
Journal of Mathematical Physics, Analysis, Geometry
2014, vol. 10, No. 2, pp. 233–239

Automorphisms of Riemann–Cartan Manifolds with

Semi-Symmetric Connection

V.I. Panzhensky
Penza State Pedagogical University

37 Lermontov Str., Penza 440206, Russia

E-mail: kaf geom@pnzgu.ru

Received December 13, 2012, revised January 15, 2014

It is proved that the maximum dimension of the Lie group of automor-
phisms of a Riemann–Cartan manifold (M, g, ∇̃) is n(n−1)

2 + 1, where M is
a smooth n-dimensional manifold, g is a Riemannian or semi-Riemannian
metric on M , ∇̃ is a semi-symmetric connection.
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1. A smooth n-dimensional manifold M with a semi-Riemannian metric g and
a linear metric connection ∇̃ with torsion is called a Riemann–Cartan manifold
[1]. The connection ∇̃ can be represented as ∇̃ = ∇̂+ 1

2 S̃, where ∇̂ is an associated
symmetric connection and S̃ is a torsion tensor of the connection ∇̃. On the other
hand, ∇̃ = ∇+ T̃ , where ∇ is the Levi–Civita connection of the metric g and T̃ is
the deformation tensor of the connection ∇. The covariant deformation tensor T
determined by the equality T (X, Y, Z) = g(T̃ (X, Y ), Z) is skew-symmetric with
respect to the last two arguments because of the covariant constancy of the metric
tensor g in the connection ∇̃, ∇̃g = 0. Thus, the Riemann–Cartan structure
(g, ∇̃) is unambiguously defined by setting a pair of tensor fields (g, T ), namely,
a metric tensor and a deformation tensor, the first of which is symmetric with
respect to its arguments, and the second one is skew-symmetric in the last two
arguments. We also note that the deformation tensor is defined unambiguously
by the torsion tensor and vice versa, while the symmetric part ∇̂ of the connection
∇̃ coincides with the Levi–Civita connection ∇ if and only if the tensor T is skew-
symmetric with respect to its arguments [2]. In this case, T = 1

2S, where S is a
covariant tensor of torsion, and the connection ∇̃ is called skew-symmetric. If

S(X, Y, Z) = g(X,Z)Θ(Y )− g(Y,Z)Θ(X),

where Θ = 1
n−1 traceS̃, then the connection ∇̃ is called semi-symmetric.
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2. A diffeomorphism ϕ : M → M is said to be an automorphism of the
Riemann–Cartan manifold if g and ∇̃ remain invariant under ϕ. Since ∇̃ = ∇+T̃
and the invariance of ∇ follows from the invariance of g [3], then the connection
∇̃ is invariant if and only if the deformation tensor T̃ is invariant, which is
equivalent to the invariance of the covariant deformation tensor T . Thus the set
of all automorphisms of the Riemann–Cartan manifold (M, g, ∇̃) either coincides
with the Lie group of isometries of semi-Riemannian manifold (M, g) or is its
closed Lie subgroup which leaves the tensor field T invariant and, therefore, it
has the dimension r ≤ n(n+1)

2 .

Theorem 1. The dimension of the Lie group of automorphisms of an
n-dimensional Riemann–Cartan manifold with semi-symmetric connection is not
larger than n(n−1)

2 + 1.

P r o o f. Let G be an r-dimensional Lie group of automorphisms of an
n-dimensional Riemann–Cartan manifold M . The stationary subgroup of a point
x0 ∈ M induces the isotropy groupG0 in the tangent space E = Tx0M . The vector
space E = En

p,q is an n-dimensional Euclidean space (p = n, q = 0) or a semi-
Euclidean space with (p, q)-signature (+ . . .+,− . . .−). The value of a torsion
tensor field S̃ at x0 ∈ M is a nonzero tensor in (E∗ ∧ E∗)⊗ E. Let us consider S̃
as a skew-symmetric mapping E×E→ E. The isotropy group G0 is a subgroup of
the group of orthogonal or pseudo-orthogonal transformations of E. Let ξ be an
element of the Lie algebra of the Lie group of (pseudo) orthogonal transformations
of E, and ϕt = exp tξ be a one-parameter subgroup of transformations generated
by ξ. Then ξ belongs to the Lie algebra g0 of the Lie group G0 if and only if the
tensor S̃ remains invariant under ϕt, i.e.,

