, t) = pi(x1, y2(x1, x2, t), t) = vi(x1, x2, t),
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and equation (2.1) becomes

∂2vi

∂x2
1

+ 2
∂2vi

∂x1∂x2

∂x2

∂y1
+

∂2vi

∂x2
2

[(
∂x2

∂y1

)2

+
(

∂x2

∂y2

)2
]

+
∂vi

∂x2

[
∂2x2

∂y2
1

+
∂2x2

∂y2
2

]
= 0 in ΩiT . (2.41)

The free boundary Γ(t) in Problem (M) has the representation near O

Φρ(y, t) = −y2 + ϕ(y1)− ρ(y1, t) = 0 (2.42)

such that
∂Φρ

∂y1

dy1

dt
+

∂Φρ

∂y2

dy2

dt
= −∂Φρ

∂t
, n =

∇yΦρ

|∇yΦρ| ,

and hence
Vn = ∇ypi · n =

ρt

|∇yΦρ| .

On the other hand,
∂pi

∂n
= ∇ypi · n =

∇ypi

|∇yΦρ|∇yΦρ.

After using the relation ∇yΦρ = (ϕx1 − ρx1 ,−1), boundary condition (2.3) takes
the form

∂ρ

∂t
= −ki

[
(ϕx1 − ρx1)

(
∂vi

∂x1
− ∂vi

∂x2
ρx1

)
− ∂vi

∂x2

]
, i = 1, 2.

Since
∂vi

∂n
=

∂vi

∂x1

ϕx1√
1 + ϕ2

x1

− ∂vi

∂x2

1√
1 + ϕ2

x1

,

another form of the previous equation is (i = 1, 2),

∂ρ

∂t
= −ki

[
∂vi

∂n

√
1 + ϕ2

x1
− ∂ρ

∂x1

(
∂vi

∂x1
+ (ϕx1 − ρx1)

∂vi

∂x2

)]
on ΓT . (2.43)

Boundary conditions (2.2) and (2.4) preserve their forms

v1 − v2 = 0 ΓT , (2.44)

vi = ψi(x) on ΓiT , (2.45)

and initial conditions are

vi(x, 0) = vi0(x), ρ(x1, 0) = 0. (2.46)
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In this simple case, the nonlinear problem is described by equations (2.41), (2.43)–
(2.46).

Since ρ(x1, 0) = 0 from (2.43), we get

∂ρ

∂t
|t=0 = −k1

∂v10

∂n

√
1 + ϕ2

x1
.

Let
m(x1, t) = −tk1

∂v10

∂n

√
1 + ϕ2

x1
≡ tm0(x),

and
ρ(x1, t) = σ(x1, t) + m(x1, t) (2.47)

such that
σ(x1, 0) = 0,

∂σ

∂t
|t=0 = 0.

Introduce the function

wi(x, t) = vi(x, t)− vi0(x), wi(x, 0) = 0. (2.48)

Next we rewrite equations (2.41), (2.43)–(2.46) in the terms of wi(x, t), σ(x1, t).
Equation (2.41) is transformed to

∂2wi

∂x2
1

+
∂2wi

∂x2
2

+ χ(z)
∂vi0

∂x2

∂2σ

∂x2
1

= g0i(wi, σ). (2.49)

Below we will define the function g0i(wi, σ). The form of the left-hand side here
suggests another change of unknown functions

θi(x, t) = wi(x, t) + χ(z)
∂vi0

∂x2
σ(x1, t). (2.50)

This step explains the appearance of the last term in the right-hand side of
equation (2.23).

Finally we have
∆θi = F0i(θi, σ) in ΩiT , i = 1, 2, (2.51)

where

F0i(θi, σ) ≡ g0i(θi, σ)−
(

χ
∂vi0

∂x2

)

x1x1

σ − 2
(

χ
∂vi0

∂x2

)

x1

σx1 −
(

χ
∂vi0

∂x2

)

x2x2

σ,

(2.52)

g0i(wi, σ) = −∂2vi0

∂x2
1

− 2
∂2(vi0 + wi)

∂x1∂x2

∂x2

∂y1
− ∂2vi0

∂x2
2

[(
∂x2

∂y1

)2

+
(

∂x2

∂y2

)2
]

−∂2wi

∂x2
2

[
−1 +

(
∂x2

∂y1

)2

+
(

∂x2

∂y2

)2
]
− ∂(vi0 + wi)

∂x2

(
∂2x2

∂y2
1

+
∂2x2

∂y2
2

)
+ χ

∂vi0

∂x2

∂2σ

∂x2
1

.
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R e m a r k 2.2. The function F0i(θi, σ) contains the higher derivatives of
θi(x, t) and σ(x1, t) with coefficients that tend to zero as t → 0, the ”quadratic”
terms with respect to θi(x, t) and σ(x1, t), and their derivatives, and the terms
of minor differential orders of unknown functions.

For example, the factor
[
−1 +

(
∂x2
∂y1

)2
+

(
∂x2
∂y2

)2
]

tends to zero as t → 0 by

the definition of ∂x2
∂y1

, ∂x2
∂y2

, and the equation ρ(x, 0) = 0. It is easy to check that
the coefficient under σx1x1 in F0i(θi, σ) is

χ(z)
∂vi0

∂x2

(
1

1− χz(m + σ)
− 1

)
=

χ(z)χz(m + σ)∂vi0
∂x2

1− χz(m + σ)

and vanishes as t → 0 due to (m(x1, t) + σ(x1, t)) → 0 as t → 0.
Since w1(x, t) = w2(x, t) and χ(z) = 1 on ΓT , condition (2.2) takes the form

θ1(x, t)− θ2(x, t) =
(

∂v10

∂x2
− ∂v20

∂x2

)
σ. (2.53)

By simple calculations, we transform equation (2.43) into

∂σ

∂t
= −ki

[
∂θi

∂n

√
1 + ϕ2

x1
− ∂σ

∂x1

∂vi0

∂x1
+ gi

]
, (2.54)

where

gi(θi, σ) = −σ
∂2vi0

∂n∂x2

√
1 + ϕ2

x1
+

√
1 + ϕ2

x1

∂vi0

∂n
+

∂σ

∂x1

∂vi0

∂x1
+

(
∂σ

∂x1
+

∂m

∂x1

)

×
[

∂2vi0

∂x2∂x1
σ − ∂(θi + vi0)

∂x1
+

∂vi0

∂x2
σx1

]
− (ϕx1 − σx1 −mx1)

×
(

∂(θi + vi0)
∂x2

− ∂2vi0

∂x2
2

σ

) (
∂σ

∂x1
+

∂m

∂x1

)
.

R e m a r k 2.3. gi(θi, σ) satisfies to the same properties as F0i(θi, σ), i.e.,
gi(θi, σ) contains the minor terms, the ”quadratic” terms and the higher terms
with small coefficients as t → 0.

In reality, (2.54) contains two conditions. The first of them is

∂σ

∂t
= −k1

(
∂θ1

∂n

√
1 + ϕ2

x1
− ∂σ

∂x1

∂v10

∂x1

)
+ F1(θ1, σ), F1(θ1, σ) = −k1g1(θ1, σ),

(2.55)
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and the second one is

∂θ1

∂n
− k

∂θ2

∂n
− 1√

1 + ϕ2
x1

∂σ

∂x1

(
∂v10

∂x1
− k

∂v20

∂x1

)
=

1√
1 + ϕ2

x1

(kg2 − g1)

= F2(θ1, θ2, σ). (2.56)

Equations (2.51), (2.53), (2.55), and (2.56) correspond to (2.25)–(2.28).
We will use the equalities

∂σ

∂x1
=

√
1 + ϕ2

x1

∂σ

∂τ
,

∂v10

∂x2
− ∂v20

∂x2
=

1− k

k

1√
1 + ϕ2

x1

∂v10

∂n
,

∂v10

∂x1
− k

∂v20

∂x1
=

1− k√
1 + ϕ2

x1

∂v10

∂τ
,

where τ is a tangent vector to Γ, and the two last equalities follow from (2.17).
Summing our calculations, we get the next problem. It is necessary to find

the functions θi(x, t), i = 1, 2, σ(τ, t) by the conditions

∂2θi

∂x2
1

+
∂2θi

∂x2
2

= F0i(θi, σ) in ΩiT , (2.57)

θ1(x, t)− θ2(x, t) =
1− k

k

1√
1 + ϕ2

x1

∂v10

∂n
σ on ΓT , (2.58)

∂θ1

∂n
− k

∂θ2

∂n
− (1− k)√

1 + ϕ2
x1

∂σ

∂τ

∂v10

∂τ
= F2(θ1, θ2, σ) on ΓT , (2.59)

∂σ

∂t
= −k1

√
1 + ϕ2

x1

(
∂θ1

∂n
− ∂σ

∂τ

∂v10

∂x1

)
+ F1(θ1, σ) on ΓT , (2.60)

θi(x, t) = 0 on ΓiT ,
∂θi

∂x1

∣∣
x1=0

= − ∂

∂x1
(χ[x2 − ϕx1 ]σ(ω, t)∂vi0

∂x2
)
∣∣
x1=0

≡ F3(x, t, σ),

(2.61)

σ(τ, 0) = 0,
∂σ(τ, t)

∂t
|t=0 = 0, θi(x, 0) = 0, (2.62)

where the functions F0i(θi, σ), F1(θ1, σ), F2(θ1, θ2, σ) are defined in (2.54), (2.55)
and (2.56), respectively, and as it follows from Remark 2.1, F3(x, t, σ) ≡ 0 for
every (x, t) ∈ ΓT .

