Journal of Mathematical Physics, Analysis, Geometry 2014, vol. 10, No. 4, pp. 430–450

Functional Models in De Branges Spaces of One Class Commutative Operators

V.N. Syrovatskyi

V.N. Karazin Kharkiv National University 4 Svobody Sq., Kharkiv 61077, Ukraine E-mail: VSirovatsky@gmail.com

Received March 17, 2013, revised May 26, 2014

For a commutative system of the linear bounded operators T_1, T_2 , which operate in the Hilbert space H and none of the operators T_1, T_2 is a compression, the functional model is constructed. The model is built for a circle in de Branges space.

Key words: functional model, de Branges space, commutative systems of operators.

Mathematics Subject Classification 2010: 47B32.

The functional model of the compression operator T acting in the Hilbert space H was first obtained by B.S. Nagy and C. Foias [5]. The model allows to present the operator T as an operator of multiplication by the independent variable in a special space of functions [5, 2]. The study of the spectral characteristics of this model has led to a number of non-trivial problems on either functional analysis or theory of functions including the issues of interpolation, tasks of basis, completeness, etc. [2].

When the Nagy-Foias dilation technique [5] was used, there appeared significant difficulties in the constructing of similar functional models for the commutative systems of the operators $\{T_1, T_2\}$ defined in the Hilbert space H. Thus, the above problem could not be solved even for T_1 and T_2 being compressible. The solution was found in [7], which is based on a generalization of the concept node for commutative system operators, and in fact was proposed by Livshits.

In [8], a functional model of a pair of commutative operators is built when one of them is compressed. The construction is based on the Fourier transformation technique. If none of the operators $\{T_1, T_2\}$ is not a compression, then the given method is not applicable. In this paper, we construct the functional models for a commutative system of the operators $\{T_1, T_2\}$ where neither T_1 nor T_2 is compressed. For this case the functional model is constructed in de Branges space corresponding to the unit circumference obtained in [6].

© V.N. Syrovatskyi, 2014

1. Background Information

Let us consider the bounded linear operator T acting in the Hilbert space H. The collection

$$\Delta = (J; H \oplus E; V = \begin{bmatrix} T & \Phi \\ \Psi & K \end{bmatrix}; H \oplus \tilde{E}; \tilde{J})$$
(1.1)

is called a unitary knot [1-4] if the linear operator

$$V = \begin{bmatrix} T & \Phi \\ \Psi & K \end{bmatrix} : H \oplus E \mapsto H \oplus \tilde{E}$$
(1.2)

satisfies the correlation

$$V^* \begin{bmatrix} I & 0 \\ 0 & \tilde{J} \end{bmatrix} V = \begin{bmatrix} I & 0 \\ 0 & J \end{bmatrix}, \qquad V \begin{bmatrix} I & 0 \\ 0 & J \end{bmatrix} V^* = \begin{bmatrix} I & 0 \\ 0 & \tilde{J} \end{bmatrix}, \qquad (1.3)$$

where J and \tilde{J} are involutions in the Hilbert spaces E and \tilde{E} , respectively, $J = J^* = J^{-1}$, $\tilde{J} = \tilde{J}^* = \tilde{J}^{-1}$. Any bounded linear operator T in H can always be included into a unitary knot Δ (1.1) if we set [2], $-E = \overline{D_{T^*}H}$; $\tilde{E} = \overline{D_TH}$; $\Psi = \sqrt{|D_T|}$; $\Phi = \sqrt{|D_{T^*}|}$; $J = \operatorname{sign} D_{T^*}$; $\tilde{J} = \operatorname{sign} D_T$; $K = -\tilde{J}T^*$; where, as usually, $D_T = I - T^*T$ are defective operators of T, and $\sqrt{|A|}$, sign A of the self-adjoint operator A are understood in terms of the corresponding spectral decompositions.

The knot \triangle (1.1) is called simple [2] if $H = H_1$, where

$$H_1 = \operatorname{span}\{T^n \Phi f + T^{*m} \Psi^* g; f \in E; g \in \tilde{E}; n, m \in \mathbb{Z}_+\}.$$
 (1.4)

The subspaces H_1 and $H_0 = H_1^{\perp} = H \ominus H_1$ reduce the operator T, and the reducing of T to H_0 is a unitary operator [2].

The main invariant of the knot \triangle (1), which describes simple knots, is a characteristic operator function introduced by Livshits in 1946, [1],

$$S_{\triangle} = K + \Psi (zI - T)^{-1} \Phi, \qquad (1.5)$$

which plays the main role in the theory of triangular [2] and functional models [4, 5] for the operators close to the unitary ones (in terms of definition (1.1)).

Suppose that dim $E = \dim \tilde{E} = r < \infty$ and $J = \tilde{J}$. Let us choose the orthonormalized bases $\{e_{\alpha}\}_{1}^{r}$ and $\{e'_{\alpha}\}_{1}^{r}$ in E and \tilde{E} . Then from the results of Potapov [2] it follows that the matrix-function $S_{\Delta}(z) = \| < S_{\Delta}(z)e_{\alpha}, e'_{\beta} > \|$, in the case when the spectrum $\sigma(T)$ of the operator T belongs to the unit circumference $\mathbb{T} = \{z \in \mathbb{C}; |z| = 1\}$, has the multiplicative structure

$$S_{\Delta}(z) = \int_{0}^{\overleftarrow{l}} \exp\left\{\frac{e^{i\varphi_t} + z}{e^{i\varphi_t} - z}J\,dF_t\right\},\tag{1.6}$$

where φ_t is a non-negative non-decreasing on $[0, \ell]$ function, and $0 \leq \varphi_t \leq 2\pi$; F_t is a non-decreasing hermitian $(r \times r)$ matrix-function on $[0, \ell]$ for which $trF_t \equiv t$.

Using Potapov's presentation (1.6), it is not difficult to build a triangular model of the operator for $S_{\Delta}(z)$ (5). By $L^2_{r,l}(F_x)$, denote the Hilbert space of the vector functions

$$L_{r,l}^2(F_x) = \left\{ f(x) = (f_1(x), \dots, f_r(x)); \int_0^l f(x) \, dF_x f^*(x) < \infty \right\}.$$
(1.7)

In $L_{r,l}^2(F_x)$ (1.7), define the linear operator T,

$$Tf(x) = f(x)e^{i\varphi_x} - 2\int_{x}^{l} f(t) \, dF_t \Phi_t^* \Phi_x^{*-1} J e^{i\varphi_x}, \qquad (1.8)$$

where the matrix Φ_x is a solution of the integral equation

$$\Phi_x + \int_0^x \Phi_t \, dF_t J = I, \qquad x \in [0, l]. \tag{1.9}$$

Similarly, the matrix-function Ψ_x is a solution of

$$\Psi_x + \int_x^l \Psi_t \, dF_t J = J, \quad x \in [0, l].$$
(1.10)

Let us define the operators $\Phi: E \mapsto L^2_{r,l}(F_x)$ and $\Psi: L^2_{r,l}(F_x) \mapsto E$ (here $E = \mathbb{C}^n$) as follows:

$$\Phi f(x) = \sqrt{2} f \Psi_x e^{i\varphi_x}, \qquad \Psi f(x) = \sqrt{2} \int_0^l f(x) \, dF_x \Phi_x^*, \tag{1.11}$$

where $f \in E$ and $K = S_{\triangle}(\infty)$ (1.6). The collection

$$\Delta_c = (J; L^2_{r,l}(F_x) \oplus E; V = \begin{bmatrix} T & \Phi \\ \Psi & K \end{bmatrix}; L^2_{r,l}(F_x) \oplus E; J)$$
(1.12)

is a unitary knot (1.1)–(1.3) and is called a triangular model of the simple knot \triangle (1.1), where $L^2_{r,l}(F_x)$, T, Φ , Ψ are from (1.7), (1.8)–(1.11). The latter means that simple components (1.4) of the knots \triangle (1.1) and \triangle_c (1.12), when the spectrum of the operator T is on the unit circumference $\sigma(T) \subseteq \mathbb{T}$, are unitarily equivalent

[2] under the condition that $J = \tilde{J}$ and dim $E = \dim \tilde{E} = r < \infty$. Let us suppose that dim E = 2 and $J = J_N$, where

$$J_N = \begin{bmatrix} -1 & 0\\ 0 & 1 \end{bmatrix}. \tag{1.13}$$

According to [6], we introduce

$$L_x(z) = (1 - zT)^{-1}\Phi(1, 1), \qquad (1.14)$$

$$\widetilde{L}_x(z) = (1 - zT^*)^{-1} \Psi^*(1, -1).$$
(1.15)

Definition 1. The de Branges space $\mathcal{B}(E,G)$ is a Hilbert space formed by the vector functions $F(z) = [F_1(z), F_2(z)]$, where $F_k(z)$, (k = 1, 2) are

$$F_1(z) = \int_0^l f(t) \, dF_t L_t^*(\bar{z}), \quad F_2(z) = \int_0^l f(t) \, dF_t \tilde{L}_t^*(\bar{z}). \tag{1.16}$$