S̃(ϕtu, ϕtv) = ϕtS̃(u, v). (1)

Differentiating (1) with respect to t at t = 0, we get

S̃(ξu, v) + S̃(u, ξv) = ξS̃(u, v). (2)

Let (e1, . . . , en) be a (pseudo) orthonormal basis in E, and Sk
ij and ξj

i be
components S̃ and ξ in this basis. Then (2) has the form

Sk
sjξ

s
i + Sk

isξ
s
j − Sr

ijξ
k
r = 0 (3)

or
(Sk

sjδ
r
i + Sk

isδ
r
j − Sr

ijδ
k
s )ξs

r = 0, (4)

where δj
i is the Kronecker symbol.

Let now the connection ∇̃ be semi-symmetric. Then

Sk
ij =

1
n− 1

(δk
i ηj − δk

j ηi), (5)
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where ηj = S∗∗j denote the components of a 1-form in E. Substituting (5) into
(4), we get

(δk
s ηjδ

r
i − δk

j ηsδ
r
i + δk

i ηsδ
r
j − δk

s ηiδ
r
j − δr

i ηjδ
k
s + δr

jηiδ
k
s )ξs

r = 0

or
(δk

i δr
j − δk

j δr
i )ηsξ

s
r = 0. (6)

If E is Euclidean, then the Lie algebra of the Lie group of orthogonal trans-
formations of E consists of skew-symmetric matrices, i.e., ξs

r = −ξr
s . If E = En

p,q

is semi-Euclidean, then the matrix ξ has the form
(

A B
C D

)
,

where A is a p× p skew-symmetric matrix, D is a q × q skew-symmetric matrix,
and C = BT is the matrix transposed to B. In any case, ξ1

1 = ξ2
2 = . . . = ξn

n = 0
and ξs

r = ±ξr
s . Thus we get a system of linear equations (6) with respect to

(n2−n)
2 unknown ξs

r . Let us prove that this system contains at least n− 1 linearly
independent equations. Actually, (6) can be written as follows:

(δk
i δr

j − δk
j δr

i )ηsξ
s
r + (δk

i δs
j − δk

j δs
i )ηrξ

r
s = 0. (7)

As the 1-form η is nonzero, then at least one of its coordinates is not zero.
Let ηs 6= 0 for some s. We consider the subsystem consisting of n− 1 equations
with the indices i = k = s, j = 1, . . . , n; j 6= s. The subsystem takes the form

. . . + (δs
sδ

r
j − δs

jδ
r
s)ηsξ

s
r + (δs

sδ
s
j − δs

jδ
s
s)ηrξ

r
s + . . . . = 0

or
. . . + δr

jηsξ
s
r + . . . = 0 (r = 1, . . . , n; r 6= s), (8)

and it is linearly independent because the matrix (δr
jηs) is obviously nondegen-

erate. Therefore the dimension of the isotropy group G0 is not larger than
(n2−n)

2 − (n − 1), and the dimension of the group of all automorphisms is not

larger than (n2−n)
2 − (n− 1) + n = n(n−1)

2 + 1.

3. Theorem 2.The maximum dimension of the Lie group of automorphisms
of an n-dimensional Riemann-Cartan manifold with semi-symmetric connection
is equal to n(n−1)

2 + 1.