Our next step is to get rid of ∂σ
∂τ in the left-hand sides of equations (2.59) and

(2.60). To this end, we introduce the functions

F̄1(θ1, σ) =
F1(θ1, σ)√

1 + ϕ2
x1

− k1
∂

∂τ

(
∂v10

∂n
(1 + ϕ2

x1
)−1/2

)(
ϕx1 +

∂v10
∂τ

∂v10
∂n

)
σ,
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F̄2(θ1, θ2, σ) = F2(θ1, θ2, σ)− (1− k)
∂

∂τ

(
∂v10

∂n
(1 + ϕ2

x1
)−1/2

) ∂v10
∂τ

∂v10
∂n

σ.

Then conditions (2.59) and (2.60) can be rewritten as

∂θ1

∂n
− k

∂θ2

∂n
− (1− k)√

1 + ϕ2
x1

∂σ

∂τ

∂v10

∂τ
− (1− k)

∂

∂τ

(
∂v10

∂n
(1 + ϕ2

x1
)−1/2

) ∂v10
∂τ

∂v10
∂n

σ

= F̄2(θ1, θ2, σ) on ΓT , (2.63)

1√
1 + ϕ2

x1

∂σ

∂t
= −k1

∂θ1

∂n
+ k1

∂σ

∂τ

(
1√

1 + ϕ2
x1

∂v10

∂τ
+

ϕx1√
1 + ϕ2

x1

∂v10

∂n

)

+k1
∂

∂τ

(
∂v10

∂n
(1 + ϕ2

x1
)−1/2

) (
ϕx1 +

∂v10
∂τ

∂v10
∂n

)
σ + F̄1(θ1, σ) on ΓT . (2.64)

From (2.58), we get

∂σ

∂τ
=

k
√

1 + ϕ2
x1

(1− k)∂v10
∂n

(
∂θ1

∂τ
− ∂θ2

∂τ

)
−

√
1 + ϕ2

x1

∂v10
∂n

∂

∂τ

(
∂v10

∂n
(1 + ϕ2

x1
)−1/2

)
σ.

Substituting this expression for ∂σ
∂τ into (2.63) and (2.64), we get

∂θ1

∂n
− k

∂θ2

∂n
− k

∂v10
∂τ

∂v10
∂n

(
∂θ1

∂τ
− ∂θ2

∂τ

)
= F̄2(θ1, θ2, σ) on ΓT , (2.65)

1√
1 + ϕ2

x1

∂σ

∂t
= −k1

∂θ1

∂n
+

k2

1− k

(
ϕx1 +

∂v10
∂τ

∂v10
∂n

)(
∂θ1

∂τ
− ∂θ2

∂τ

)
+ F̄1(θ1, σ) on ΓT .

(2.66)

Now we can find the term k2
1−k

∂v10
∂τ

∂v10
∂n

(
∂θ1
∂τ − ∂θ2

∂τ

)
from (2.65) and substitute it into

condition (2.66). As a result, we have

1− k

k2

√
1 + ϕ2

x1

∂σ

∂t
=

∂θ1

∂n
− ∂θ2

∂n
+ ϕx1

(
∂θ1

∂τ
− ∂θ2

∂τ

)
+

1− k

k2
F̄1(θ1, σ)− F̄2

k
on ΓT .

Thus system (2.57)–(2.62) can be represented as

∂2θi

∂x2
1

+
∂2θi

∂x2
2

= F0i(θi, σ) in ΩiT , (2.67)

θ1(x, t)− θ2(x, t) =
1− k

k

1√
1 + ϕ2

x1

∂v10

∂n
σ on ΓT , (2.68)
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∂θ1

∂n
− k

∂θ2

∂n
− k

∂v10
∂τ

∂v10
∂n

(
∂θ1

∂τ
− ∂θ2

∂τ

)
= F̄2(θ1, θ2, σ) on ΓT , (2.69)

1− k

k2

√
1 + ϕ2

x1

∂σ

∂t
=

∂θ1

∂n
− ∂θ2

∂n
+ ϕx1

(
∂θ1

∂τ
− ∂θ2

∂τ

)
+

1− k

k2
F̄1(θ1, σ)− F̄2

k
on ΓT ,

(2.70)

θi(x, t) = 0 on ΓiT ,
∂θi

∂x1
|x1=0 = 0, (2.71)

σ(τ, 0) = 0,
∂σ(τ, t)

∂t
|t=0 = 0, θi(x, 0) = 0. (2.72)

R e m a r k 2.4. As it follows from Remarks 2.2 and 2.3, the functions
F0i(θi, σ), F̄1(θ1, σ) and F̄2(θ1, θ2, σ) in a vicinity of the angle point O contain
the higher derivatives of θi(x, t) and σ(x1, t) with coefficients that tend to zero
as t → 0, the ”quadratic” terms with respect to θi(x, t) and σ(x1, t), and their
derivatives, and the terms of minor differential orders of unknown functions.
Moreover, the same results are preserved outside the angle point O.

In the sequel we need a somewhat different form of system (2.67)–(2.72). It
deals with the view of condition (2.70) which can be modified if we look for σt

from condition (2.68) and after that substitute this term into (2.70). Thus, after
some simple calculations we have the system

∂2θi

∂x2
1

+
∂2θi

∂x2
2

= F0i(θi, σ) in ΩiT , (2.73)

θ1(x, t)− θ2(x, t) =
1− k

k

1√
1 + ϕ2

x1

∂v10

∂n
σ on ΓT , (2.74)

∂θ1

∂n
− k

∂θ2

∂n
− k

∂v10
∂τ

∂v10
∂n

(
∂θ1

∂τ
− ∂θ2

∂τ

)
= F̄2(θ1, θ2, σ) on ΓT , (2.75)

1
k1

∂v10
∂n

(
∂θ1

∂t
− ∂θ2

∂t

)
−

(
∂θ1

∂n
− ∂θ2

∂n

)
− ϕx1

(
∂θ1

∂τ
− ∂θ2

∂τ

)

=
1− k

k2
F̄1(θ1, σ)− F̄2

k
≡ ¯̄F1(θ1, θ2, σ) on ΓT , (2.76)

θi(x, t) = 0 on ΓiT ,
∂θi

∂x1
|x1=0 = 0, (2.77)

σ(τ, 0) = 0,
∂σ(τ, t)

∂t
|t=0 = 0, θi(x, 0) = 0. (2.78)
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3. Model Problems

As is known, to construct a model problem near the boundary by using the
Schauder method, it is necessary to fix the coefficients of the original problem at
the boundary point and, if necessary, straighten the boundary in some vicinity
of the fixed point.
3.1. A model problem near a corner point

Let now the fixed point be the angle point in problem (2.67)–(2.72). Denote

G1 = {(x1, x2) : x1 > 0,−∞ < x2 < x1 cot δ
2}, G1T = G1 × [0, T ],

G2 = {(x1, x2) : x1 > 0, x1 cot δ
2 < x2 < ∞}, G2T = G2 × [0, T ],

g = {(x1, x2) : x1 > 0, x2 = x1 cot δ
2}, gT = g × [0, T ].

After some evident transformations made to eliminate the unknown function
σ(ω, t) (see (2.73)–(2.78)), we obtain the model problem in a plane corner for the
functions u1(x, t), u2(x, t):

∂2ui

∂x2
1

+
∂2ui

∂x2
2

= 0 in GiT , ui(x, 0) = 0, i = 1, 2, (3.1)

r−1−γ

(
∂u1

∂t
− ∂u2

∂t

)
+

(
∂u1

∂n
− ∂u2

∂n

)
+ h

(
∂u1

∂r
− ∂u2

∂r

)
= f(r, t) on gT , (3.2)

∂u1

∂n
− k

∂u2

∂n
− kd1

(
∂u1

∂r
− ∂u2

∂r

)
= 0 on gT , (3.3)

∂u1

∂n
= 0 on {x1 = 0, x2 < 0} × [0, T ];

∂u2

∂n
= 0 on {x1 = 0, x2 > 0} × [0, T ],

(3.4)
where r =

√
x2

1 + x2
2, 0 < k < 1, h = cot δ

2 , δ ∈ (0, π), d1 = ∂v01/dr
∂v01/dn |x1=x2=0, and γ

is some positive number defined by (2.19). We took into account the asymptotic
behaviour of the function ∂v01

∂n as x → 0 in problem (2.17), ∂v01
∂n ∼ A3r

1+γ ,
A3 being a negative constant, and then assumed without loss of generality that
(−k1A3) = 1.

Note that problem (3.1)–(3.4) was studied in the recent paper [9] (see Section 3
there), where the one-valued solvability of this problem was proved under more
general assumption on the constants. In our case, we reformulate the results of
Theorems 3.1 and 3.2 and Remark 4.1 from[9] as:

Theorem 3.1. Let α ∈ (0, 1) and

f(x, t) ∈ E1+α,α,α
s−1 (ḡT ), f(x, t) = 0 if either t < 0 or |x| > R0

for some positive R0, and
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i)

s ∈
(

max{2 + 1/2,
b∗1

π−δ ,
a∗1

π−δ},
5π

2π − δ

)
if δ ∈ (0, π/5),

ii)

s ∈
(

max{ 2π
π−δ ,

b∗2
π−δ ,

a∗2
π−δ},

5π

2π − δ

)
if δ ∈ (π/5, π/4),

where the numbers b∗j and a∗j , j = 1, 2, are some positive constants depending on
k, h, d1, and δ. Then there exists a unique solution (u1, u2) of problem (3.1)–(3.4)
such that ui ∈ E2+α,α,α

s (ḠiT ) and the estimates hold

2∑

i=1

{‖ui‖E2+α,α,α
s (ḠiT )

+ ‖r−1−γ∂ui/∂t‖
E1+α,α,α

s−1 (ḡT )
} ≤ const ‖f‖

E1+α,α,α
s−1 (ḡT )

,

(3.5)
2∑

i=1

‖ui‖E1+α,α,α
s (ḠiT )

≤ constTα∗−α max{1, Rα∗γ
0 }‖f‖

E1+α,α,α
s−1 (ḡT )

, (3.6)

where α < α∗ < 1.