Present the de Branges space as follows:

$$\mathcal{B}_{\phi}f = [F_1(z), F_2(z)]. \tag{1.17}$$

The scalar product in $\mathcal{B}(E,G)$ is induced by the prototype mapping \mathcal{B}_{φ} (1.17),

$$\langle F(z), \hat{F}(z) \rangle_{\mathcal{B}_{\varphi}(E,G)} = \langle f(t), \hat{f}(t) \rangle_{L^{2}_{2,l}(F_{t})},$$
 (1.18)

while $F(z) = \mathcal{B}_{\varphi}f(t), \ \hat{F}(z) = \mathcal{B}_{\varphi}\hat{f}(t)$, where $f(t), \ \hat{f}(t) \in L^2_{2,l}(F_t)$. The functions $E_x(z), \ \widetilde{E}_x(z), \ G_x(z), \ \widetilde{G}_x(z)$ are defined by the relations [6]

$$L_x(z) = (e^{-i\phi_x} - z)^{-1} [E_x(z), \widetilde{E}_x(z)], \qquad (1.19)$$

$$\widetilde{L}_x(z) = (1 - ze^{-i\phi_x})^{-1} [G_x(z), \widetilde{G}_x(z)].$$
(1.20)

Let T_1, T_2 be a commutative system of the linear bounded operators acting in the Hilbert space H. The collection of the Hilbert spaces E, \tilde{E} and the operators $\Phi \in [E, H]; \Psi \in [H, \tilde{E}]; K \in [E, \tilde{E}]; \sigma_s, \tau_s, N_s, \Gamma_1 \in [E, E]; \tilde{\sigma}_s, \tilde{\tau}_s, \tilde{N}_s, \tilde{\Gamma}_1 \in [\tilde{E}, \tilde{E}](s = 1, 2)$ is called a commutative unitary metric knot Δ ,

$$\Delta = (\Gamma_1, \sigma_s, \tau_s, N_s, H \oplus E, V_s, \overset{+}{V}_s, H \oplus \tilde{E}, \tilde{N}_s, \tilde{\tau}_s, \tilde{\sigma}_s, \tilde{\Gamma}_1), \qquad (1.21)$$

if for the expansions

$$V_s = \begin{bmatrix} T_s & \Phi N_s \\ \Psi & K \end{bmatrix}, \qquad \stackrel{+}{V}_s = \begin{bmatrix} T_s^* & \Psi^* \tilde{N}_s^* \\ \Phi^* & K^* \end{bmatrix}$$

the following relations are true:

1)
$$V_s^* \begin{bmatrix} I & 0 \\ 0 & \tilde{\sigma} \end{bmatrix} V_s = \begin{bmatrix} I & 0 \\ 0 & \tau_s \end{bmatrix}, \quad V_s^* \begin{bmatrix} I & 0 \\ 0 & \sigma_s \end{bmatrix} \overset{+}{V_s} = \begin{bmatrix} I & 0 \\ 0 & \tilde{\tau}_s \end{bmatrix},$$

2)
$$T_2 \Phi N_1 - T_1 \Phi N_2 = \Phi \Gamma_1, \ \tilde{N}_1 \Psi T_2 - \tilde{N}_2 \Psi T_1 = \tilde{\Gamma}_1 \Psi,$$

3)
$$\tilde{N}_2 \Psi \Phi N_1 - \tilde{N}_1 \Psi \Phi N_2 = K \Gamma_1 - \tilde{\Gamma}_1 K, \ K N_s = \tilde{N}_s K(s=1,2),$$

where $\sigma_s, \tau_s, (\tilde{\sigma}_s, \tilde{\tau}_s)$ are self-adjoint in $E(\tilde{E}), (s = 1, 2)$.

The operators acting in the spaces E and \tilde{E} of the knot \triangle (1.21) are dependent. An arbitrary commutative system of the linear bounded operators T_1, T_2 can always be included into the knot \triangle (1.21) [1]. If the "defective" operators σ_1 and $\tilde{\sigma}_1$ in E and \tilde{E} are reversible, we can always suppose that N_1 and \tilde{N}_1 are reversible. Let us introduce $N, \tilde{N}, \Gamma, \tilde{\Gamma}$ in the following form:

$$N = N_1^{-1} N_2, \ \Gamma = N_1^{-1} \Gamma_1, \ \tilde{N} = \tilde{N}_1^{-1} \tilde{N}_2, \ \tilde{\Gamma} = \tilde{N}_1^{-1} \tilde{\Gamma}_1.$$
(1.22)

Let us set the linear operators T_1 and T_2 in $L^2_{r,l}(F_x)$ (1.7):

$$T_1 f(x) = f(x) e^{i\varphi_x} - 2 \int_x^l f(t) \, dF_t \Phi_t^* \Phi_x^{*-1} J e^{i\varphi_x}, \qquad (1.23)$$

$$T_2 f(x) = f(x) \left(N(x) e^{i\varphi_x} + \Gamma(x) \right) - 2 \int_x^l f(t) \, dF_t \Phi_t^* \Phi_x^{*-1} J N(x) e^{i\varphi_x}, \qquad (1.24)$$

where N(x) and $\Gamma(x)$ satisfy the differential Lax equations [7]:

$$N'(x) = [a_x J, N(x)], \quad N(0) = \tilde{N}_2, \quad \Gamma'(x) = [\Gamma(x), a_x J], \quad \Gamma(0) = \tilde{\Gamma}_2,$$
$$[a_x J, \Gamma(x) + e^{i\varphi_x} N(x)] = 0,$$

where $dF_x = a_x dx$.

2. Effect of Operators T_1 and T_1^* on Vectors L_x and L_x

Let the knot \triangle (1.21) corresponds to the commutative system of the operators $\{T_1, T_2\}$. Suppose that $E = \tilde{E}$, dim $E = \dim \tilde{E} = 2$ and $\sigma_1 = \tilde{\sigma}_1 = J_N$ (1.13), the spectrum of the operator T_1 consists of one point $\{1\}$, and therefore, $\varphi_x = 0$. By $L_x(z)$ and $\tilde{L}_x(z)$, denote the vector functions (1.14),(1.15) which correspond to the operator $T_1(T = T_1)$. We also denote the functions $E_x(z), \tilde{E}_x(z), G_x(z), \tilde{G}_x(z)$ by (1.19), (1.20).

Lemmas 1–4 were proved in [9]. They define the effect of the operators T_1 and T_1^* on the vectors L_x and \widetilde{L}_x .

Lemma 1. [9] The operator T_1 affects the vector function $L_x(z)$ (1.14) in the following way:

$$T_1 L_x(z) = \frac{L_x(z) - L_x(0)}{z}.$$
(2.1)

Lemma 2. [9] The operator T_1 affects the vector function $\widetilde{L}_x(z)$ (1.15) in the following way:

$$T_1 \widetilde{L}_x(z) = z \widetilde{L}_x(z) + \frac{\widetilde{G}_l(z) - G_l(z)}{2} L_x(0) - \frac{\widetilde{G}_l(z) + G_l(z)}{2} (1, -1) \Psi_x.$$
(2.2)

Lemma 3. [9] The operator T_1^* affects the vector function $\widetilde{L}_x(z)$ in the following way: $\sim \qquad \widetilde{L}_x(z) - \widetilde{L}_x(0)$

$$T_1^* \tilde{L}_x(z) = \frac{\tilde{L}_x(z) - \tilde{L}_x(0)}{z}.$$
 (2.4)

Lemma 4. [9] The operator T_1^* affects the vector function $L_x(z)$ in the following way:

$$T_1^* L_x(z) = z L_x(z) + \frac{E_0(z) - \widetilde{E}_0(z)}{2} \widetilde{L}_x(0) + \frac{E_0(z) + \widetilde{E}_0(z)}{2} (1, 1) \Phi_x.$$
(2.5)

Let us prove the lemma below.