P r o o f. To prove the theorem, it is enough to give an example of an
n-dimensional Riemann–Cartan manifold with automorphism group of dimension
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n(n−1)
2 +1. Let us consider the semi-Riemannian space Mn, n ≥ 3, with the metric

form
ds2 = dx12 + e2Hx1

(ε2dx22 + . . . + εndxn2), (9)

where εα = ±1, α = 2, . . . , n, H = const. Calculating the curvature tensor of
this space, we verify the validity of the equality

Rijkl = −H2(gilgjk − gikgjl).

It follow then that Mn has a constant sectional curvature k = −H2. Con-
sequently, the isometry group of this space has the maximum dimension n(n+1)

2 .
Let us consider a closed subgroup of the group containing all isometries which
leave invariant a single vector field orthogonal to the semi-Euclidean subspace
En−1, x1 = const, with the metric form

dσ2 = ε2dx22 + . . . + εndxn2. (10)

Basic operators of this subgroup are

∂α, −εαxβ∂α + εβxα∂β, − 1
H

∂1 + xα∂α, α < β, α, β = 2, . . . , n. (11)

In (11), the first n(n−1)
2 vector fields are basic operators of the Lie group

of isometries of the space En−1 with metric (10), and the last vector field is
defined by the invariance of the metrics (9) and a single vector field orthogonal
to En−1 with respect to the last vector field. The condition of the invariance of
the deformation tensor Tijk with respect to the vector field X = ξp∂p takes the
form

ξp∂pTijk + ∂iξ
pTpjk + ∂jξ

pTipk + ∂kξ
pTijp = 0. (12)

To find the deformation tensor Tijk, which is invariant with respect to the
group of operators (11), it is necessary to write a corresponding differential equa-
tion (12) for each vector field (11) and then integrate the obtained system of
partial differential equations. Fortunately, this task becomes much more simpli-
fied if the connection is semi-symmetric. For the semi-symmetric connection we
have

Tijk =
1

n− 1
(gikηj − gijηk). (13)

Hence the invariance of Tijk leads to the invariance of ηj = T ∗∗j and vice versa.
That is why, it is enough to integrate the equations of the invariance of η

ξp∂pηj + ∂jξ
pηp = 0 (14)
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and restore Tijk according to (13). As a result, we get η = cdx1, c = const, and

T = ae2Hx1
∑
α

εαdxα ⊗ dxα ∧ dx1, a = const. (15)

Thus we have an example of the n-dimensional Riemann–Cartan manifold
(n ≥ 3) with semi-symmetric connection whose automorphism group has dimen-
sion n(n−1)

2 + 1. The metric tensor and deformation tensor of the manifold are
defined by (9) and (15), respectively, and basic operators are defined by (11).

4. In Einstein’s general theory of relativity (GTR) and its generalizations,
the basic subject is a four-dimensional semi-Riemannian manifold of signature
(+ − −−) which we call a space-time manifold M4. The metric form for M4,
given in the proof of Theorem 2, can be rewritten in the following way:

ds2 = dx02 − e2Hx0
(dx12 + dx22 + dx32), x0 = ct. (16)

It is well known (see, e.g., [4]) that this metric is the solution of the Einstein
equation with Λ-term

Rij − 1
2
Rgij =

8πG

c4
Tij + Λgij ,

which defines the stationary model of the Universe. Contrary to Friedmann’s
solutions, this solution has no singularity. Nevertheless, the metrics of the sta-
tionary model describes an expansion of the Universe occurring without a bound
in time both in the past and in the future. The Hubble constant H (redshift of
spectral lines) is then unchanged during the Universe evolution, and the cosmo-
logical constant is Λ = 3H

c2
. A spatial section (x0 = ct = const) is a Euclidean

space, i.e., in this model the world is flat and without matter, therefore the theory
of the stationary Universe cannot be applied to the Universe with matter. But
endowing a stationary model with additional structures, as is done, for example,
in the theory of compensations, may allow solving some problems existing in the
framework of the theory of a stationary Universe. Cartan was the first to draw the
physicists’ attention to the need that torsion be taken into account for generaliza-
tions of GTR ((1922), see, e.g., [5]). In one of the attempts to create the uniform
gravitation and electromagnetic theory (1928), Einstein used a connection with
torsion but without curvature (connection of absolute parallelism). Subsequently
in the Einstein–Cartan theory, the torsion is introduced to geometrize the matter
spin density, the spin is represented by a covector η defining the torsion. It means
that the connection ∇̃ must be semi-symmetric. Moreover, for this connection to
have the maximum symmetry number, the deformation tensor of the connection
must have the following form according to formula (15):