As it is shown in [9] (see Theorem 2.1 and Remark 4.1 there), the results
of Theorem 3.1 are preserved in the case of nonhomogeneous boundary value
problem corresponding to (3.1)–(3.4),

∂2ui

∂x2
1

+
∂2ui

∂x2
2

= f0i in GiT , ui(x, 0) = 0, i = 1, 2, (3.7)

r−1−γ

(
∂u1

∂t
− ∂u2

∂t

)
+

(
∂u1

∂n
− ∂u2

∂n

)
+ h

(
∂u1

∂r
− ∂u2

∂r

)
= f(r, t) on gT , (3.8)

∂u1

∂n
− k

∂u2

∂n
− kd1

(
∂u1

∂r
− ∂u2

∂r

)
= f1 on gT , (3.9)

∂u1

∂n
= 0 on {x1 = 0, x2 < 0} × [0, T ];

∂u2

∂n
= 0 on {x1 = 0, x2 > 0} × [0, T ].

(3.10)
For the sake of convenience, we reformulate this results as follows.

Theorem 3.2. Let s satisfy conditions i), ii) from Theorem 3.1, f0i ∈
Eα,α,α

s−2 (ḠiT ), i = 1, 2, f1, f ∈ E1+α,α,α
s−1 (ḡT ), and f0i, f1, f = 0 if either t ≤ 0

or |x| > R0, for some positive number R0. Then there exists a unique solution
ui ∈ E2+α,α,α

s (ḠiT ), i = 1, 2, of problem (3.7)–(3.10) and the estimate holds

2∑

i=1

‖ui‖E2+α,α,α
s (ḠiT )

+ ‖r−1−γ(∂u1/∂t− ∂u2/∂t)‖
E1+α,α,α

s−1 (ḡT )
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≤ const [
2∑

i=1

‖f0i‖Eα,α,α
s−2 (ḠiT ) + ‖f1‖E1+α,α,α

s−1 (ḡT )
+ ‖f‖

E1+α,α,α
s−1 (ḡT )

]. (3.11)

3.2. A model problem near a smooth part of the interface

We consider now the case when the fixed point x = x̃ is outward to the ε0-
vicinity of the corner point O. Then some evident transformations in the system
(M2) of equations (2.33)–(2.38) lead to the following problem in half-spaces. Let

R2
+ = {(x1, x2) : x1 ∈ R1, x2 > 0}, R2

+T = R2
+ × (0, T );

R2
− = {(x1, x2) : x1 ∈ R1, x2 < 0}, R2

−T = R2
− × (0, T );

R2
±T = R2

± × (0, T ); R1
T = R1 × (0, T ); a0 = −

(
k1

∂v01

∂n

)−1 ∣∣
x=x̃

.

We search a solution (u+(x1, x2, t), u−(x1, x2, t)) bounded at the infinity by the
conditions

∆xu± = f±0 in R2
±T ; u±(x1, x2, 0) = 0, x ∈ R2

±; (3.12)

a0

(
∂u−
∂t

− ∂u+

∂t

)
+

(
∂u−
∂n

− ∂u+

∂n

)
+ a1

(
∂u−
∂x1

− ∂u+

∂x1

)
= f1, (x, t) ∈ R1

T ;

(3.13)
∂u−
∂n

− k
∂u+

∂n
− ka2

(
∂u−
∂x1

− ∂u+

∂x1

)
= f2, (x, t) ∈ R1

T ; (3.14)

where ∆x is the Laplace operator with respect to (x1, x2); n is the normal to R1

directed in R2−; ai, i = 0, 1, 2, are some given constants, a1 ≥ 0; f±0 , fi, i = 1, 2,
are the given functions such that

f±0 , f1, f2 = 0, if either t ≤ 0 or |x| > R0, (3.15)

for some positive number R0. We suppose that condition (2.20) holds such that
a0 > 0. It can be checked that if x̃ is outward to the 2ε0-vicinity of the point O,
then ai ≡ 0, i = 1, 2.

For the case ai = 0, i = 1, 2, problem (3.12)–(3.14) was studied by F. Yi [30]
and the one-valued solvability of the problem was proved in the class C2+α

T (R2±) =
C([0, T ]; C2+α(R2±)), α ∈ (0, 1). Here we will prove the one-to-one solvability of
(3.12)–(3.14) in the class E2+α,α,α if ai 6= 0, i = 1, 2.

First of all, we study problem (3.12)–(3.14) in the special case

f±0 = f2 ≡ 0, (3.16)
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and construct the integral representation to the solution (u+(x1, x2, t), u−(x1, x2, t)).
We denote by ũ(λ, x2, t) the Fourier transformation of the function u(x1, x2, t),
and by û(·, ν) the Laplace transformation of u(·, t), and use the notation ” ∗ ” in-
stead of ” ̂̃ ”. By applying the Fourier and Laplace transformations to problem
(3.12)–(3.14), we get

∂2u∗±
∂x2

2

− λ2u∗± = 0, u∗±(λ, x2, 0) = 0; (3.17)

νa0[u∗−(λ, x2, ν)− u∗+(λ, x2, ν)]− ∂
∂x2

[u∗−(λ, x2, ν)− u∗+(λ, x2, ν)]

+ia1λ[u∗−(λ, x2, ν)− u∗+(λ, x2, ν)] = f∗1 (λ, ν) on x2 = 0; (3.18)

∂u∗−(λ,x2,ν)

∂x2
−k

∂u∗+(λ,x2,ν)

∂x2
+ika2λ[u∗−(λ, x2, ν)−u∗+(λ, x2, ν)] = 0 on x2 = 0. (3.19)

To satisfy equations in (3.17), we set

u∗−(λ, x2, ν) = M−(λ, ν)e|λ|x2 , u∗+(λ, x2, ν) = M+(λ, ν)e−|λ|x2 ;

and to find the unknown functions M−, M+, we have two transmission equations
(3.18) and (3.19). It is easy to show that

M−(λ, ν) = −k
|λ| − ia2λ

|λ|+ ika2λ
M+(λ, ν), and M+(λ, ν)

[
1 + k

|λ| − ia2λ

|λ|+ ika2λ

]

×

−νa0 − ia1λ− |λ|

1− k |λ|−ia2λ
|λ|+ika2λ

1 + k |λ|−ia2λ
|λ|+ika2λ


 = f∗1 (λ, ν).

Thus, after some simple calculations in the last equation, one can get

M+(λ, ν) =
1

Q(λ, ν)

1 + ika2
λ
|λ|

k + 1
f∗1 (λ, ν), (3.20)

M−(λ, ν) = − 1
Q(λ, ν)

k
(
1− ia2

λ
|λ|

)

k + 1
f∗1 (λ, ν), (3.21)

where

Q(λ, ν) = −νa0 +
k − 1
k + 1

|λ| − iλ

(
a1 +

2ka2

1 + k

)
. (3.22)

Note that if condition(2.20) holds, then −a0 < 0 and ReQ(λ, ν) < 0 in the case of
Re ν > 0 and Imλ = 0. Hence, the function 1

Q(λ,ν) does not have any singularities
in this case.
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Let

F ∗
+(λ, ν) = − f∗1 (λ, ν)

a0(k + 1)

(
1 + ika2

λ

|λ|
)

, F ∗
−(λ, ν) =

kf∗1 (λ, ν)
a0(k + 1)

(
1− ia2

λ

|λ|
)

,

Q1(λ, ν) = ν + A1|λ|+ iA2λ, (3.23)

where A1 = 1−k
a0(k+1) and A2 = 1

a0

(
a1 + 2ka2

1+k

)
. Then the functions M+ and M−

can be rewritten as

M+(λ, ν) =
F ∗

+(λ, ν)
Q1(λ, ν)

, M−(λ, ν) =
F ∗−(λ, ν)
Q1(λ, ν)

;

and the solution (u∗+, u∗−) is

u∗+(λ, x2, ν) =
F ∗

+(λ, ν)
Q1(λ, ν)

e−|λ|x2 , u∗−(λ, x2, ν) =
F ∗−(λ, ν)
Q1(λ, ν)

e|λ|x2 . (3.24)

Thus, after the inverse Laplace and Fourier transformations, the solution (u∗−, u∗+)
gets the form

u±(x1, x2, t) =

t∫

0

dτ

+∞∫

−∞
F±(x1 − ξ, t− τ)K±(ξ, x2, τ)dξ, (3.25)

where K±(x1, x2, t) are the inverse Fourier and Laplace transformations of the
function e±|λ|x2

Q1(λ,ν) . Introduce the notation

K+(x1, 0, t) = K−(x1, 0, t) := K(x1, t). (3.26)

As for the functions F±(x1, t), they are the inverse Fourier and Laplace trans-
formations of F ∗±(λ, ν). The results of Privalov’s theorem for the singular integral
(see, e.g., Theorem 15.3 in [11] or Theorem 3.1.1 in [10]) together with the prop-
erties of the function f1(x1, t) give the following:

‖F±‖E1+α,α,α(R1
T )
≤ const ‖f1‖E1+α,α,α(R1

T )
. (3.27)

To estimate the functions u±(x1, x2, t), we need the following properties of the
kernel K(x1, t).

