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Introduction

Let H be a complex Hilbert space with an inner product (·, ·). We use the
symbols dom(T ), ran(T ), ker(T ) for the domain, the range, and the null-subspace
of a linear operator T , respectively. The resolvent set of T is denoted by ρ(T ).
The linear space of bounded operators acting between Hilbert spaces H1 and H2

is denoted by L(H1,H2) and the Banach algebra L(H,H) by L(H).

A linear operator T in a complex Hilbert space H is called accretive if its nu-

merical range W (T )
def
= {(Tu, u), u ∈ dom(T ), ‖u‖ = 1} is contained in the closed

right half-plane, i.e., Re(Tu, u) > 0 for all u ∈ dom(T ).

An accretive operator T is called maximal accretive or m-accretive if T is
closed and has no accretive extensions in H [23, 28,32,33].

Let α ∈ [0, π/2). Denote by Θ(α) the sector in the complex plane

Θ (α)
def
= {z ∈ C : |arg z| 6 α} .
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A linear operator S is called sectorial with vertex at the origin and the semi-
angle α [23] if W (S) ⊆ Θ (α) . In particular, if α = 0, then (Sx, x) ≥ 0 for all x ∈
dom(S), i.e., S is symmetric and nonnegative operator.

A linear operator S is called maximal sectorial (m-sectorial for short) if it is
sectorial in the sense given above and m-accretive. If T is m-α-sectorial operator
and if γ ∈ (α, π/2), then

λ ∈ C \Θ(γ) =⇒ ||(T − λI)−1|| ≤
1

|λ| sin(γ − α)
, (0.1)

and the one-parameter semigroup U(t) = exp(−tT ), t ≥ 0, admits a holomorphic
contractive continuation into the interior of the sector Θ(π/2− α) [23].

In our recent paper [11], for the general case of an arbitrary closed densely
defined sectorial operator S, we proposed a new approach for solving the prob-
lem of parametrization of all m-accretive extensions. In particular, if {H,Γ}
is a boundary pair of S, then there is a bijective correspondence between all
m-accretive extensions S̃ of S and all pairs 〈Z, X〉, where Z is an m-accretive
linear relation in H and X : dom(Z) → ran(SF) is a linear operator such that
‖Xe‖2 6 Re(Z(e), e)H ∀e ∈ dom(Z) (see Section 2 and Theorem 2.5, where the
domains, actions, regular points, resolvents, and eigenvalues of m-accretive ex-
tensions are described). Our method is applicable, in particular, to a sectorial
operator S having a unique m-sectorial extension (the Friedrichs extension SF).
In the present paper, assuming that SF is not a unique m-sectorial extension of
S, we apply our method for describing all its m-sectorial extensions, i.e., we find
necessary and sufficient conditions on a pair 〈Z, X〉 such that the corresponding
S̃ is an m-sectorial extension of S (see Theorem 3.3 and Theorem 3.9). Let SN

be the Krĕın–von Neumann extension of S [5,6] and let D[SN] be the domain of a
closed sesquilinear form associated with SN. For a sectorial operator S satisfying
the condition dom(S∗) ⊆ D[SN] a survey of results on the m-accretive and m-
sectorial extensions of S is given in [9]. The latter condition is valid iff dom(S∗F)+
dom(S∗N) = dom(S∗); in particular, it holds for a coercive sectorial operator S.

Let A be a densely defined closed symmetric operator in H. The extensions Ã
of A possessing the property A ⊂ Ã ⊂ A∗ are called the quasi-selfadjoint (proper,
intermediate) extensions ofA. The problem of the existence and the description of
all quasi-selfadjoint m-accretive extensions of a nonnegative symmetric operator
via linear-fractional transformation was solved in [12] and via abstract boundary
conditions in [4,16,17,24,30,36,37]. In Section 4, we use the approach proposed
in [11] for studying these extensions.