T = ae2Hx0
3∑

α=1

dxα ⊗ dxα ∧ dx0, a = const. (17)
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By integrating the invariance equation of deformation tensor (12) with respect
to the isometry group (11), we obtain the general solution

T = ae2Hx0
3∑

α=1

dxα ⊗ dxα ∧ dx0 + be3Hx0
dx1 ∧ dx2 ∧ dx3, (18)

where a, b = const. Alongside with the ”spin” part Ta, there is the skew-
symmetric part Tb defining the torsion of the spatial section x0 = const which
may not be a spin.

5. In the spatial section (x0 = const), which is the Euclidean space E3, the
torsion tensor takes the form

S = sdx1 ∧ dx2 ∧ dx3, (19)

where a constant s is called a space torsion. In [6], we introduced the concepts
of the scalar torsion and volume torsion for three-dimensional spaces with skew-
symmetric torsion. We denote the fundamental form of torsion by Ω = s123 ·
dx1 ∧ dx2 ∧ dx3, and the volume form by Ω0 =

√
gdx1 ∧ dx2 ∧ dx3, g = det ‖gαβ‖.

Then the following integrals are well defined for any bounded domain D:

υ =
∫

D

Ω, υ0 =
∫

D

Ω0.

We call the relation υk = υ
υ0

the volume torsion, and the relation sk = s123√
g the

scalar torsion. The volume torsion is a functional defined on the set of bounded
domains D, and the scalar torsion is a function. If the domain of integration is
contracted to a point, then the volume torsion converges to the scalar torsion at
this point. In our case, the volume torsion υk coincides with the scalar torsion
sk and is equal to the torsion s of E3.

6. We study the law of parallel translation of vectors in the connection ∇̃
with skew-symmetric torsion (19). We find coefficients Γ̃k

ij of the connection ∇̃ :

Γ̃3
12 = Γ̃1

23 = Γ̃2
31 = −Γ̃3

21 = −Γ̃1
32 = −Γ̃2

13 = s, (20)

and all other coefficients are zeros. The equations of parallel translation

dvk

dt
+ Γ̃k

ij

dxi

dt
vj = 0 (21)

of a vector vk = vk(t) along a curve xk = xk(t) take the form

dv1

dt
+ s(

dx2

dt
v3 − dx3

dt
v2) = 0
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dv2

dt
+ s(

dx3

dt
v1 − dx1

dt
v3) = 0 (22)

dv3

dt
+ s(

dx1

dt
v2 − dx2

dt
v1) = 0.

Let us study in more detail a parallel translation, for example, of the vector
v(1, 0, 0) along the curve x1 = 0, x2 = 0, x3 = t, i.e., along the x3-axis of the
Cartesian coordinate system in E3. In this case, equations (22) have the form

dv1

dt
− sv2 = 0,

dv2

dt
+ sv1 = 0,

dv3

dt
= 0. (23)

Integrating (23), we find its general solution

v1 =
√

c2
1 + c2

2 cos(st− ϕ0),

v2 = −
√

c2
1 + c2

2 sin(st− ϕ0), (24)

v3 = c3,

where ϕ0 = arctg c2
c1

.
From the initial data it follows that c1 = 1, c2 = c3 = 0. Therefore, under

parallel translation, the end-point of v makes a helix curve

−→r = −→r {cos(st), sin(st), t}, (25)

lying on the straight helicoid which is swept by the x1-axis under its parallel
translation along the axis x3. In this case, the torsion s determines the angular
rotation speed of v under its parallel translation along the straight line.
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