Lemma 5. If the vector functions $L_x(z)$ and $\tilde{L}_x(z)$ are set by (1.14) and (1.15), and Φ_x , Ψ_x are the solutions of integral equations (1.9) and (1.10), then

$$\int_{0}^{l} (1,-1)\Psi_t dF_t L_t^*(\overline{z}) = -1 - \frac{1}{2} R_1 J\left(\frac{\overline{E_0(\overline{z})}}{\widetilde{E}_0(\overline{z})}\right), \qquad (2.6)$$

$$\int_{0}^{l} (1,-1)\Psi_t dF_t \widetilde{L}_t^*(\overline{z}) = \frac{1}{2} R_1 \begin{pmatrix} 1\\1 \end{pmatrix} + \frac{\overline{G_l(\overline{z})} - \overline{\widetilde{G}_l(\overline{z})}}{2}, \qquad (2.7)$$

$$\int_{0}^{l} (1,1)\Phi_t dF_t L_t^*(\overline{z}) = \frac{1}{2z} R_2 \begin{pmatrix} 1\\1 \end{pmatrix} + \frac{\overline{E_0(\overline{z})} - \overline{\widetilde{E}_0(\overline{z})}}{2z}, \qquad (2.8)$$

$$\int_{0}^{l} (1,1)\Phi_{x}dF_{t}\widetilde{L}_{t}^{*}(\overline{z}) = \frac{1}{2z}R_{2}J\left(\frac{\overline{G_{l}(\overline{z})}}{\widetilde{G}_{l}(\overline{z})}\right),$$
(2.9)

where R_1 and R_2 have the forms

$$R_{1} = \left(\frac{\overline{G_{l}(0)}E_{0}(0) - \widetilde{G}_{l}(0)E_{0}(0) \pm 1}{\overline{G_{l}(0)} + \overline{\widetilde{G}_{l}(0)}}, \frac{(\overline{G_{l}(0)} - \widetilde{G}_{l}(0))(\overline{G_{l}(0)} + \widetilde{G}_{l}(0)) \pm 1}{\overline{G_{l}(0)} + \overline{\widetilde{G}_{l}(0)}}\right),$$
(2.10)

$$R_{2} = \left(\frac{G_{l}(\infty)\overline{E_{0}(\infty)} - G_{l}^{2}(\infty) - G_{l}(\infty)\widetilde{G}_{l}(\infty) \pm 1}{\overline{G_{l}(\infty)} + \overline{\widetilde{G}_{l}(\infty)}}, \frac{-3G_{l}(\infty)\overline{E_{0}(\infty)} + \widetilde{G}_{l}^{2}(\infty) + G_{l}(\infty)\widetilde{G}_{l}(\infty) - 2\widetilde{G}_{l}(\infty)\overline{E_{0}(\infty)} \pm 1}{\overline{G_{l}(\infty)} + \overline{\widetilde{G}_{l}(\infty)}}\right).$$
(2.11)

P r o o f. Let us consider the equation for the vector function $L_x(z)$

$$(1-z)L_x(z) + 2z \int_x^l L_t(z) dF_t \Phi_t^* \Phi_x^{*-1} J = (1,1)\Psi_x$$

and differentiate it by x to get

$$(1-z)L'_{x}(z) - 2zL_{x}(z)a_{x}\Phi_{x}^{*}\Phi_{x}^{*-1}J + 2z\int_{x}^{l}L_{t}(z)dF_{t}\Phi_{t}^{*}\Phi_{x}^{*-1}(\Phi_{x}^{*-1})'J = (1,1)\Psi_{x}'.$$

Since $\Psi'_x = \Psi_x a_x J$ and $\Phi'_x = -\Phi_x a_x J$, then $\Phi^{*\prime}_x = -J a_x \Phi^*_x$ and $(\Phi^{*-1}_x)' = \Phi^{*-1}_x J a_x$. By using these statements, we obtain

$$(1-z)L'_x(z) - 2zL_x(z)a_xJ + ((1,1)\Psi_x - (1-z)L_x(x))a_xJ = (1,1)\Psi_xa_xJ,$$
$$(1-z)L'_x(z) = (1+z)L_x(z)a_xJ,$$

i.e., $L'_x(z) = \frac{1+z}{1-z}L_x(z)a_xJ$ and $L^{*'}_x(z) = \frac{1+z}{1-z}Ja_xL^*_x(z)$. Let us consider the following statements:

$$(\Psi_x J L_x^*(z))' = \Psi_x a_x J J L_x(z) + \Psi_x J \frac{1+\overline{z}}{1-\overline{z}} J a_x L_x(z) = \frac{2}{1-\overline{z}} \Psi_x a_x L_x^*(z),$$

$$((1,-1)\Psi_x J L_x^*(z))' = (1,-1)\frac{2}{1-\overline{z}} \Psi_x a_x L_x^*(z).$$

Since $\Psi_l = J$, $\Phi_0 = I$, and $L_l(z) = (1,1)J\frac{1}{1-z}$, $L_l^*(\bar{z}) = J(\frac{1}{1})\frac{1}{1-z}$, $L_0(z) = \frac{1}{1-z}(E_0(z), \tilde{E}_0(z))$ and $L_0^*(\bar{z}) = \frac{1}{1-z}(\overline{E_0(\bar{z})}, \overline{\tilde{E}_0(\bar{z})})$, then after integrating the statement $(1,-1)\Psi_x a_x L_x^*(\bar{z}) = \frac{1-z}{2}((1,-1)\Psi_x J L_x^*(\bar{z})),$

we obtain

$$\int_{0}^{l} (1,-1)\Psi_{x}dF_{x}L_{x}^{*}(\overline{z}) = \frac{1-z}{2}(1,-1)\left(JJJ\left(\begin{array}{c}1\\1\end{array}\right)\frac{1}{1-z} - \Psi_{0}J\frac{1}{1-z}\left(\frac{\overline{E_{0}(\overline{z})}}{\widetilde{E}_{0}(\overline{z})}\right)\right)$$
$$= -1 - \frac{1}{2}(1,-1)\Psi_{0}J\left(\begin{array}{c}\overline{\overline{E_{0}(\overline{z})}}\\\overline{\widetilde{E}_{0}(\overline{z})}\end{array}\right).$$
(2.12)

Similarly, using $(\Phi_x JL_x^*(\overline{z}))' = \frac{2z}{1-z} \Phi_x a_x L_x^*(\overline{z})$, we integrate the following statement:

$$\int_{0}^{l} (1,1)\Phi_{t}dF_{t}L_{t}^{*}(\overline{z}) = \frac{1-z}{2z}(1,1)\left(\Phi_{l}JJ\left(\begin{array}{c}1\\1\end{array}\right)\frac{1}{1-z} - IJ\frac{1}{1-z}(\overline{E_{0}(\overline{z})},\overline{\widetilde{E}_{0}(\overline{z})})\right)$$
$$= \frac{1}{2z}(1,1)\left(\Phi_{l}\left(\begin{array}{c}1\\1\end{array}\right) - J(\overline{E_{0}(\overline{z})},\overline{\widetilde{E}_{0}(\overline{z})})\right) = \frac{1}{2z}(1,1)\Phi_{l}\left(\begin{array}{c}1\\1\end{array}\right) + \frac{\overline{E_{0}(\overline{z})} - \overline{\widetilde{E}_{0}(\overline{z})}}{2z}.$$
(2.13)

Now we take the equation for the vector function $L_x(z)$,

$$(1-z)\tilde{L}_{x}(z) + 2z \int_{0}^{l} \tilde{L}_{t}(z)dF_{t}J\Phi_{t}^{-1}\Phi_{x} = (1,-1)\Phi_{x},$$

and differentiate it by x to get

$$(1-z)\widetilde{L}'_{x}(z) + 2z\widetilde{L}_{x}(z)a_{x}J\Phi_{x}^{-1}\Phi_{x} - 2z\int_{0}^{l}\widetilde{L}_{t}(z)dF_{t}J\Phi_{t}^{-1}\Phi_{x}a_{x}J = -(1,-1)\Phi_{x}a_{x}J,$$

$$(1-z)\widetilde{L}'_{x}(z) + 2z\widetilde{L}_{x}(z)a_{x}J + ((1-z)\widetilde{L}_{x}(z) - (1,-1)\Phi_{x})a_{x}J = -(1,-1)\Phi_{x}a_{x}J,$$

$$(1-z)\widetilde{L}'_{x}(z) + (1+z)\widetilde{L}_{x}(z)a_{x}J = 0$$

 $(1-z)\widetilde{L}'_x(z) + (1+z)\widetilde{L}_x(z)a_xJ = 0.$ Thus, $\widetilde{L}'_x(z) = -\frac{1+z}{1-z}\widetilde{L}_x(z)a_xJ$ and $(\widetilde{L}^*_x(z))' = -\frac{1+z}{1-z}Ja_x\widetilde{L}^*_x(z)$. Let us consider the following statements:

$$(\Psi_x J \widetilde{L}_x^*(\overline{z}))' = \Psi_x a_x J J \widetilde{L}_x^*(\overline{z}) - \Psi_x J \frac{1+z}{1-z} J a_x \widetilde{L}_x^*(\overline{z}) = \frac{-2z}{1-z} \Psi_x a_x \widetilde{L}_x^*(\overline{z}).$$

And after integration we obtain

$$\int_{0}^{l} (1,-1)\Psi_{x}a_{x}\widetilde{L}_{x}^{*}(\overline{z}) = \frac{1-z}{-2z}(1,-1)\left(JJ\frac{1}{1-z}\left(\frac{\overline{G_{l}(\overline{z})}}{\widetilde{G}_{l}(\overline{z})}\right) - \Psi_{x}J\frac{1}{1-z}I\begin{pmatrix}1\\-1\end{pmatrix}\right)$$

$$=\frac{1}{-2z}(1,-1)\left(\begin{array}{c}\overline{G_l(\overline{z})}\\\overline{\widetilde{G}_l(\overline{z})}\end{array}\right)-\frac{1}{-2z}(1,-1)\Psi_0\left(\begin{array}{c}-1\\-1\end{array}\right).$$