An interesting example of a densely defined closed nonnegative symmetric
operator is the following differential operator in the Hilbert space L2(R2):

dom(A) =
{
f(x) ∈W 2

2 (R2) : f(y1) = · · · = f(ym) = 0
}
, Af = −∆f,
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where x = (x1, x2) ∈ R2, W 2
2 (R2) is the Sobolev space, and ∆ = ∂2

∂x2
1

+ ∂2

∂x2
2

is the

Laplacian. The operator A is the base in a planar model of point interactions
with a finite number of centers [2]. The model describes the motion of a particle
in a potential which is given by Schrödinger Hamiltonian supported on a discrete
finite set of points (“sources”). These models are widely used in solid state,
atomic and nuclear physics.

For the case of a single center (m = 1), the free Hamiltonian −∆, dom(−∆) =
W 2

2 (R2) is a unique nonnegative selfadjoint extension of A, which is also the
Friedrichs extension AF of A [1,18]. Therefore A has neither quasi-selfadjoint non-
selfadjoint m-accretive extensions nor nonselfadjoint m-sectorial extensions [9].
In our paper [11] we described all m-accretive (non-quasi-selfadjoint) extensions
of A. If m ≥ 2, the free Hamiltonian is still the Friedrichs extension of A, but
there are other nonnegative selfadjoint extensions [1] and, therefore, there exist
non-selfadjoint m-accretive quasi-selfadjoint extensions and m-sectorial exten-
sions. In this case, the Friedrichs and Krĕın–von Neumann extensions are not
disjoint (dom(AF) ∩ dom(AN) ⊃ dom(A)) [19], i.e., the condition dom(A∗) ⊆
D[AN] does not hold [29]. In the last section, we apply the abstract results of this
paper to the parametrization of all m-sectorial and all nonnegative selfadjoint
extensions of A in the case of two-center point interactions (m = 2).

1. Preliminaries

1.1. Sectorial forms and operators. The basic definitions and results on
sesquilinear forms can be found in [23]. If τ is a closed densely defined sectorial
form in the Hilbert space H, then by the First Representation Theorem [23, 25],
there exists a uniquem-sectorial operator T in H associated with τ in the following
sense: (Tu, v) = τ [u, v], for all u ∈ dom(T ) and for all v ∈ dom(τ). The adjoint
operator T ∗ is associated with the adjoint form τ∗[u, v] := τ [v, u]. Denote by
TR the nonnegative selfadjoint operator associated with the real part τR[u, v] :=
(τ [u, v] + τ∗[u, v]) /2 of the form τ . The operator TR is called the real part of T .
According to the Second Representation Theorem [23], the equality dom(τ) =

dom(T
1
2

R ) holds. Moreover, τ [u, v] = ((I + iG)T
1
2
Ru, T

1
2
R v), u, v ∈ dom(τ), where

G is a bounded selfadjoint operator in the subspace ran(TR) and ||G|| ≤ tanα iff
τ is α-sectorial.

In the sequel we will use the following notations for an m-sectorial operator T :

D[T ]
def
= dom(T

1
2

R ), R[T ]
def
= ran(T

1
2

R ), T̂ = T �ran(T ), T̂R = TR�ran(T ).

Note that for an m-accretive operator T the equality ker(T ) = ker(T ∗) holds; if
T is m-sectorial, then ker(T ) = ker(T ∗) = kerTR, and this yields that ker(T̂ ) =
ker(T̂ ∗) = ker(T̂R) = {0}.
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Proposition 1.1 ([6]). If T = T
1
2

R (I+ iG)T
1
2

R is an m-α-sectorial operator in
H and γ ∈ (α, π/2), then

R[T ] =

{
f ∈ H : lim

λ→0,
λ∈C\Θ(α)

∣∣((T − λI)−1f, f
)∣∣ <∞}, (1.1)

lim
λ→0,

λ∈C\Θ(γ)

(
(T − λI)−1f, g

)
=T̂−1[f, g]

=

(
(I + iG)−1T̂

− 1
2

R f, T̂
− 1

2
R g

)
, f, g ∈ R[T ], (1.2)

lim
λ→0,

λ∈C\Θ(γ)