Lemma 3.1. Let α ∈ (0, 1), t ∈ [0, T ], ∆x = x̄1 − x1 for every x̄1, x1 ∈ R1,
then the following holds:

i)

K(x1, t) =
2

A1t

(
1 +

[
x1−A2t

A1t

]2
) , K(x1, t) > 0; (3.28)
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ii)
t∫

0

dτ

+∞∫

−∞

∂lK(y, τ)
∂yl

dy =
{

2πt, l = 0;
0, l > 0;

(3.29)

iii)

I1 :=

t∫

0

dτ

+∞∫

−∞
|y|α

∣∣∣∣
∂K(y, τ)

∂y

∣∣∣∣ dy ≤ const tα; (3.30)

iv)

I2 :=

t∫

0

dτ

∫

|y−A2τ |<2|∆x|

|y|α
∣∣∣∣
∂K(y, τ)

∂y

∣∣∣∣ dy ≤ const |∆x|α; (3.31)

v)

I3 := |∆x|
t∫

0

dτ

∫

|y−A2τ |>2|∆x|

|y|α
∣∣∣∣
∂2K(y, τ)

∂y2

∣∣∣∣ dy ≤ const |∆x|α. (3.32)

The proof of this lemma is technically tedious and we place it in Appendix.

R e m a r k 3.1. By using the method of the proof of Lemma 3.1, it is not
difficult to get analogous results for the function K±(x1, x2, t).

Thus the standard arguments of Chapter 4 [22], together with Lemma 3.1,
Remark 3.1 and estimate (3.27), after routine calculations lead to the inequalities

‖u±‖E2+α,α,α(R2
±T )

+ ‖∂u±
∂t ‖E1+α,α,α(R1

T )
≤ const ‖f1‖E1+α,α,α(R1

T )
,

‖u±‖E1+α,α,α(R2
+T )

≤ constTα∗−α‖f1‖E1+α,α,α(R1
T )

, (3.33)

where 0 < α < α∗ ≤ 1. Note that in the case of f±0 = f2 = 0, the uniqueness
of the solution (u−(x, t), u+(x, t)) to problem (3.12)–(3.14) follows immediately
from the first inequality in (3.33). Therefore, in the case of (3.16), the one-valued
solvability of problem (3.12)–(3.13) was proved and the corresponding coercive
estimates were obtained. To extend these results to the general case, i.e., f±0 6= 0,
f2 6= 0, we look for the solution of problem (3.12)–(3.13) in the form

u±(x, t) = ū±(x, t) + ¯̄u±(x, t),
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where ū±(x, t) is the solution of the transmission problem

∆ū± = f±0 in R2
±T , ū±(x, 0) = 0, x ∈ R2

±;

ū+ = ū−,
∂ū−
∂n

− k
∂ū+

∂n
= f2, (x, t) ∈ R1

T , (3.34)

and ¯̄u±(x, t) is the solution of problem (3.12)–(3.13) in the case (3.16) with a new
right-hand side f1.

As for ū±(x, t), we apply the well-known results from [27] which give

‖ū±‖C2+α(R2
±T )

≤ const [‖f±0 ‖Cα(R2
±T )

+ ‖f2‖C1+α(R1
T )

]. (3.35)

The corresponding smoothness of the functions ū±(x, t) with respect to t is ob-
tained if one considers problem (3.34) for the functions U± = ū±(x, t1)− ū±(x, t2)
with new right-hand sides: f̄±0 = f±0 (x, t1)− f±0 (x, t2); f̄2 = f2(x, t1)− f2(x, t2).
Inequality (3.35) in the case of functions U± together with the properties of the
functions f±0 , f2 lead to the estimate

‖ū±‖E2+α,α,α(R2
±T )

≤ const [‖f±0 ‖Cα,α,α(R2
±T )

+ ‖f2‖C1+α,α,α(R1
T )

]. (3.36)

Moreover, as it follows from the third condition in (3.34),

∂ū−
∂t

− ∂ū+

∂t
= 0 if (x, t) ∈ R1

T . (3.37)

Thus, the all written above proves the following results.

Theorem 3.3. Let α ∈ (0, 1), f±0 ∈ Eα,α,α(R2
±T ), fi ∈ E1+α,α,α(R1

T ), i =
1, 2, and condition (3.15) hold. Then there exists a unique solution u±(x, t) ∈
E2+α,α,α(R2

±T ) of problem (3.12)–(3.14), and the estimate is true

‖u+‖E2+α,α,α(R2
+T )

+ ‖u−‖E2+α,α,α(R2
−T )

+ ‖∂u−
∂t − ∂u+

∂t ‖E1+α,α,α(R1
T )

≤ c[‖f+
0 ‖Cα,α,α(R2

+T )
+ ‖f−0 ‖Cα,α,α(R2

−T )
+ ‖f1‖E1+α,α,α(R1

T )
+ ‖f2‖C1+α,α,α(R1

T )
],

(3.38)
where c is a positive constant which is independent of the right-hand sides in
(3.12)–(3.14).

Moreover, if in addition condition (3.16) holds, then inequities (3.33) take
place.
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4. The Linear Problem

As it follows from (2.33)–(2.38), the linear system corresponding to nonlinear
system (2.39), where the right-hand sides are some fixed functions, has the form

∂2θi

∂x2
1

+
∂2θi

∂x2
2

= f0i(x, t) in ΩiT , (4.1)

θ1(x, t)− θ2(x, t) = A(x)σ on ΓT , (4.2)

∂σ

∂t
= −k1a(x)

∂θ1

∂n
− k1A1(x)

(
∂θ1

∂ω
− ∂θ2

∂ω

)
+ f1(x, t) on ΓT , (4.3)

∂θ1

∂n
− k

∂θ2

∂n
+ A2(x)

(
∂θ1

∂ω
− ∂θ2

∂ω

)
= f2(x, t) on ΓT , (4.4)

∂θi

∂x1
|x1=0 = 0, θi(x, t) = 0 on ΓiT , (4.5)

σ(ω, 0) = 0, θi(x, 0) = 0. (4.6)

Here f0i(x, t), fi(x, t), a(x), A(x), A1(x), A2(x) are some given functions A(x) < 0,
and

f0i(x, 0) = 0, x ∈ Ωi, i = 1, 2, fj(x, 0) = 0, x ∈ Γ, j = 1, 2. (4.7)

In the 2ε0-vicinity of the corner point O, the coefficients a(x), A(x), A1(x), A2(x)
can be represented as (see (2.65), (2.66) and (2.68))

A(x) =
1− k

k

1√
1 + ϕ2

x1

∂v10

∂n
, A1(x) =

k2

k − 1

√
1 + ϕ2

x1

[
∂v10
∂ω

∂v10
∂n

+ ϕx1

]
,

a(x) =
√

1 + ϕ2
x1

, A2(x) = −k
∂v10
∂ω

∂v10
∂n

, (4.8)

where (see (2.18)) if x → O

∂v10

∂n
|ΓT

∼ A3r
1+γ ,

∂v10

∂ω
|ΓT

∼ A4r
1+γ , (4.9)

where γ is given in (2.19), A3 and A4 are nonzero constants, A3 < 0. As it follows
from (2.18),

a(x), Ai(x) ∈ C2+α(Γ̄), i = 1, 2, and A(x) ∈ E2+α
1+γ (Γ̄). (4.10)

We introduce the functional spaces HD and HR (such that z ∈ HD, F̄(z)∈HR),

HD = E2+α,α,α
s (Ω̄1T )× E2+α,α,α

s (Ω̄2T )×N2+α
s,γ (Γ̄T ),
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HR = Eα,α,α
s−2 (Ω̄1T )× Eα,α,α

s−2 (Ω̄2T )× E1+α,α,α
s−1 (Γ̄T )× E1+α,α,α

s−1 (Γ̄T ),

and

‖z‖HD
= ‖(θ1, θ2, σ)‖HD

= ‖θ1‖E2+α,α,α
s (Ω̄1T )

+ ‖θ2‖E2+α,α,α
s (Ω̄2T )

+ ‖σ‖N2+α
s,γ (Γ̄T ),

‖F̄(z)‖HR
= ‖(f01, f02, f1, f2)‖HR

= ‖f01‖Eα,α,α
s−2 (Ω̄1T ) + ‖f02‖Eα,α,α

s−2 (Ω̄2T )

+‖f1‖E1+α,α,α
s−1 (Γ̄T )

+ ‖f2‖E1+α,α,α
s−1 (Γ̄T )

.

Theorem 4.1. Let (f01, f02, f1, f2) ∈ HR with α ∈ (0, 1/2) and s satisfy
conditions i), ii) from Theorem 2.1, conditions (2.20) and (4.7)–(4.10) hold.
Then for some T there exists a unique solution (θ1, θ2, σ) ∈ HD to problem (4.1)–
(4.6) for t ∈ [0, T ], and

‖(θ1, θ2, σ)‖HD
≤ const ‖(f01, f02, f1, f2)‖HR

(4.11)

with the constant independent of the functions f01, f02, f1, f2.

For the sake of simplicity, we represent the proof of Theorem 4.1 in the case
of Γ = Γ(0) described by the equation x2 = x1 tanβ in the 2ε0-vicinity of the
corner point O. This theorem in general case (x2 = ϕ(x1)) is proved in the same
way and with the arguments and transformations taken from [5] and [29].