Hence,

$$\int_{0}^{l} (1,-1)\Psi_{x}a_{x}\widetilde{L}_{x}^{*}(\overline{z}) = -\frac{1}{2z}(1,-1)\Psi_{0}\left(\begin{array}{c}1\\1\end{array}\right) - \frac{\overline{G_{l}(\overline{z})}-\overline{\widetilde{G}_{l}(\overline{z})}}{2z}.$$
(2.14)

Similarly, we can get

$$(\Phi_x J \widetilde{L}_x^*(\overline{z}))' = \frac{2z}{1-z} \Phi_x a_x \widetilde{L}_x^*(\overline{z}),$$

then

$$\int_{0}^{l} (1,1)\Phi_{x}a_{x}\widetilde{L}_{x}^{*}(\overline{z}) = \frac{1-z}{2z}(1,1)\left(\Phi_{l}J\frac{1}{1-z}\left(\begin{array}{c}\overline{G_{l}(\overline{z})}\\\overline{\widetilde{G}_{l}(\overline{z})}\end{array}\right) - IJ\frac{1}{1-z}I\left(\begin{array}{c}1\\-1\end{array}\right)\right),$$
(2.15)

and

$$\int_{0}^{l} (1,1)\Phi_{x}a_{x}\widetilde{L}_{x}^{*}(\overline{z}) = \frac{1}{2z}\Phi_{l}J\left(\frac{\overline{G_{l}(\overline{z})}}{\widetilde{G}_{l}(\overline{z})}\right) + \frac{1}{z}.$$

Write down a characteristic matrix-function $S_{\triangle}(z)$ element-wisely, $S_{\triangle}(z) = \begin{pmatrix} a(z) & b(z) \\ c(z) & d(z) \end{pmatrix}$, and find its coefficients. Since $N_0(z) = -S_{\triangle}(z)$, $\widetilde{N}_l^*(\overline{z}) = S_{\triangle}(z), (1, 1)N_x(z)J = (E_0(z), \widetilde{E}_0(z))$ and $(1, -1)\widetilde{N}_l(z) = (G_l(z), \widetilde{G}_l(z))$, then $\widetilde{N}_l^*(z) \begin{pmatrix} 1 \\ -1 \end{pmatrix} = \begin{pmatrix} \overline{G_l(\overline{z})} \\ \overline{\widetilde{G}_l(\overline{z})} \end{pmatrix}$. For $S_{\triangle}(z)$, we get the equations

$$-(1,1)\left(\begin{array}{cc}a(z) & b(z)\\c(z) & d(z)\end{array}\right)J = (E_0(z),\widetilde{E}_0(z)),$$
$$\left(\begin{array}{cc}a(z) & b(z)\\c(z) & d(z)\end{array}\right)\left(\begin{array}{c}1\\-1\end{array}\right) = \left(\begin{array}{c}\overline{G_l(\overline{z})}\\\overline{\widetilde{G}_l(\overline{z})}\end{array}\right).$$

By solving this system, we obtain the coefficients of the matrix-function $S_{\triangle}(z)$:

$$c(z) = E_0(z) - a(z),$$
 $b(z) = a(z) - \overline{G_l(\overline{z})},$ $d(z) = E_0(z) - \overline{\widetilde{G}_l(\overline{z})} - a(z).$

Now we will use the condition $|\det S_{\Delta}(z)|^2 = 1$, i.e., $|\det S_{\Delta}(z)| = \pm 1$, or $a(z)d(z) - b(z)c(z) = \pm 1$, to get the expression for a(z)

$$a(z) = \frac{\overline{G_l(\overline{z})}E_0(z)1}{\overline{G_l(\overline{z})} + \overline{\widetilde{G}_l(\overline{z})}}.$$

Now we can find the expression of $(1,-1)\Psi_x$:

$$(1,-1)\Psi_x = N_0(0)J = -(1,-1)S_{\triangle}(0)J$$

$$=\left(\frac{\overline{G_l(0)}E_0(0)-\overline{\widetilde{G}_l(0)}E_0(0)\pm 1}{\overline{G_l(0)}+\overline{\widetilde{G}_l(0)}},\frac{(\overline{G_l(0)}-\overline{\widetilde{G}_l(0)})(\overline{G_l(0)}+\overline{\widetilde{G}_l(0)})\pm 1}{\overline{G_l(0)}+\overline{\widetilde{G}_l(0)}}\right)$$

and the expression of $(1, 1)\Phi_l$:

$$(1,1)\Phi_{l} = (1,1)\widetilde{N}_{l}(\infty) = \left(\frac{G_{l}(\infty)\overline{E_{0}(\overline{\infty})} - G_{l}^{2}(\infty) - G_{l}(\infty)\widetilde{G}_{l}(\infty) \pm 1}{\overline{G_{l}(\infty)} + \overline{\widetilde{G}_{l}(\infty)}}, \frac{-3G_{l}(\infty)\overline{E_{0}(\infty)} + \widetilde{G}_{l}^{2}(\infty) + G_{l}(\infty)\widetilde{G}_{l}(\infty) - 2\widetilde{G}_{l}(\infty)\overline{E_{0}(\infty)} \pm 1}{\overline{G_{l}(\infty)} + \overline{\widetilde{G}_{l}(\infty)}}\right).$$

Having defined these expressions as R_1 and R_2 , respectively, and using integrals (2.12)-(2.15), we obtain the expressions stated in the lemma definition.

Lemma 6. The operator T_1^* affects the vector function $L_x(z)$ (1.14) in the following way:

$$T_1^* L_x(z) = (z + \mu(z))L_x(z) + \nu(z)\widetilde{L}_x(z) + \frac{E_0(z) - \widetilde{E}_0(z)}{2}\widetilde{L}_x(0), \qquad (2.16)$$

where

$$\nu(z) = \frac{c_2(z)c_3(z) - c_1(z)c_4(z)}{c_2(z) - c_4(z)},$$
(2.17)

$$\mu(z) = \frac{c_1(z) - c_3(z)}{c_2(z) - c_4(z)},\tag{2.18}$$

$$c_1(z) = \frac{(E_0(z) + \widetilde{E}_0(z))(1 - z^2)}{2(E_0(z)\overline{E_0(\overline{z})} - \widetilde{E}_0(z)\overline{\widetilde{E}_0(\overline{z})})} \left(\frac{1}{2z}R_2 \begin{pmatrix} 1\\1 \end{pmatrix} + \frac{\overline{E_0(\overline{z})} - \overline{\widetilde{E}_0(\overline{z})}}{2z}\right), \quad (2.19)$$

$$c_2(z) = \frac{(G'_l(z) + \tilde{G}'_l(z))(1 - z^2)}{2(E_0(z)\overline{E_0(\overline{z})} - \tilde{E}_0(z)\overline{\tilde{E}_0(\overline{z})})},$$
(2.20)

$$c_3(z) = \frac{E_0(z) + \widetilde{E}_0(z)}{E'_0(z) - \widetilde{E}'_0(z)} \left(\frac{1}{2z} R_2 J\left(\frac{\overline{G_l(\overline{z})}}{\widetilde{G}_l(\overline{z})}\right)\right),\tag{2.21}$$

$$c_4(z) = \frac{2(G_l(z)\overline{G_l(\overline{z})} - \widehat{G}_l(z)\widehat{G}_l(\overline{z}))}{(E'_0(z) - \widetilde{E}'_0(z))(1 - z^2)},$$
(2.22)

and R_1 , R_2 have the forms of (2.10) and (2.11), respectively.