T
1
2

R (T − λI)−1T
1
2

R g =(I + iG)−1g, g ∈ D[T ]	 ker(T ). (1.3)

1.2. The Friedrichs and Krĕın–von Neumann m-sectorial exten-
sions. Let S be an α-sectorial operator. It is well known [23] that the form
(Su, v), u, v ∈ dom(S), is closable. We let S[u, v] denote the closure of it. The
domain of S[u, v] is denoted by D[S]. With the closed form S[u, v] is associated
the maximal α-sectorial operator SF, which is called the Friedrichs extension of
S [23]. So, D[S] = D[SF] and SF[u, v] = S[u, v] for all u, v ∈ D[S]. Let SFR be

the real part of SF. Clearly, D[S] = dom(S
1
2
FR).

In the case of a nonnegative symmetric operator S (α = 0), M.G. Krĕın [25]
discovered that the set of all its nonnegative selfadjoint extensions has a minimal
element (in the sense of associated closed quadratic forms). This minimal element
SN was defined in [25] by means of a linear-fractional transformation. If α 6= 0,
then the corresponding m-sectorial analog of the extremal extension also exists
and it can be defined in a similar way (see [5, 6, 9]). We preserve the same
notation SN and the name Krĕın–von Neumann extension for the general case
of not necessarily symmetric sectorial operator S. We notice that interesting
applications of Krĕın–von Neumann extension of nonnegative symmetric operator
in the elasticity theory can be found in [13,21].

Let

Nλ
def
= H	 ran(S − λ̄I)

be the defect subspace of a linear operator S. If S is closed and densely defined,
then Nλ = ker(S∗ − λI).

For the operators SF, SN and for an arbitrary m-sectorial extension S̃ of S,
the following relations are valid [5, 6, 9]:

D[S] ∩Nλ = {0}, D[SN] ∩Nλ = R[SF] ∩Nλ, (1.4)

D[SN] = D[S]+̇ (Nλ ∩D[SN]) , λ ∈ ρ(S∗F). (1.5)

208 Journal of Mathematical Physics, Analysis, Geometry, 2017, Vol. 13, No. 3



On m-Sectorial Extensions of Sectorial Operators

Fix z ∈ ρ(S∗F) and define the linear manifold L:

L
def
= D[S]uNz, z ∈ ρ(S∗F). (1.6)

It is easy to see [11] that L does not depend on the choice of z ∈ ρ(S∗F). We will
denote by Pz,F and Pz the skew projectors in L onto D[S] and Nz, corresponding
to the decomposition (1.6). When z = i, we denote these projectors by PF and Pi,
respectively. Since dom(S∗) = dom(S∗F)+̇Nλ for λ ∈ ρ(S∗F), we have dom(S∗) ⊂
L. From (1.5), it follows that D[SN] ⊆ L. Hence, the inclusion dom(S∗) ⊆ D[SN]
holds iff D[SN] = L (see [5, 6]).

We will use the notations SFR and SNR for “real parts” of the Friedrichs and
Krĕın–von Neumann extensions, respectively. The next relation was established
in [6]:

SN[u, v] =
(
(I + iGF)

(
S

1
2
FRPz,Fu+ z(I − iGF)−1Ŝ

− 1
2

FRPzu
)
,(

S
1
2
FRPz,Fv + z(I − iGF)−1Ŝ

− 1
2

FRPzv
))
, u, v ∈ D[SN]. (1.7)

The operator S has a unique m-sectorial extension iff, for some λ ∈ ρ(S∗F)
(then for all λ ∈ ρ(S∗F)):

sup
x∈dom(S)

|(fλ, x)|2

Re(Sx, x)
=∞, ∀fλ ∈ Nλ \ {0}.