Using the results from [8], we can reduce problem (4.1)–(4.6) to the similar
one with f01 = f02 = f2 = 0 and a new function f1(x, t) ∈ E1+α,α,α

s−1 (Γ̄T ). Indeed,
let

θi(x, t) = θ̄i(x, t) + ¯̄θi(x, t), (4.12)

where (¯̄θ1(x, t), ¯̄θ2(x, t)) is the solution of the problem

∂2 ¯̄θi

∂x2
1

+
∂2 ¯̄θi

∂x2
2

= f0i(x, t) in ΩiT ,

¯̄θ1(x, t)− ¯̄θ2(x, t) = 0,
∂ ¯̄θ1

∂n
− k

∂ ¯̄θ2

∂n
= f2(x, t) on ΓT ,

∂ ¯̄θi

∂x1
|x1=0 = 0, ¯̄θi(x, t) = 0 on ΓiT , ¯̄θi(x, 0) = 0. (4.13)

Transmission problem (4.13), as follows from Theorem 1.1 and Remark 3.1 [8],
has a unique solution ¯̄θi(x, t) ∈ E2+α

s (Ω̄iT ), i = 1, 2, and

‖ ¯̄θ1‖E2+α
s (Ω̄1T ) + ‖ ¯̄θ2‖E2+α

s (Ω̄2T ) ≤ const (‖f01‖Eα
s−2(Ω̄1T )

+‖f02‖Eα
s−2(Ω̄2T ) + ‖f2‖E1+α

s−1 (Γ̄T )), (4.14)
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where s satisfies the conditions from Theorem 4.1.
As for the estimates of ¯̄θi, i = 1, 2, with respect to t, they are a simple

consequence of (4.14) if we consider problem (4.13) for the functions [¯̄θi(x, t1)−
¯̄θi(x, t2)], i = 1, 2, and use the properties of the right-hand side. Thus we have

‖ ¯̄θ1‖E2+α,α,α
s (Ω̄1T )

+ ‖ ¯̄θ2‖E2+α,α,α
s (Ω̄2T )

≤ const (‖f01‖Eα,α,α
s−2 (Ω̄1T )

+‖f02‖Eα,α,α
s−2 (Ω̄2T ) + ‖f2‖E1+α,α,α

s−1 (Γ̄T )
). (4.15)

For the functions θ̄i(x, t), i = 1, 2, we get

∂2θ̄i

∂x2
1

+
∂2θ̄i

∂x2
2

= 0 in ΩiT , (4.16)

θ̄1(x, t)− θ̄2(x, t)−A(x)σ = 0 on ΓT , (4.17)

∂σ

∂t
+ k1a(x)

∂θ̄1

∂n
+ k1A1(x)

(
∂θ̄1

∂ω
− ∂θ̄2

∂ω

)

= f1(x, t)− k1a(x)
∂ ¯̄θ1

∂n
≡ f̄1(x, t) on ΓT , (4.18)

∂θ̄1

∂n
− k

∂θ̄2

∂n
+ A2(x)

(
∂θ̄1

∂ω
− ∂θ̄2

∂ω

)
= 0 on ΓT , (4.19)

∂θ̄i

∂x1
|x1=0 = 0, θ̄i(x, t) = 0 on ΓiT , (4.20)

σ(ω, 0) = 0, θ̄i(x, 0) = 0. (4.21)

Note that due to (4.15) and the properties of the function f1(x, t), the function
f̄1(x, t) belongs to E1+α,α,α

s−1 (Γ̄T ) and f̄1(x, 0) = 0.
Therefore it is enough to prove Theorem 4.1 for problem (4.16)–(4.21). This

proof consists of two parts. The first of them is a solvability of problem (4.16)–
(4.21) which is done with the technique of the regularizer for parabolic systems
taken from [22]. As for the uniqueness of the solutions (the second part of the
proof of this theorem), it is deduced by the corresponding a priori estimates.

To show the solvability of system (4.16)–(4.21), we reduce one, similarly to
[24] or [21], to the nonlocal equation

Lσ = f̄1 on ΓT , σ|t=0 = 0 on Γ. (4.22)

The operator L is constructed in the next way. Let σ be given in equation (4.17).
Then equations (4.16), (4.17), (4.19)–(4.21) formulate the transmission problem
for the functions θ1 and θ2. The solution of this transmission problem can be
used in equation (4.18). Thus, Lσ is given by the left-hand side of (4.18).
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A nonlocal character of system (4.22) causes the difficulties requiring technical
tricks related to a suitable localization. As well as in Chapter 4 from [22] or
Section 2 from [24], or Section 4 from [21], we introduce the two collections of
open sets: {ωm

i } and {Ωm
i }, i = 1, 2, such that

ω̄m
i ⊂ Ωm

i ⊂ Ω̄i, ∪mωm
i = ∪mΩm

i = Ω̄i,

ωm
i = Bλ/2(x

m) ∩ Ω̄i; Ωm
i = Bλ(xm) ∩ Ω̄i

with m = 1, . . . , N0 and Bλ(xm), Bλ/2(xm) being the balls with the center in
xm and the radiuses of λ and λ/2, respectively. Denote Γm = Γ ∩ Bλ(xm) and
Γm

i = Γi ∩Bλ(xm), i = 1, 2. The index m belongs to one of two sets:

m ∈ M if Ω̄m
i ∩ Γ = ∅ and m ∈ N if ω̄m

i ∩ Γ 6= ∅.
We say that m ∈ N1 if m belongs to N and Γm∩Bε0(0) 6= ∅ (Bε0(0) is the ball with
the center in O and the ε0 radius), and N2 = N\N1. Moreover, N2 = N21 ∪N22,
where m ∈ N21 if m ∈ N2 and Γm ∩ B2ε0(0) 6= ∅ (B2ε0(0) is the ball with the
center in O and the 2ε0 radius).

The coverings {ωm
i } and {Ωm

i }, i = 1, 2, define a partition of unity for the
domains Ωi. Let ξm

i : Ωi → [0, 1], i = 1, 2, be a smooth function such that

ξm
i = 1, if x ∈ ωm

i , ξm
i = 0, if x ∈ Ωi\Ωm

i , ξm
i ∈ (0, 1), if x ∈ Ωm

i \ωm
i ,

and |∇|l|ξm
i | ≤ constλ−|l|, 1 ≤ ∑

m
(ξm

i )2 ≤ M0. By using the functions ξm
i , we

define the function
ηm

i =
ξm
i∑

j
(ξj

i )2
.

By the properties of the functions ξm
i , the functions ηm

i vanish for x ∈ Ωi\Ωm
i ; in

addition, |∇|l|ηm
i | ≤ constλ−|l|.

The functions ηm
i ξm

i define the partition of unity by the formula
∑
m

ηm
i ξm

i = 1, i = 1, 2.

Note that if m ∈ N , we can choose the same functions ξm for both i = 1 and
i = 2, and thus ηm

1 = ηm
2 ≡ ηm, m ∈ N .

For each m ∈ N, we pick out one point xm ∈ ωm
i ∩ Γ which will be the origin

of the local coordinate system. The description of this system can be found in
Chapter 4 [22], Section 2 [24].

We introduce local coordinate systems connected with each point xm, m ∈ N2.
Let the curve Γ be described with y2 = Ψm(y1) in a small vicinity of every point
xm, m ∈ N2, and

y = B(m)(x− xm), |Ψm(y1)| ≤ constλ, (4.23)
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where B(m) = (B(m)
ij )i,j=1,2 is an orthogonal matrix. After that the local ”flat-

ness” of the boundary is made with the change of variables

z1 = y1, z2 = y2 −Ψm(y1), m ∈ N22; z1 = y1, z2 = y2, m ∈ N21. (4.24)

Thus, the variables (x1, x2) are connected with (z1, z2) by the maps Zm (see
(4.23), (4.24)) such that

x = Zm(z), and z = Z−1
m (x), m ∈ N2.

Definition 4.1. An operator

R : E1+α,α,α
s−1 (Γ̄T ) → N2+α

s,γ (Γ̄T )

such that
Rf̄1 =

∑

m∈N

ηmsm (4.25)

is called a regularizer where sm is a solution of the following problems: if m ∈ N1,
then

∂2w̄m
i

∂x2
1

+
∂2w̄m

i

∂x2
2

= 0 in GiT ,

w̄m
1 (x, t)− w̄m

2 (x, t)−Amsm = 0 on gT ,

∂sm

∂t
+ k1a

m ∂w̄m
1

∂n
+ k1A

m
1

(
∂w̄m

1

∂ω
− ∂w̄m

2

∂ω

)
= f̄m

1 (x, t) on gT ,

∂w̄m
1

∂n
− k

∂w̄m
2

∂n
+ Am

2

(
∂w̄m

1

∂ω
− ∂w̄m

2

∂ω

)
= 0 on gT ,

∂w̄m
1

∂n
= 0 on {x1 = 0, x2 < 0} × [0, T ];

∂w̄m
2

∂n
= 0 on {x1 = 0, x2 > 0} × [0, T ],

sm(ω, 0) = 0, w̄m
i (x, 0) = 0, (4.26)

where GiT and gT are defined in Subsection 3.1;
if m ∈ N2, then sm(ω(x), t) := ŝm(ω̂(Z−1

m (x)), t) and

∂2ŵm
i

∂z2
1

+
∂2ŵm

i

∂z2
2

= 0 in R2
±T ,

ŵm
1 (z, t)− ŵm

2 (z, t)−Amŝm = 0 on R1
T ,

∂ŝm

∂t
+ k1a

m ∂ŵm
1

∂n̂
+ k1A

m
1

(
∂ŵm

1

∂ω̂
− ∂ŵm

2

∂ω̂

)
= f̂m

1 (z, t) on R1
T ,

30 Journal of Mathematical Physics, Analysis, Geometry, 2014, vol. 10, No. 1



The Two-Phase Hele–Shaw Problem

∂ŵm
1

∂n̂
− k

∂ŵm
2

∂n̂
+ Am

2

(
∂ŵm

1

∂ω̂
− ∂ŵm

2

∂ω̂

)
= 0 on R1

T ,

ŝm(ω, 0) = 0, ŵm
i (z, 0) = 0, (4.27)

where ω̂ := ω̂(z) and n̂ := n̂(z) are the unit vectors with the coordinates {1, 0}
and {0,−1}, respectively, in the plane R2, i.e., ∂

∂n̂ = − ∂
∂z2

and ∂
∂ω̂ = ∂

∂z1
. Here

f̄m
1 = f̄1ξ

m, f̂m
1 (z, t) = f̄m

1 (Zm(z), t), am = a(xm), Am
i = Ai(xm), i = 1, 2;

Am = A(xm) ≤ 0, if m ∈ N2, and for m ∈ N1 Am = r1+γÃm,

Ãm =
1− k

k

1√
1 + ϕ2

x1
(xm)

A3, (4.28)

where A3 is a negative constant from (4.9).