Proof. According to Lemma 4,

$$T_1^*L_x(z) = zL_x(z) + \frac{E_0(z) - \widetilde{E}_0(z)}{2}\widetilde{L}_x(0) + \frac{E_0(z) + \widetilde{E}_0(z)}{2}(1,1)\Phi_x.$$

Now we will show that the vectors $L_x(z)$ and $\widetilde{L}_x(z)$ are linearly independent with each fixed $x \in [0, l]$ and any $z \in C$. Assuming the opposite, $\delta(z)L_x(z) = \widetilde{L}_x(z)$, let us suppose that

$$\delta(z)(1-zT)^{-1}\Phi(1,1) = (1-zT^*)^{-1}\Psi^*(1,-1).$$

Apply the operator T_1 to both parts of the equation

$$\delta(z)\frac{(1-zT)^{-1}\Phi(1,1)-\Phi(1,1)}{z} = z(1-zT^*)^{-1}\Psi^*(1,-1)-\Phi JS^*\left(\frac{1}{\overline{z}}\right)(1,-1),$$
$$(1-zT)^{-1}\Phi(1,1)(\delta(z)-z^2) = \Phi(1,1)\delta(z) + z\Phi JS^*\left(\frac{1}{\overline{z}}\right)(1,-1).$$

Let us consider the case where $\delta(z) = z^2$. From the previous equation we obtain that $(1, -1)S^*(\frac{1}{\overline{z}}) = -z(1, -1)$, which is impossible because $S^*(\frac{1}{\overline{z}}) = K^* + z\Psi^*(1 - zT_1^*)^{-1}\Phi^*$ and $S^*(\frac{1}{\overline{z}}) \neq 0$ where z = 0. If $\delta(z) \neq z^2$, then

$$(1-zT)^{-1}\Phi(1,1) = \Phi\left(\frac{(1,1)\delta(z) + zJS^*(\frac{1}{z})(1,-1)}{\delta(z) - z^2}\right)$$

and $(1 - zT)^{-1}\Phi(1, 1) \in \Phi E$ for $\forall z$, but $L_x(z) \notin \Phi E$ for $\forall z$. Thus the functions $L_x(z)$ and $\widetilde{L}_x(z)$ are linearly independent an

Thus the functions $L_x(z)$ and $\tilde{L}_x(z)$ are linearly independent and form basis in E^2 for each fixed x for $\forall z$. Therefore we present the last term in the form

$$\frac{E_0(z) + \tilde{E}_0(z)}{2} (1,1)\Phi_x = \mu(z)L_x(z) + \nu(z)\tilde{L}_x(z)$$
(2.23)

subsequently multiplying (2.23) by $\widetilde{L}_x^*(z)$,

$$\frac{E_0(z) + \widetilde{E}_0(z)}{2} \int_0^l (1,1) \Phi_x dF_t \widetilde{L}_t^*(\overline{z}) = \mu(z) \int_0^l L_t(z) dF_t \widetilde{L}_t^*(\overline{z}) + \nu(z) \int_0^l \widetilde{L}_t(z) dF_t \widetilde{L}_t^*(\overline{z}).$$

Let us calculate the integrals in the above statement. First we get

$$N_0(z) - \widetilde{N}_l^*(\omega) = 2(\overline{\omega} - z) \int_0^l M_t(z) dF_t \widetilde{M}_t^*(\omega), \qquad (2.24)$$

$$\widetilde{N}_l(z) - N_0^*(\omega) = 2(z - \overline{\omega}) \int_0^l \widetilde{M}_t(z) dF_t M_t^*(\omega).$$
(2.25)

We multiply (2.25) on the left by (-1,1) and on the right by $(1,1)^T$. Since $(-1,1)\widetilde{N}_l(z) = (G_l(z),\widetilde{G}_l(z))$ and $(1,1)N_0(\omega) = (E_0(\omega),\widetilde{E}_0(\omega))$, then

$$G_l(z) + \widetilde{G}_l(z) + \overline{E_0(\omega)} - \overline{\widetilde{E}_0(\omega)} = 2(z - \overline{\omega}) \int_0^l \widetilde{L}_t(z) dF_t L_t^*(\omega).$$

Write the expression in the form

$$(z-\omega)\int_{0}^{l}\widetilde{L}_{t}(z)dF_{t}L_{t}^{*}(\overline{\omega}) = \frac{G_{l}(z)+\widetilde{G}_{l}(z)}{2} + \frac{\overline{\widetilde{E}_{0}(\overline{\omega})}-\overline{E_{0}(\overline{\omega})}}{2}.$$

Let us define $f(z) = \frac{G_l(z) + \tilde{G}_l(z)}{2}$ and $g(\omega) = \frac{\overline{\tilde{E}_0(\overline{\omega})} - \overline{E_0(\overline{\omega})}}{2}$. Since f(z) = -g(z), then $\frac{f(z) - g(\omega)}{2} \to f'(z) \quad \omega \mapsto z$

$$\frac{f'(z)}{z-\omega} \to f'(z), \quad \omega \mapsto z,$$

$$\int_{0}^{l} \widetilde{L}_{t}(z) dF_{t} L_{t}^{*}(\overline{z}) = \frac{1}{2} \left(\frac{dG_{l}(z)}{dz} + \frac{d\widetilde{G}_{l}(z)}{dz} \right). \quad (2.26)$$

Now, if we multiply (2.24) on the left by (1,1) and on the right by $(-1,1)^T$, then

$$(E_0(z), \widetilde{E}_0(z)) \begin{pmatrix} -1 \\ 1 \end{pmatrix} - (1, 1) \begin{pmatrix} \overline{G_l(\omega)} \\ \overline{\widetilde{G}_l(\omega)} \end{pmatrix} = 2(\overline{\omega} - z) \int_0^l L_t(z) dF_t \widetilde{L}_t^*(\omega),$$
$$E_0(z) - \widetilde{E}_0(z) + \overline{G_l(\omega)} + \overline{\widetilde{G}_l(\omega)} = 2(z - \overline{\omega}) \int_0^l L_t(z) dF_t \widetilde{L}_t^*(\omega)$$

and, similarly,

$$\int_{0}^{l} L_t(z) dF_t \widetilde{L}_t^*(\overline{z}) = \frac{1}{2} \left(\frac{dE_l(z)}{dz} - \frac{d\widetilde{E}_l(z)}{dz} \right).$$
(2.27)

We also have the expressions for two integrals:

$$\int_{0}^{l} \widetilde{L}_{t}(z) dF_{t} \widetilde{L}_{t}^{*}(\overline{\omega}) = \frac{G_{x}(z)\overline{G_{x}(\overline{\omega})} - \widetilde{G}_{x}(z)\overline{\widetilde{G}_{x}(\overline{\omega})}}{1 - z\overline{\omega}}, \qquad (2.28)$$

$$\int_{0}^{l} L_{t}(z) dF_{t} L_{t}^{*}(\overline{\omega}) = \frac{E_{0}(z)\overline{E_{0}(\overline{\omega})} - \widetilde{E}_{0}(z)\overline{\widetilde{E}_{0}(\overline{\omega})}}{1 - z\overline{\omega}}.$$
(2.29)

By using (2.26)–(2.29), we obtain

$$\frac{\overline{E}_0(z) + \widetilde{E}_0(z)}{2} \int_0^l (1,1) \Phi_x dF_t \widetilde{L}_t^*(\overline{z})$$
$$= \nu(z) \left(\frac{E_l'(z) - \widetilde{E}_l'(z)}{2}\right) + \mu(z) \left(\frac{G_x(z)\overline{G_x(\overline{z})} - \widetilde{G}_x(z)\overline{\widetilde{G}_x(\overline{z})}}{1 - z^2}\right).$$

Now we multiply statement (2.23) on the right by $L_x^*(\overline{z})$,

$$\frac{E_0(z) + \widetilde{E}_0(z)}{2} \int_0^l (1, 1) \Phi_x dF_t L_t^*(\overline{z}) = \nu(z) \int_0^l L_t(z) dF_t L_t^*(\overline{z}) + \mu(z) \int_0^l \widetilde{L}_t(z) dF_t L_t^*(\overline{z}).$$

By using expressions (2.26)-(2.29), in a similar way, we obtain

$$\frac{E_0(z) + \widetilde{E}_0(z)}{2} \int_0^l (1, 1) \Phi_x dF_t L_t^*(\overline{z})$$
$$= \nu(z) \left(\frac{E_0(z)\overline{E_0(\overline{z})} - \widetilde{E}_0(z)\overline{\widetilde{E}_0(\overline{z})}}{1 - z^2} \right) + \mu(z) \left(\frac{G_l'(z) + \widetilde{G}_l'(z)}{2} \right).$$

Now let us calculate $\nu(z)$ and $\mu(z)$. Taking into account (2.10) and (2.11), we will define the coefficients:

$$c_{1}(z) = \frac{(E_{0}(z) + \widetilde{E}_{0}(z))(1 - z^{2})}{2(E_{0}(z)\overline{E_{0}(\overline{z})} - \widetilde{E}_{0}(z)\overline{\widetilde{E}_{0}(\overline{z})})} \left(\frac{1}{2z}R_{2}\left(\begin{array}{c}1\\1\end{array}\right) + \frac{\overline{E_{0}(\overline{z})} - \overline{\widetilde{E}_{0}(\overline{z})}}{2z}\right),$$

$$c_{2}(z) = \frac{(G_{l}'(z) + \widetilde{G}_{l}'(z))(1 - z^{2})}{2(E_{0}(z)\overline{E_{0}(\overline{z})} - \widetilde{E}_{0}(z)\overline{\widetilde{E}_{0}(\overline{z})})},$$

$$c_{3}(z) = \frac{E_{0}(z) + \widetilde{E}_{0}(z)}{E_{0}'(z) - \widetilde{E}_{0}'(z)} \left(\frac{1}{2z}R_{2}J\left(\begin{array}{c}\overline{G_{l}(\overline{z})}\\\overline{\widetilde{G}_{l}(\overline{z})}\end{array}\right)\right),$$

Journal of Mathematical Physics, Analysis, Geometry, 2014, vol. 10, No. 4

442

Functional Models in De Branges Spaces of One Class Commutative Operators

$$c_4(z) = \frac{2(G_l(z)\overline{G_l(\overline{z})} - \widetilde{G}_l(z)\overline{\widetilde{G}_l(\overline{z})})}{(E'_0(z) - \widetilde{E}'_0(z))(1 - z^2)}.$$

Hence,

$$\nu(z) = \frac{c_2(z)c_3(z) - c_1(z)c_4(z)}{c_2(z) - c_4(z)}, \quad \mu(z) = \frac{c_1(z) - c_3(z)}{c_2(z) - c_4(z)},$$

and thus the expression $c_2(z) - c_4(z)$ is not identically equal to zero. Finally we get

$$T^*L_x(z) = zL_x(z) + \frac{E_0(z) - \tilde{E}_0(z)}{2}\tilde{L}_x(0) + \mu(z)L_x(z) + \nu(z)\tilde{L}_x(z),$$

which proves the lemma.