Moreover, (see [5, 6, 9]),

SN 6= SF ⇐⇒ D[SN] ∩Nλ 6= {0} ⇐⇒ R[SF] ∩Nλ 6= {0}, λ ∈ ρ(S∗F). (1.8)

Taking into account (1.1), (1.2), and (1.8), for µ ∈ C \Θ(α) we have

ϕµ ∈ Nµ ∩D[SN] ⇐⇒ lim
λ→0,

λ∈C\Θ(α)

∣∣((S∗F − λI)−1ϕµ, ϕµ
)∣∣ <∞. (1.9)

1.3. Boundary triplets and abstract boundary conditions for quasi-
selfadjoint extensions of nonnegative symmetric operator. Let A be a
closed densely defined symmetric operator in H. Recall the definition of a bound-
ary triplet (boundary value space) [20] for A∗.

Definition 1.2. A triplet {H,Γ1,Γ0} is called a boundary triplet of A∗ if H
is a Hilbert space and Γ0,Γ1 are bounded linear operators from the Hilbert space
H+ = dom(S∗) with the graph norm into H such that the map ~Γ =

〈
Γ0,Γ1

〉
is a

surjection from H+ onto H2 = H⊕H, and the Green identity holds:

(A∗f, g)− (f,A∗g) = (Γ1f,Γ0g)H − (Γ0f,Γ1g)H , ∀f, g ∈ H+. (1.10)
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In the sequel we use linear relations to describe the extensions in terms of
abstract boundary conditions. One can find basic concepts and properties related
to these objects in, for instance, [3, 9, 16,20,34]. The formulae

dom(Ã) =
{
u ∈ dom(A∗) : ~Γu ∈ T̃

}
, Ã = A∗ � dom(Ã) (1.11)

give a one-to-one correspondence between all quasi-selfadjoint extensions Ã of A
(A ⊂ Ã ⊂ A∗) and all linear relations T̃ in H. Moreover, Ã∗ corresponds to T̃∗.
Therefore, an extension Ã is selfadjoint iff the relation T̃ is selfadjoint in H.

As it was shown in [15, 16], the operators A0, A1, defined as follows: Ak =
A∗�Ker Γk, k = 0, 1, are mutually transversal selfadjoint extensions of A, i.e.,
dom(A∗) = dom(A0) + dom(A1).

The operator-valued function Γ0(λ) := (Γ0�Nλ)−1 [15] is the γ-field corre-
sponding to A0 [26, 27], that is, ran(Γ0(λ)) = Nλ and

Γ0(λ) = Γ0(z) + (λ− z)(A0 − zI)−1Γ0(z).

Note that as a consequence of (1.10), one can obtain the equality

Γ0(λ) =
(
Γ1(A0 − λI)−1

)∗
. (1.12)

V. Derkach and M. Malamud [15, 16] defined the Weyl function M0(λ) by the
equality

M0(λ) = Γ1Γ0(λ). (1.13)

The function M0 is the Krĕın–Langer Q-function [26, 27], i.e., belongs to the
Nevanlinna class operator-valued functions (M0 is holomorphic in the upper and
lower half-planes, M0(λ)∗ = M0(λ̄) and (M0(λ)−M0(λ)∗)/(λ− λ̄) ≥ 0 for all λ,
Imλ 6= 0), and the identity

M0(λ)−M0(z) = (λ− z)Γ0(z̄)∗Γ0(λ) (1.14)

holds. In terms of the boundary triplet, the connection between a quasi-
selfadjoint extension Ã

T̃
defined by relations (1.11), and its resolvent for all λ ∈

ρ(A0) ∩ ρ(Ã
T̃

) is given by the Krĕın resolvent formula(
Ã

T̃
− λI

)−1
=
(
A0 − λI

)−1
+ Γ0(λ)

(
T̃−M0(λ)

)−1
Γ0(λ)

∗
. (1.15)

Theorem 1.3 ([14–16,29]). Let A be a closed nonnegative symmetric operator
and let {H,Γ1,Γ0} be a boundary triplet of A∗ such that A0 = AF(= A∗�Ker Γ0).
Then A has a non-unique nonnegative selfadjoint extension iff

D0 =
{
h ∈ H : lim

x↑0
(M0(x)h, h)H <∞

}
6= {0},
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and the quadratic form τ [h] = lim
x↑0

(M0(x)h, h)H, D[τ ] = D0 is bounded from be-

low. Denote by M0(0) the selfadjoint linear relation in H associated with τ. Then
the Krĕın–von Neumann extension AN can be defined by the boundary condition

dom(AN) = {u ∈ dom(A∗) : 〈Γ0u,Γ1u〉 ∈M0(0)} .