Note that after simple transformations similar to those from Subsection 2.4
(see (2.65)–(2.78)), the results of Section 3 are applied to the solutions of problems
(4.26) and (4.27).

The operator R enables to construct an inverse operator to L by the methods
used in Section 4 [21]. First, we need the following result.

Lemma 4.1. Let the conditions of Theorem 4.1 hold, and F̄(z) = (0, 0, f̄1, 0),
f̄1(x, t) ∈ E1+α,α,α

s−1 (Γ̄T ), f̄1(x, 0) = 0. Then

LRf̄1 = f̄1 + T f̄1, (4.29)

and the norm of the operator T is small and controlled by a quantity C(λ, T ). If
the time interval and λ tend to zero, then C(λ, T ) vanishes.

P r o o f. We will use below the notation w̄m
i (x, t) := ŵm

i (Z−1
m (x), t),

n := n̂(Z−1
m (x)), ω := ω̂(Z−1

m (x)) m ∈ N2.
Let us introduce the auxiliary functions

vi
f̄1

=
∑

m∈N

ηmw̄m
i , i = 1, 2, (4.30)

which are the solution of the transmission problem

∆xvi
f̄1

=
∑

m∈N

[2∇xηm∇xw̄m
i + w̄m

i ∆xηm] +
∑

m∈N22

ηm∆xw̄m
i (x) ≡ g0i in ΩiT ,

(4.31)
v1
f̄1
− v2

f̄1
=

∑

m∈N

Amsmηm =
∑

m∈N

[Am −A(x)]smηm + A(x)
∑

m∈N

smηm
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=
∑

m∈N

[Am −A(x)]smηm + A(x)Rf̄1 ≡ g1 on ΓT , (4.32)

∂v1
f̄1

∂n
− k

∂v2
f̄1

∂n
= −

∑

m∈N

Am
2

[
∂w̄m

1

∂ω
− ∂w̄m

2

∂ω

]
ηm +

∑

m∈N

[w̄m
1 − kw̄m

2 ]
∂ηm

∂n

= −A2(x)
∑

m∈N

[
∂w̄m

1

∂ω
− ∂w̄m

2

∂ω

]
ηm +

∑

m∈N

[A2(x)−Am
2 ]

[
∂w̄m

1

∂ω
− ∂w̄m

2

∂ω

]
ηm

+
∑

m∈N

[w̄m
1 − kw̄m

2 ]
∂ηm

∂n
≡ g2 on ΓT , (4.33)

vi
f̄1

= 0 on ΓiT , vi
f̄1

(x, 0) = 0. (4.34)

As for solvability of problem (4.31)–(4.34), we can apply the results of Theo-
rem 1.1 and Remark 3.1 from [8] to obtain the existence of the unique solution
(v1

f̄1
, v2

f̄1
),

2∑

i=1

‖vi
f̄1
‖E2+α

s (Ω̄iT ) ≤ const [
2∑

i=1

‖g0i‖Eα
s−2(Ω̄iT ) + ‖g1‖E2+α

s (Γ̄T ) + ‖g2‖E1+α
s−1 (Γ̄T )].

To estimate the functions vi
f̄1

, i = 1, 2, with respect to t, we consider system
(4.30)–(4.34) for the difference [vi

f̄1
(x, t1)−vi

f̄1
(x, t2)] with the corresponding right-

hand side and obtain

2∑

i=1

‖vi
f̄1
‖

E2+α,α,α
s (Ω̄iT )

≤ const [
2∑

i=1

‖g0i‖Eα,α,α
s−2 (Ω̄iT )

+‖g1‖E2+α,α,α
s (Γ̄T )

+ ‖g2‖E1+α,α,α
s−1 (Γ̄T )

]. (4.35)

Now we study the action of the operator L onto Rf̄1:

LRf̄1 =
∂Rf̄1

∂t
+ k1a(x)

∂θ̄1

∂n
+ k1A1(x)

[
∂θ̄1

∂ω
− ∂θ̄2

∂ω

]

=
∑

m∈N

ηm ∂sm

∂t
+ k1a(x)

∂θ̄1

∂n
+ k1A1(x)

[
∂θ̄1

∂ω
− ∂θ̄2

∂ω

]
. (4.36)

Next, making use of the third conditions in (4.26) and (4.27), we have

∑

m∈N

ηm ∂sm

∂t
=

∑

m∈N1

ηmf̄m
1 (x, t)− k1

∑

m∈N1

Am
1

[
∂w̄m

1

∂ω
− ∂w̄m

2

∂ω

]
ηm
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−k1

∑

m∈N1

amηm ∂w̄m
1

∂n
− k1

∑

m∈N2

Am
1

[
∂ŵm

1 (z, t)
∂ω̂

− ∂ŵm
2 (z, t)
∂ω̂

]
|z=Z−1

m (x)η
m

+
∑

m∈N2

ηmf̂m
1 (Z−1

m (x), t)− k1

∑

m∈N2

amηm ∂ŵm
1 (z, t)
∂n̂

|z=Z−1
m (x) = f̄1

−k1

∑

m∈N1

Am
1

[
∂w̄m

1

∂ω
− ∂w̄m

2

∂ω

]
ηm − k1

∑

m∈N1

amηm ∂w̄m
1

∂n
− k1

∑

m∈N2

amηm

×∂ŵm
1 (z, t)
∂n̂

|z=Z−1
m (x) − k1

∑

m∈N2

Am
1

[
∂ŵm

1 (z, t)
∂ω̂

− ∂ŵm
2 (z, t)
∂ω̂

]
|z=Z−1

m (x)η
m.

We substitute the value of
∑

m∈N

ηm ∂sm

∂t into (4.36) and get

LRf̄1 = f̄1 + k1a(x)

[
∂θ̄1

∂n
−

∂v1
f̄1

∂n

]
+ k1A1(x)

[
∂θ̄1

∂ω
−

∂v1
f̄1

∂ω

]

+k1a(x)
∑

m∈N

w̄m
1

∂ηm

∂n
− k1A1(x)

[
∂θ̄2

∂ω
−

∂v2
f̄1

∂ω

]
+ k1A1(x)

∑

m∈N

[w̄m
1 − w̄m

2 ]
∂ηm

∂ω

+k1

∑

m∈N

[A1(x)−Am
1 ]

[
∂w̄m

1

∂ω
− ∂w̄m

2

∂ω

]
ηm+k1

∑

m∈N

[a(x)−am]
∂w̄m

1

∂n
ηm+k1

∑

m∈N2

Am
1

×ηm

[
∂w̄m

1 (x, t)
∂ω

− ∂w̄m
2 (x, t)
∂ω

− ∂ŵm
1 (z, t)
∂ω̂

|z=Z−1
m (x) +

∂ŵm
2 (z, t)
∂ω̂

|z=Z−1
m (x)

]

+k1

∑

m∈N2

amηm

[
∂w̄m

1 (x, t)
∂n

− ∂ŵm
1 (z, t)
∂n̂

|z=Z−1
m (x)

]
. (4.37)

To evaluate the right-hand side of (4.37), we describe the properties of the func-
tions (θ̄i − vi

f̄1
), i = 1, 2.

Let
Ui(x, t) := θ̄i − vi

f̄1
, (x, t) ∈ Ω̄iT .

Then the simple calculations give (if one takes into account (4.16)–(4.21) and
(4.31)–(4.33); and puts σ =

∑
m∈N

ηmsm in (4.17) as we consider LRf̄1 now)

∆xUi = −g0i(x, t) in ΩiT , (4.38)

U1 − U2 =
∑

m∈N

[A(x)−Am]smηm ≡ ḡ1(x, t) on ΓT , (4.39)
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∂U1

∂n
− k

∂U2

∂n
= A2(x)

[
∂U1

∂ω
− ∂U2

∂ω

]
−A2(x)

∑

m∈N

[w̄m
1 − w̄m

2 ]
∂ηm

∂ω

−
∑

m∈N

[w̄m
1 − kw̄m

2 ]
∂ηm

∂n
+

∑

m∈N

ηm[A2(x)−Am
2 ]

[
∂w̄m

1

∂ω
− ∂w̄m

2

∂ω

]

= A2(x)
∂ḡ1

∂ω
−A2(x)

∑

m∈N

[w̄m
1 − w̄m

2 ]
∂ηm

∂ω
−

∑

m∈N

[w̄m
1 − kw̄m

2 ]
∂ηm

∂n

+
∑

m∈N

ηm[A2(x)−Am
2 ]

[
∂w̄m

1

∂ω
− ∂w̄m

2

∂ω

]
≡ ḡ2(x, t) on ΓT , (4.40)

Ui = 0 on ΓiT , Ui(x, 0) = 0. (4.41)

The one-valued solvability of transmission problem (4.38)–(4.41) and the es-
timates of the solution follow from the results of Theorem 1.1 and Remark 3.1
[8],

2∑

i=1

‖Ui‖E2+α,α,α
s (Ω̄iT )

≤ const [
2∑

i=1

‖g0i‖Eα,α,α
s−2 (Ω̄iT )

+‖ḡ1‖E2+α,α,α
s (Γ̄T )

+ ‖ḡ2‖E1+α,α,α
s−1 (Γ̄T )

]. (4.42)

As for the estimate of the right-hand side of (4.42), we have got

2∑

i=1

‖g0i‖Eα,α,α
s−2 (Ω̄iT )+‖ḡ1‖E2+α,α,α

s (Γ̄T )
+‖ḡ2‖E1+α,α,α

s−1 (Γ̄T )
≤ C(T, λ)‖f̄1‖E1+α,α,α

s−1 (Γ̄T )

(4.43)
with 0 < C(T, λ) << 1 as λ → 0.