Lemma 7. The operator T_1 affects the vector function $\widetilde{L}_x(z)$ (1.15) in the following way:

$$T_1 \tilde{L}_x(z) = (z - \tilde{\nu}(z))\tilde{L}_x(z) + \frac{\tilde{G}_l(z) - G_l(z)}{2}L_x(0) - \tilde{\mu}(z)L_x(z), \qquad (2.30)$$

where

$$\widetilde{\nu}(z) = \frac{c_2(z)\widetilde{c}_3(z) - \widetilde{c}_1(z)c_4(z)}{c_2(z) - c_4(z)},$$
(2.31)

$$\widetilde{\mu}(z) = \frac{\widetilde{c}_1(z) - \widetilde{c}_3(z)}{c_2(z) - c_4(z)},$$
(2.32)

$$\widetilde{c}_1(z) = \frac{(E_0(z) + \widetilde{E}_0(z))(1 - z^2)}{2(E_0(z)\overline{E}_0(\overline{z}) - \widetilde{E}_0(z)\overline{\widetilde{E}_0(\overline{z})})} \left(-1 - \frac{1}{2}R_1 J\left(\frac{\overline{E_0(\overline{z})}}{\widetilde{E}_0(\overline{z})}\right) \right), \quad (2.33)$$

$$\widetilde{c}_3(z) = \frac{E_0(z) + \widetilde{E}_0(z)}{E'_0(z) - \widetilde{E}'_0(z)} \left(\frac{1}{2}R_1 \begin{pmatrix} 1\\1 \end{pmatrix} + \frac{\overline{G_l(\overline{z})} - \overline{\widetilde{G}_l(\overline{z})}}{2}\right), \quad (2.34)$$

and $c_2(z)$, $c_4(z)$ are (2.20) and (2.22), and R_1 , R_2 are (2.10) and (2.11), respectively.

Proof. According to Lemma 2,

$$T_1 \widetilde{L}_x(z) = z \widetilde{L}_x(z) + \frac{\widetilde{G}_l(z) - G_l(z)}{2} L_x(0) - \frac{\widetilde{G}_l(z) + G_l(z)}{2} (1, -1) \Psi_x.$$

We can perform the calculations that are similar to those made in Lemma 5. Since the functions $L_x(z)$ and $\tilde{L}_x(z)$ are linearly independent and form the basis in L_2 , we can present the latter term of the above statement in the form

$$\frac{\widetilde{G}_l(z) + G_l(z)}{2} (1, -1)\Psi_x = \widetilde{\mu}(z)L_x(z) + \widetilde{\nu}(z)\widetilde{L}_x(z).$$

Similarly, we multiply it by $L_x(z)$ and $\tilde{L}_x(z)$ and using the expressions for (2.26)–(2.29), we obtain

$$\begin{split} & \frac{\widetilde{G}_l(z) + G_l(z)}{2} \int_0^l (1, -1) \Psi_t dF_t \widetilde{L}_t^*(\overline{z}) \\ &= \widetilde{\nu}(z) \left(\frac{E_l'(z) - \widetilde{E}_l'(z)}{2} \right) + \widetilde{\mu}(z) l \left(\frac{G_x(z) \overline{G_x(\overline{z})} - \widetilde{G}_x(z) \overline{\widetilde{G}_x(\overline{z})}}{1 - z^2} \right), \\ & \frac{\widetilde{G}_l(z) + G_l(z)}{2} \int_0^l (1, -1) \Psi_t dF_t L_t^*(\overline{z}) \\ &= \widetilde{\nu}(z) \left(\frac{E_0(z) \overline{E_0(\overline{z})} - \widetilde{E}_0(z) \overline{\widetilde{E}_0(\overline{z})}}{1 - z^2} \right) + \widetilde{\mu}(z) \left(\frac{G_l'(z) + \widetilde{G}_l'(z)}{2} \right). \end{split}$$

By using (2.10) and (2.11) and introducing similar coefficients, we obtain

$$\widetilde{c}_{1}(z) = \frac{(E_{0}(z) + \widetilde{E}_{0}(z))(1 - z^{2})}{2(E_{0}(z)\overline{E_{0}(\overline{z})} - \widetilde{E}_{0}(z)\overline{\widetilde{E}_{0}(\overline{z})})} \left(-1 - \frac{1}{2}R_{1}J\left(\frac{\overline{E_{0}(\overline{z})}}{\widetilde{E}_{0}(\overline{z})}\right) \right), \quad (2.35)$$

$$\widetilde{c}_{2}(z) = \frac{(G_{l}'(z) + \widetilde{G}_{l}'(z))(1 - z^{2})}{2(E_{0}(z)\overline{E_{0}(\overline{z})} - \widetilde{E}_{0}(z)\overline{\widetilde{E}_{0}(\overline{z})})} = c_{2}(z),$$

$$\widetilde{c}_{3}(z) = \frac{E_{0}(z) + \widetilde{E}_{0}(z)}{E_{0}'(z) - \widetilde{E}_{0}'(z)} \left(\frac{1}{2}R_{1}\left(\frac{1}{1}\right) + \frac{\overline{G_{l}(\overline{z})} - \overline{\widetilde{G}_{l}(\overline{z})}}{2}\right), \quad (2.36)$$

$$\widetilde{c}_{4}(z) = \frac{2(G_{l}(z)\overline{G_{l}(\overline{z})} - \widetilde{G}_{l}(z)\overline{\widetilde{G}_{l}(\overline{z})})}{(E_{0}'(z) - \widetilde{E}_{0}'(z))(1 - z^{2})} = c_{4}(z).$$

Thus, for $\widetilde{\nu}(z)$ and $\widetilde{\mu}(z)$ we get

$$\widetilde{\nu}(z) = \frac{c_2(z)\widetilde{c}_3(z) - \widetilde{c}_1(z)c_4(z)}{c_2(z) - c_4(z)},$$
(2.37)

$$\widetilde{\mu}(z) = \frac{\widetilde{c}_1(z) - \widetilde{c}_3(z)}{c_2(z) - c_4(z)}.$$
(2.38)

-

Finally we obtain the expression

$$T_1 \widetilde{L}_x(z) = z \widetilde{L}_x(z) + \frac{\widetilde{G}_l(z) - G_l(z)}{2} L_x(0) - \widetilde{\mu}(z) L_x(z) - \widetilde{\nu}(z) \widetilde{L}_x(z),$$

which proves the lemma.

3. De Branges Transformation

In [9], the following results were obtained, namely Lemmas 8–10.

Lemma 8. [9] De Branges transformation B_L (Definition 1) affects T_1f in the following way:

$$B_L(T_1f) = (z + \overline{\mu(\overline{z})})F_1(z) + \nu(\overline{z})F_2(z) + \frac{\overline{E_0(\overline{z})} - \overline{\widetilde{E}_0(\overline{z})}}{2}F_2(0), \qquad (3.1)$$

where F_1 and F_2 have the same form as in (1.16).

Lemma 9. [9] De Branges transformation $B_{\tilde{L}}$ affects $T_1 f$ in the following way:

$$B_{\tilde{L}}(T_1 f) = \frac{F_2(z) - F_2(0)}{z},$$
(3.2)

where F_1 and F_2 have the same form as in (1.16).

Lemma 10. [9] If the vector (1, -1) is latent for $\tilde{N}^* + z\tilde{\Gamma}^*$ with each z, then de Branges transformation $B_{\tilde{L}}$ affects $T_2 f$, where $T_2 f$ is from the knot Δ (1.21), in the following way:

$$B_{\tilde{L}}(T_2f(z)) = \frac{F_2(z)n(z) - F(0)n(0)}{z},$$
(3.3)

where F_1 and F_2 have the form of (1.16), and the function n(z) satisfies the statement

$$(N^* + z\Gamma^*)(1, -1) = n(z)(1, -1).$$
(3.4)

Let us prove the lemma below.