The proof of (4.43) is based on tedious calculations by using the results of
Theorems 3.1, 3.3 and the properties (4.8)–(4.10) of the functions a(x), A(x),
Ai(x), i = 1, 2.

Here we prove (4.43) only in the case of ‖g0i‖Eα,α,α
s−2 (Ω̄iT ), the rest terms are

estimated in a similar way. Note that we use essentially inequalities (39)–(43)
from Section 5 [3] and their weighted variants and the results of Theorems 3.1
and 3.2. In these inequalities the minor semi-norms of a function were estimated
with the major ones with small coefficients. For example, if a function W (x, t)
vanishes as t = 0, then

〈W 〉(α)
x,s,ΩT

≤ Tα[W ](α,α)
s,ΩT

, t ∈ [0, T ]. (4.44)

It is easy to check that

‖g0i‖Eα,α,α
s−2 (Ω̄iT ) ≤ const ( sup

m∈N
[‖∇ηm∇w̄m

i ‖Eα,α,α
s−2 (Ω̄m

iT ) + ‖w̄m
i ∆ηm‖Eα,α,α

s−2 (Ω̄m
iT )]
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+ sup
m∈N22

‖ηm∆w̄m
i ‖Eα,α,α

s−2 (Ω̄m
iT )), (4.45)

sup
Ω̄m

iT

r−s+2|w̄m
i ||∆ηm| ≤ const

Tα

λ2
〈w̄m

i 〉(α)

t,s,Ω̄m
iT

≤ constλ−2Tα∗‖f̄m
1 ‖E1+α,α,α

s−1 (Γ̄m
T )

, (4.46)

〈w̄m
i ∆ηm〉(α)

x,s−2,Ω̄m
iT
≤ const (Tαλ−2−α〈w̄m

i 〉(α)

t,s,Ω̄m
iT

+ Tαλ−1−α〈Dxw̄m
i 〉(α)

t,s−1,Ω̄m
iT

)

≤ constTα∗(λ−2−α + λ−1−α)‖f̄m
1 ‖E1+α,α,α

s−1 (Γ̄m
T )

, (4.47)

〈w̄m
i ∆ηm〉(α)

t,s−2,Ω̄m
iT
≤ constλ−2Tα∗−α‖f̄m

1 ‖E1+α,α,α
s−1 (Γ̄m

T )
, (4.48)

and at last

[w̄m
i ∆ηm](α,α)

s−2,Ω̄m
iT
≤ const (Tα∗−αλ−2−α + Tα∗λ−1−α)‖f̄m

1 ‖E1+α,α,α
s−1 (Γ̄m

T )
, (4.49)

where α < α∗ < 1 as before. Moreover, the simple calculations lead to

‖f̄m
1 ‖E1+α,α,α

s−1 (Γ̄m
T )
≤ const (1 + λα−1 + λ−2α + λ1−3α)‖f̄1‖E1+α,α,α

s−1 (Γ̄T )
. (4.50)

Thus, we can conclude from inequalities (4.46)–(4.50) that

sup
m∈N

‖w̄m
i ∆ηm‖Eα,α,α

s−2 (Ω̄m
iT ) ≤ const

Tα∗−α

λ3+α
(1 + λTα)(λ + λα + λ1−2α + λ2−3α)

×‖f̄1‖E1+α,α,α
s−1 (Γ̄T )

≡ C1(λ, T )‖f̄1‖E1+α,α,α
s−1 (Γ̄T )

. (4.51)

If we chose the value T such that

Tα∗−αλ−3−α = ν << 1, (4.52)

then due to 0 < α < 1/2,

C1(λ, T ) = ν(1 + ν
α

α∗−α λ
α(3+α)
α∗−α )(λ + λα + λ1−2α + λ2−3α) << 1 (4.53)

if λ vanishes. The term sup
m∈N

‖∇ηm ∇w̄m
i ‖Eα,α,α

s−2 (Ω̄m
iT ) is estimated in the same way.

Following the arguments from Chapter 4 [22], we can deduce that the ”worst”
term in sup

m∈N22

‖ηm ∆xw̄m
i ‖Eα,α,α

s−2 (Ω̄m
iT ) is

sup
m∈N22

∥∥∥∥∥
[

∂2ŵm
i

∂z1∂z2
Ψm

z1
(z1)

]

z=Z−1
m (x)

ηm

∥∥∥∥∥
Eα,α,α

s−2 (Ω̄m
iT )

, m ∈ N22
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(the other terms are evaluated either with the arguments below or with the
simpler reasonings).

Note that, as it follows from the definition of the spaces Ek+α,α,α
s , ‖·‖

Ek+α,α,α
s (Ω̄m

iT )

∼ ‖ · ‖Ck+α,α,α(Ω̄m
iT ) if m ∈ N22. The simple calculations and inequalities (4.23),

(4.44), (4.50) drive to

sup
Ω̄m

iT

∣∣∣∣∣
[

∂2ŵm
i

∂z1∂z2
Ψm

z1
(z1)

]

z=Z−1
m (x)

ηm

∣∣∣∣∣ ≤ constTαλ1−2α‖f̄1‖E1+α,α,α
s−1 (Γ̄T )

; (4.54)

〈[
∂2ŵm

i

∂z1∂z2
Ψm

z1
(z1)

]

z=Z−1
m (x)

ηm

〉(α)

t,s−2,Ω̄m
iT

≤ constλ1−2α‖f̄1‖E1+α,α,α
s−1 (Γ̄T )

; (4.55)

〈[
∂2ŵm

i

∂z1∂z2
Ψm

z1
(z1)

]

z=Z−1
m (x)

ηm

〉(α)

x,s−2,Ω̄m
iT

≤ const [1 + λ−α]Tα‖f̄1‖E1+α,α,α
s−1 (Γ̄T )

;

(4.56)[(
∂2ŵm

i

∂z1∂z2
Ψm

z1
(z1)

)

z=Z−1
m (x)

ηm

](α,α)

s−2,Ω̄m
iT

≤ constλ1−2α‖f̄1‖E1+α,α,α
s−1 (Γ̄T )

+λ1−α

〈
∂2ŵm

i

∂z1∂z2
|z=Z−1

m (x)

〉(α)

t,s−2,Ω̄m
iT

. (4.57)

To evaluate the last term in the right-hand side of (4.57), we apply the next
interpolate inequality from [23]:

sup
Q̄

|D2
xΦ(x)| ≤ (‖Φ‖C2+α(Q̄))

ε∗(sup
Q̄

|Φ(x)|)1−ε∗ , (4.58)

where ε∗ ∈ (0, 1) and ∂Q ∈ C2.
Putting Φ(x) :=

[
∂2ŵm

i (z,t1)
∂z1∂z2

− ∂2ŵm
i (z,t2)

∂z1∂z2

]
z=Z−1

m (x)
and ε∗ = 2

2+α , we get

〈
∂2ŵm

i

∂z1∂z2
|z=Z−1

m (x)

〉(α)

t,s−2,Ω̄m
iT

≤ const (‖w̄m
i ‖C2+α,α,α(Ω̄m

iT ))
2

2+α (〈w̄m
i 〉(α)

t,s,Ω̄m
iT

)
α

2+α ,

or due to the results of Theorem 3.2,

〈
∂2ŵm

i

∂z1∂z2
|z=Z−1

m (x)

〉(α)

t,s−2,Ω̄m
iT

≤ constT
2(α∗−α)

2+α λ−2α‖f̄1‖E1+α,α,α
s−1 (Γ̄T )

. (4.59)
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Then we return to inequality (4.57) and get with (4.59) and (4.52) that

[(
∂2ŵm

i

∂z1∂z2
Ψm

z1
(z1)

)

z=Z−1
m (x)

ηm

](α,α)

s−2,Ω̄m
iT

≤ const [λ1−2α + ν
2

2+α λ2+ 2
2+α ]

×‖f̄1‖E1+α,α,α
s−1 (Γ̄T )

. (4.60)

Thus, (4.45), (4.51) and (4.53), (4.54)–(4.56), (4.60) prove inequality (4.43) for
‖g0i‖Eα,α,α

s−2 (Ω̄iT ), i = 1, 2.
After that, we return to the right-hand side of (4.37) and, as a consequence

of (4.42) and (4.43), we have
∥∥∥∥k1a(x)[∂θ̄1

∂n − ∂v1
f̄1

∂n ] + k1A1(x)[∂θ̄1
∂ω − ∂v1

f̄1
∂ω ]− k1A1(x)[∂θ̄2

∂ω − ∂v2
f̄1

∂ω ]
∥∥∥∥

E1+α,α,α
s−1 (Γ̄iT )

≤ constC(λ, T )‖f̄1‖E1+α,α,α
s−1 (Γ̄T )

. (4.61)

The same arguments together with inequalities from Theorems 3.1 and 3.3 al-
low us to obtain the estimates like (4.61) for the terms k1

∑
m∈N

w̄m
1

∂ηm

∂n and

k1A1(x)
∑

m∈N

[w̄m
1 − w̄m

2 ]∂ηm

∂ω in (4.37).

At last, properties (4.8)–(4.10) of the functions a(x) and A1(x) give

‖a(x)− am‖C1+α(Γ̄m) + ‖A1(x)−Am
1 ‖C1+α(Γ̄m) ≤ constλ. (4.62)

To evaluate the rest of the terms in (4.37), we use the same reasonings as above
and inequalities (4.23), (4.62). Hence we may conclude that

‖LRf̄1‖E1+α,α,α
s−1 (Γ̄T )

≤ ‖f̄1‖E1+α,α,α
s−1 (Γ̄T )

+ C(λ, T )‖f̄1‖E1+α,α,α
s−1 (Γ̄T )

(4.63)

with 0 < C(λ, T ) << 1, which completes the proof of Lemma 4.1.

The results of Lemma 4.1 mean that there exists an element σ which satisfies
to (4.22) and r1+γσ ∈ E2+α,α,α

s (Γ̄T ), σt ∈ E1+α,α,α
s−1 (Γ̄T ). Then the existence of

the functions θ̄i(x, t), i = 1, 2, from (4.16)–(4.21) in the corresponding weighted
classes follows from [8] in the case of the transmission problem,

∂2θ̄i

∂x2
1

+
∂2θ̄i

∂x2
2

= 0 in ΩiT ,

θ̄1(x, t)− θ̄2(x, t) = A(x)σ on ΓT ,

∂θ̄1

∂n
− k

∂θ̄2

∂n
+ A2(x)

(
∂θ̄1

∂ω
− ∂θ̄2

∂ω

)
= 0 on ΓT ,
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∂θ̄i

∂x1
|x1=0 = 0, θ̄i(x, t) = 0 on ΓiT , θ̄i(x, 0) = 0. (4.64)

We have
‖θ̄i‖E2+α,α,α

s (Ω̄iT )
≤ const ‖r1+γσ‖

E2+α,α,α
s (Γ̄T )

, i = 1, 2. (4.65)

Thus, Lemma 4.1 and (4.65) lead to the following results.

Lemma 4.2. Let the conditions of Lemma 4.1 hold, then there is a so-
lution (θ̄1, θ̄2, σ) to problem (4.16)–(4.21), and θ̄i ∈ E2+α,α,α

s (Ω̄iT ), r1+γσ ∈
E2+α,α,α

s (Γ̄T ), σt ∈ E1+α,α,α
s−1 (Γ̄T ).

Now we need the coercive estimates for the solution (θ̄1, θ̄2, σ) which give the
uniqueness of the solution obtained in Lemma 4.2.

Lemma 4.3. Let the conditions of Lemma 4.1 hold, then for every t ∈ [0, T ]

‖(θ̄1, θ̄2, σ)‖HD
≤ const ‖f̄1‖E1+α,α,α

s−1 Γ̄T
(4.66)

with the constant independent of f̄1.

P r o o f. The standard Schauder technique and the results of Section 3 on
the properties of model problems lead to the a priori estimate

‖(θ̄1, θ̄2, σ)‖HD
≤ const

[
‖f̄1‖E1+α,α,α

s−1 (Γ̄T )
+ 〈θ̄1〉(α)

t,s−2,Ω̄1T
+ 〈θ̄2〉(α)

t,s−2,Ω̄2T

]
. (4.67)

As for the estimates of 〈θ̄i〉(α)

t,s−2,Ω̄iT
, i = 1, 2, we apply inequality (4.24) from

Lemma 4.1 in [12] which gives

〈θ̄1〉(α)

t,s−2,Ω̄1T
+ 〈θ̄2〉(α)

t,s−2,Ω̄2T
≤ const ‖f̄1‖E1+α,α,α

s−1 (Γ̄T )

+const (ε + CεT
α)‖(θ̄1, θ̄2, σ)‖HD

. (4.68)

Choosing ε and T enough small, we deduce from (4.67) and (4.68) inequality
(4.66) for t ∈ [0, T ], where T does not depend on the right-hand side of linear
problem (4.16)–(4.21).

Now the proof of Theorem 4.1 can be deduced from the results of Lemmas
4.1–4.3.
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5. The Nonlinear Problem: the Proof of Theorem 2.1

The proof of Theorem 2.1 is based on Theorem 4.1 and representation (2.39)
of the nonlinear problem. We can rewrite problem (2.39) in the form

=z = F(z) ≡ f(x, t) + F1(z), (5.1)

where z = (θ1, θ2, σ), and = is the linear operator which is given by the left-hand
side of (2.39), = : HD → HR; the vector f(x, t) is constructed with initial data;
F1(z) contains the elements described in Remark 2.4.

As the operator = satisfies the conditions of Theorem 4.1, nonlinear problem
(5.1) can be represented as

z = =−1f + =−1F1(z) ≡ P (z).

Lemma 5.1. Let Bd, Bd ⊂ HD, be a ball with the center located in the origin
and the radius of d. For z ∈ Bd, the following estimates hold:

‖F1(0)‖HR
≤ constTα∗−α, (5.2)

‖F1(z1)− F1(z2)‖HR
≤ const (d + Tα∗−α)‖z1 − z2‖HD

, (5.3)

where 0 < α < α∗ < 1.

The proof of Lemma 5.1 repeats all the arguments from Section 5 [29] and is
based on the results of Theorems 3.1 and 4.1.

Note that inequalities (5.2) and (5.3) mean that for sufficiently small T and
d the nonlinear operator P (z) satisfies the conditions of the fixed point theorem
for a contraction operator. Hence, the fixed point of the operator is the solution
of problem (2.39), and thus Theorem 2.1 is proved.

6. Appendix: The Proof of Lemma 3.1

To prove the first statement in the lemma, note that the inverse Laplace
transformation of the function 1

ν+A , where ReA > 0, is the function e−At (see,
for example, (5.2.(1)) in [2]). Thus,

K(x1, t) =

+∞∫

−∞
eiλx1e−(A1|λ|+iA2λ)tdλ =

2A1t

(A1t)2 + (x1 −A2t)2
,

and (3.28) follows immediately from this representation of K(x1, t).
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Moreover, using this representation for K(x1, t), it is easy to get

∂lK(x1, t)
∂xl

1

→ 0 as |x1| → ∞, t ∈ [0, T ], and l ≥ 0, (6.1)

which proves (3.29) in the case of l > 0. To calculate integrals (3.29) in the case
of l = 0, we change the variable y−A2τ

A1τ = z in the inner integral and obtain

t∫

0

dτ

∞∫

−∞
K(y, τ)dy = 4

t∫

0

dτ

∞∫

0

dz

z2 + 1
= 2πt.

It is easy to find ∂K(x1,t)
∂x1

from the representation of K(x1, t),

∂K(x1, t)
∂x1

= −2K2(x1, t)
(

x1 −A2t

A1t

)
. (6.2)

Thus, to estimate I1 in (3.30), we use (6.2) and change of the variable y−A2τ
A1τ = z

in the inner integral. Then

I1 = const

t∫

0

dτ

τ1−α

∞∫

−∞

|z + A2
A1
|α

(1 + z2)2
≤ const tα,

which proves (3.30).
As for inequality (3.31), we use again representation (6.2) and the change of

the variable y −A2τ = z in the integral with respect to y,

|I2| ≤ const

∣∣∣∣∣∣∣

t∫

0

dτ

2|∆x|∫

0

|z + A2τ |αzA1τ

(z2 + A2
1τ

2)2
dz

∣∣∣∣∣∣∣

≤ const




t∫

0

dτ

2|∆x|∫

0

z1+αA1τ

(z2 + A2
1τ

2)2
dz +

t∫

0

dτ

2|∆x|∫

0

|A2|ατ1+αzA1

(z2 + A2
1τ

2)2
dz




≡ const (i1 + i2). (6.3)

First, we evaluate i1 and change the variable z2 + A2
1τ

2 = u in the integral
with respect to τ . Thus, one has

i1 ≤ const

2|∆x|∫

0

z1+αdz

z2+(A1t)2∫

z2

du

u2
≤ const

2|∆x|∫

0

zα−1dz = const |∆x|α. (6.4)
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As for the term i2, after the change of the variables z = A1τu in the integral
with respect to z and then 2|∆x|(A1τ)−1 = v in the integral with respect to τ ,
one gets

i2 ≤ const

t∫

0

dττα−1

2
|∆x|
A1τ∫

0

udu

(u2 + 1)2
= const

t∫

0

τα−1

[
1− 1

1 + 4|∆x|2(A1τ)−2

]
dτ

≤ const |∆x|α
+∞∫

0

v1−αdα

1 + v2
≤ const |∆x|α. (6.5)

Hence, inequalities (6.3)–(6.5) lead to estimate (3.31).
Finally, to prove (3.32), we calculate the second derivative of the function

K(x1, t) with respect to x1

∂2K(x1, t)
∂x2

1

= −K3(x1, t)

[
1− 3

(
x1 −A2t

A1t

)2
]

,

and change the variables y = z + A2τ in the integral with respect to y and then
τ = z

A1v in the integral with respect to τ . Thus,

I3

|∆x| ≤ const

+∞∫

2|∆x|

dz

t∫

0

[z + A2τ + ∆x]α

(A1τ)3(1 + z2(A1τ)−2)
|1− 3z2(A1τ)−2|dτ

= const

+∞∫

|∆x|

dz

z2−α

+∞∫

0

dv

(1 + v2)2
≤ const |∆x|α−1.

These inequalities lead to estimate (3.32) which completes the proof of Lemma 3.1.
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