Lemma 11. If the vector (1, 1) is latent for $(N + z\Gamma)$, then de Branges transformation B_L affects T_2f , where T_2f is from the knot \triangle (1.21), in the following way:

$$B_L(T_2f(z)) = \frac{F_1(z)}{m(z)} + \frac{\widetilde{\mu}(z)}{m(z)}F_1(z) + \frac{\widetilde{\nu}(z)}{m(z)}F_2(z), \qquad (3.5)$$

where F_1 and F_2 have the form of (1.16), and the function m(z) satisfies the statement

$$(N+z\Gamma)^{-1}(1,1) = \frac{1}{m(z)}(1,1).$$
(3.6)

Therefore the coefficients $\tilde{\mu}(z)$ and $\tilde{\nu}(z)$ have the forms

$$\widetilde{\mu}(z) = \frac{I_1(z)d_3(z) - I_2(z)d_1(z)}{d_2(z)d_3(z) - d_1(z)d_4(z)},$$
(3.7)

$$\widetilde{\nu}(z) = \frac{I_1(z)d_4(z) - I_2(z)d_2(z)}{d_1(z)d_4(z) - d_2(z)d_3(z)},$$
(3.8)

where

$$I_1(z) = \frac{1}{2z}(1,1)\sqrt{2}S\left(\frac{1}{z}\right)\widetilde{\sigma}_2\left(\Phi_l\left(\begin{array}{c}1\\1\end{array}\right) - J(\overline{E_0(\overline{z})},\overline{\widetilde{E}_0(\overline{z})})\right),\qquad(3.9)$$

$$I_2(z) = \frac{1}{2z}(1,1)\sqrt{2}S\left(\frac{1}{z}\right)\widetilde{\sigma}_2\left(\Phi_l J\left(\frac{\overline{G_l(\overline{z})}}{\widetilde{G}_l(\overline{z})}\right) + \begin{pmatrix}1\\1\end{pmatrix}\right),\tag{3.10}$$

$$d_1(z) = \frac{E_0(z)\overline{E_0(\overline{z})} - \widetilde{E}_0(z)\widetilde{E}_0(\overline{z})}{1 - |z|^2}, \qquad (3.11)$$

$$d_2(z) = \frac{G'_l(z) + \tilde{G}'_l(z)}{2}, \qquad (3.12)$$

$$d_3(z) = \frac{E'_0(z) - \tilde{E}'_0(z)}{2}, \qquad (3.13)$$

$$d_4(z) = \frac{G_l(z)\overline{G_l(\overline{z})} - \widetilde{G}_l(z)\overline{\widetilde{G}_l(\overline{z})}}{1 - |z|^2} \,. \tag{3.14}$$

P r o o f. Using the expressions for T_1 (1.23) and T_2 (1.24), we obtain

$$T_2 \Phi = T_1 \Phi N + \Phi \Gamma,$$

$$zT_2 \Phi = zT_1 \Phi N + z \Phi \Gamma = (zT_1 - 1)\Phi N + \Phi(\Gamma z + N),$$

$$z(zT_1 - 1)^{-1}T_2 \Phi = \Phi N + (zT_1 - 1)^{-1}\Phi(\Gamma z + N),$$

$$T_2^*T_2 z(zT_1 - 1)^{-1}\Phi = T_2^*\Phi N + T_2^*(zT_1 - 1)^{-1}\Phi(\Gamma z + N).$$

Due to the knots relations, we get the statement $T_2^*T_2 + \Psi^*\widetilde{\sigma}_2\Psi = I$. Then

$$(I - \Psi^* \widetilde{\sigma}_2 \Psi) z (zT_1 - 1)^{-1} \Phi = T_2^* \Phi N + T_2^* (zT_1 - 1)^{-1} \Phi (\Gamma z + N),$$

$$(\Psi^* \widetilde{\sigma}_2 \Psi - I) z (1 - zT_1)^{-1} \Phi = T_2^* \Phi N + T_2^* (zT_1 - 1)^{-1} \Phi (\Gamma z + N),$$

$$z \Psi^* \widetilde{\sigma}_2 \Psi z (1 - zT_1)^{-1} \Phi - z (1 - zT_1)^{-1} \Phi = T_2^* \Phi N - T_2^* (1 - zT_1)^{-1} \Phi (\Gamma z + N).$$

Since the characteristic function has the form $S(z) = K + \Psi(z - T_1)^{-1} \Phi$ (1.5), then after writing the expressions

$$S(\frac{1}{z}) - K = \Psi(\frac{1}{z} - T_1)^{-1}\Phi = z\Psi(1 - zT_1)^{-1}\Phi,$$
$$T_2\Phi N + \Psi\tilde{\sigma}_2 K = 0,$$

Journal of Mathematical Physics, Analysis, Geometry, 2014, vol. 10, No. 4

446

we obtain the equality

-

$$\begin{split} \Psi^* \widetilde{\sigma}_2(S(\frac{1}{z}) - K) &- z(1 - zT_1)^{-1} \Phi = T_2^* \Phi N - T_2^* (1 - zT_1)^{-1} \Phi (N + \Gamma z), \\ \Psi^* \widetilde{\sigma}_2 S(\frac{1}{z}) - z(1 - zT_1)^{-1} \Phi = -T_2^* (1 - zT_1)^{-1} \Phi (N + \Gamma z), \\ T_2^* (1 - zT_1)^{-1} \Phi = z(1 - zT_1)^{-1} \Phi (N + z\Gamma)^{-1} - \Psi^* \widetilde{\sigma}_2 S(\frac{1}{z})(N + z\Gamma)^{-1}, \\ T_2^* (1 - zT_1)^{-1} \Phi (1, 1) &= z(1 - zT_1)^{-1} \Phi (N + z\Gamma)^{-1} (1, 1) - \Psi^* \widetilde{\sigma}_2 S(\frac{1}{z})(N + z\Gamma)^{-1} (1, 1). \end{split}$$

Let us introduce the function m(z) satisfying the equation

$$(N + z\Gamma)^{-1}(1, 1) = \frac{1}{m(z)}(1, 1),$$

i.e., suppose that (1,1) is a latent vector of $(N+z\Gamma).$ Then the statement

$$T_2^* L_x(z) = \frac{L_x(z)}{m(z)} + \frac{\Psi^* \tilde{\sigma}_2 S(\frac{1}{z})(1,1)}{m(z)}$$

can be presented in the form

$$\Psi^* \widetilde{\sigma}_2 S(\frac{1}{z})(1,1) = \widetilde{\mu} L_x(z) + \widetilde{\nu} \widetilde{L}_x(z),$$

or by using the operator Ψ^* ,

$$(1,1)\sqrt{2}S\left(\frac{1}{z}\right)\widetilde{\sigma}_{2}\Phi_{x} = \widetilde{\mu}L_{x}(z) + \widetilde{\nu}\widetilde{L}_{x}(z).$$
(3.15)

Multiplying (3.15) by $L_x(z)$ and $\tilde{L}_x(z)$, we obtain two statements

$$\int_{0}^{l} (1,1)\sqrt{2}S\left(\frac{1}{z}\right)\widetilde{\sigma}_{2}\Phi_{t}dF_{t}L_{t}^{*}(\overline{z}) = \widetilde{\mu}(z)\int_{0}^{l}L_{t}(z)dF_{t}L_{t}^{*}(\overline{z}) + \widetilde{\nu}\int_{0}^{l}\widetilde{L}_{t}(z)dF_{t}L_{t}^{*}(\overline{z}),$$
$$\int_{0}^{l} (1,1)\sqrt{2}S\left(\frac{1}{z}\right)\widetilde{\sigma}_{2}\Phi_{t}dF_{t}\widetilde{L}_{t}^{*}(\overline{z}) = \widetilde{\mu}(z)\int_{0}^{l}L_{t}(z)dF_{t}\widetilde{L}_{t}^{*}(\overline{z}) + \widetilde{\nu}\int_{0}^{l}\widetilde{L}_{t}(z)dF_{t}\widetilde{L}_{t}^{*}(\overline{z}).$$

By using previously obtained expressions for integrals (2.26)-(2.29), we introduce the following coefficients:

$$d_1(z) = \int_0^l L_t(z) dF_t L_t^*(\overline{z}) = \frac{E_0(z)\overline{E_0(\overline{z})} - \widetilde{E}_0(z)\overline{\widetilde{E}_0(\overline{z})}}{1 - |z|^2},$$

$$d_{2}(z) = \int_{0}^{l} \widetilde{L}_{t}(z) dF_{t} L_{t}^{*}(\overline{z}) = \frac{G_{l}'(z) + \widetilde{G}_{l}'(z)}{2},$$

$$d_{3}(z) = \int_{0}^{l} L_{t}(z) dF_{t} \widetilde{L}_{t}^{*}(\overline{z}) = \frac{E_{0}'(z) - \widetilde{E}_{0}'(z)}{2},$$

$$d_{4}(z) = \int_{0}^{l} \widetilde{L}_{t}(z) dF_{t} \widetilde{L}_{t}^{*}(\overline{z}) = \frac{G_{l}(z) \overline{G_{l}(\overline{z})} - \widetilde{G}_{l}(z) \overline{\widetilde{G}_{l}(\overline{z})}}{1 - |z|^{2}}$$

Now, using the calculations from Lemma 5, we obtain

$$\int_{0}^{l} \Phi_{t} dF_{t} L_{t}^{*}(\overline{z}) = \frac{1-z}{2z} \left(\Phi_{l} JJ \begin{pmatrix} 1\\1 \end{pmatrix} \frac{1}{1-z} - IJ \frac{1}{1-z} (\overline{E_{0}(\overline{z})}, \overline{\widetilde{E}_{0}(\overline{z})}) \right),$$
$$\int_{0}^{l} \Phi_{x} a_{x} \widetilde{L}_{x}^{*}(\overline{z}) = \frac{1-z}{2z} \left(\Phi_{l} J \frac{1}{1-z} \left(\frac{\overline{G_{l}(\overline{z})}}{\widetilde{G}_{l}(\overline{z})} \right) - IJ \frac{1}{1-z} I \begin{pmatrix} 1\\-1 \end{pmatrix} \right).$$

By $I_1(z)$ and $I_2(z)$, we denote the following expressions:

$$I_1(z) = \frac{1}{2z}(1,1)\sqrt{2}S\left(\frac{1}{z}\right)\widetilde{\sigma}_2\left(\Phi_l\left(\begin{array}{c}1\\1\end{array}\right) - J(\overline{E_0(\overline{z})},\overline{\widetilde{E}_0(\overline{z})})\right),$$
$$I_2(z) = \frac{1}{2z}(1,1)\sqrt{2}S\left(\frac{1}{z}\right)\widetilde{\sigma}_2\left(\Phi_l J\left(\begin{array}{c}\overline{G_l(\overline{z})}\\\overline{\widetilde{G}_l(\overline{z})}\end{array}\right) + \left(\begin{array}{c}1\\1\end{array}\right)\right),$$

then

$$\begin{aligned} \frac{I_1(z)}{d_1(z)} &= \widetilde{\mu}(z) + \widetilde{\nu}(z) \frac{d_2(z)}{d_1(z)}, \\ \frac{I_2(z)}{d_3(z)} &= \widetilde{\mu}(z) + \widetilde{\nu}(z) \frac{d_4(z)}{d_3(z)}, \\ \frac{I_1(z)d_3(z) - I_2(z)d_1(z)}{d_1(z)d_3(z)} &= \nu(z) \frac{d_2(z)d_3(z) - d_1(z)d_4(z)}{d_1(z)d_3(z)}. \end{aligned}$$

Hence we have

$$\nu(z) = \frac{I_1(z)d_3(z) - I_2(z)d_1(z)}{d_2(z)d_3(z) - d_1(z)d_4(z)}, \quad \widetilde{\nu}(z) = \frac{I_1(z)d_4(z) - I_2(z)d_2(z)}{d_1(z)d_4(z) - d_2(z)d_3(z)}$$

and obtain the expression

$$B_L(T_2f(z)) = \frac{F_1(z)}{m(z)} + \frac{\tilde{\mu}(z)}{m(z)}F_1(z) + \frac{\tilde{\nu}(z)}{m(z)}F_2(z),$$

which proves the lemma.

From Lemmas 6–11 we have the following theorem.

Theorem. Let a commutative knot \triangle (1.21) be such that $E = \tilde{E}$, dimE = 2, $\sigma_1 = \tilde{\sigma}_1 = J_N$ (1.13), the spectrum of the operator T_1 be located at the point {1} and the vector (1,1) be latent for $(N + z\Gamma)$, i.e., let the function m(z) be such that $(N + z\Gamma)(1, 1)^T = m(z)(1, 1)^T$, and the vector (1, -1) be latent for $\tilde{N}^* + z\tilde{\Gamma}^*$, i.e., let the function n(z) be such that $(\tilde{N}^* + z\tilde{\Gamma}^*)(1, -1)^T = n(z)(1, -1)^T$. Then the main system of the commutative operators $\{T_1, T_2\}$ of the knot \triangle (1.21) is unitarily equivalent to the system of operators that operates in the de Branges space $\mathcal{B}(E, G)$ in the following way:

$$(T_1F)_1(z) = (z + \overline{\mu(\overline{z})})F_1(z) + \nu(\overline{z})F_2(z) + \frac{\overline{E_0(\overline{z})} - \overline{\widetilde{E}_0(\overline{z})}}{2}F_2(0)$$
$$(T_1F)_2(z) = \frac{F_2(z) - F_2(0)}{z},$$
$$(T_2F)_1(z) = \frac{F_1(z)}{m(z)} + \frac{\widetilde{\mu}(z)}{m(z)}F_1(z) + \frac{\widetilde{\nu}(z)}{m(z)}F_2(z),$$
$$(T_2F)_2(z) = \frac{F_2(z)n(z) - F(0)n(0)}{z},$$

where $(F_1(z), F_2(z)) \in \mathcal{B}(E, G)$. The coefficients $\mu(z)$, $\nu(z)$ and $\tilde{\mu}(z)$, $\tilde{\nu}(z)$ have the forms of (2.17), (2.18) and (3.7), (3.8), respectively, $N, \tilde{N}, \Gamma, \tilde{\Gamma}$ are defined by (1.22). The correctness of this definition follows from the reversibility of σ and $\tilde{\sigma}$.

Note. Let us consider the conditions $(N + z\Gamma)(1,1)^T = m(z)(1,1)^T$ and $(\tilde{N}^* + z\tilde{\Gamma}^*)(1,-1)^T = n(z)(1,-1)^T$ from the theorem. If we use (1.22), then the condition of intertwining [7]

$$S(z)N_1^{-1}(N_2 + z\Gamma_1) = \widetilde{N}_1^{-1}(\widetilde{N}_2 + z\widetilde{\Gamma}_1)S(z)$$

will have the form

$$S(z)(N + z\Gamma) = (N + z\Gamma)S(z).$$

After multiplying this equation from left by (1, -1) and from right by $(1, 1)^T$ and using $m(z)(1, 1)^T = (N+z\Gamma)(1, 1)^T$ and $(1, -1)(\widetilde{N}+z\widetilde{\Gamma}) = (1, -1)\overline{n(\overline{z})}$, we obtain

$$m(z)(1,-1)S(z)(1,1)^T = \overline{n(\overline{z})}(1,-1)S(z)(1,1)^T.$$

Hence the conditions imply that either $m(z) = \overline{n(\overline{z})}$ or $(1,1)S(z)(1,1)^T = 0$ for $\forall z \in C$.

Thus the functional model is built for the commutative system of the operators T_1, T_2 , which is the main for the commutative knot $\triangle(1.21)$ satisfying the conditions of the theorem. However, T_1 and T_2 affect one of the components $[F_1(z), F_2(z)]$ as a shift and the other one as a multiplication by special holomorphic functions.

References

- M.S. Livshits and A.A. Yantsevich, Theory of Operator Knots in Hilbert Spaces. Izdat. Kharkiv Univ., Kharkov, 1971. (Russian)
- [2] V.A. Zolotarev, Analytical Methods of Spectral Representation of Non-unitary and Non-selfadjoint Operators. Kharkiv National University, Kharkov, 2003. (Russian)
- [3] Lui De Branges, Hilbert Spaces of Entire Functions. Prentice-Hall, London, 1968.
- [4] M.S. Livshits, About one Class of Linear Operators in Hilbert Space. Math. Collection 19 (1946), No. 2, 236–260.
- [5] B.S. Nagy and C. Foias, Harmonic Analysis of Operators in Hilbert Space. Mir, Moscow, 1970. (Russian)
- [6] V.A. Zolotarev and V.N. Syrovatsky, De Branges Transform on the Cicle. Vestnik KNU V.N. Karazin. Number 711, Series "Mathematics and Applied Mechanics", Kharkiv National University, Kharkiv, 2005. (Russian)
- [7] V.A. Zolotarev, Model Representations of Commutative Systems of Linear Operators. — Funct. Anal. and Appl. 22 (1988), No. 1, 66–68.
- [8] V.A. Zolotarev, Functional Model of Commutative Operator Systems. J. Math. Phys., Anal., Geom. 4 (2008), No. 3, 420–440.
- [9] V.N. Syrovatsky, Functional Models of Commutative Systems of Operators Close to the Unitary. Vestnik KNU V.N. Karazin. Number 1018, Series "Mathematics and Applied Mechanics", Kharkiv National University, Kharkiv, 2012. (Russian)