The relation M0(0) is also the strong resolvent limit of M0(x) when x → −0.
Moreover, A0 and AN are disjoint iff D0 = H, and transversal iff D0 = H.

Theorem 1.4 ([17]). There is a one-to-one correspondence given by (1.11)
between the m-accretive extensions Ã

T̃
and the m-accretive linear relations T̃

satisfying the condition

dom(T̃) ⊆ D0, Re(T̃x, x) ≥ τ [x], x ∈ dom(T̃). (1.16)

The extension Ã
T̃

is m-α-sectorial iff the form (T̃x, y)− τ [x, y] is α-sectorial.

2. Abstract Boundary Conditions for m-Accretive Extensions of
Sectorial Operators

Next, we recall some definitions and results from [11]. Let the linear manifold
L be defined by (1.6) and let the sesquilinear form η be given by

η[u, v]
def
= SFR[P−1,Fu,P−1,Fv] + (P−1u,P−1v), u, v ∈ L.

Then η is nonnegative and closed in H. Therefore L is a Hilbert space w.r.t. the
inner product

(u, v)η = η(u, v) + (u, v)H, u, v ∈ L.

Definition 2.1 ([11]). A pair {H,Γ} is called a boundary pair of S, if H is
a Hilbert space and Γ ∈ L(L,H) is such that ker(Γ) = D[S], ran(Γ) = H.

Let
γ(λ) = (Γ�Nλ)−1 , λ ∈ ρ(S∗F).

The following relations are valid:

γ(λ) = γ(z) + (λ− z)(S∗F − λI)−1γ(z), (2.1)

PFγ(λ)e = (λ− i)(S∗F − λI)−1γ(i)e, Piγ(λ)e = γ(i)e, e ∈ H.

In particular, it follows that the norms ‖ · ‖H and ‖ · ‖η are equivalent on Nλ.
Hence, γ(λ) ∈ L(H,H) for all λ ∈ ρ(S∗F), and it is a holomorphic operator-valued
function. The operator-valued function γ(λ) is called a γ-field of S associated
with the boundary pair {H,Γ}. Clearly, γ(λ) maps H onto Nλ. Hence S∗γ(λ) =
λγ(λ) and ker(γ∗(λ)) = ran(S − λ̄I).
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Define on L one more sesquilinear form l[u, v]:

l[u, v] = SF[PFu,PFv]− i(Piu,PFv)− i(PFu,Piv)− i(Piu,Piv). (2.2)

Due to the equality Re l[u] =
∥∥∥S 1

2
FRPFu

∥∥∥2
, u ∈ L, the form l[u, v] is accretive.

Moreover, infϕ∈D[S] {Re l[u− ϕ]} = 0 for all u ∈ L and l[ϕ, v] = (ϕ, S∗v) for all
ϕ ∈ D[S], v ∈ dom(S∗).

Relations (1.7) and (2.2) imply the following representation of the form SN[·, ·]:

SN[u, v] = l[u, v] +

[
i (γ(i)Γu, γ(i)Γv) +

(
(I − iGF)−1Ŝ

− 1
2

FR γ(i)Γu, Ŝ
− 1

2
FR γ(i)Γv

)]
+ 2i

(
(I − iGF)−1Ŝ

− 1
2

FR γ(i)Γu, S
1
2
FRPFv

)
, u, v ∈ D[SN]. (2.3)

Definition 2.2 ([11]). The triplet {H, G,Γ} is called a boundary triplet for
S∗ if {H,Γ} is a boundary pair for S and G : dom(S∗)→ H is a linear operator
such that the relation

l∗[u, v] = (S∗u, v)− (Gu,Γv)H, ∀u ∈ dom(S∗), ∀v ∈ L, (2.4)

is valid, where the form l is given by (2.2).

It is shown in [11] that there exists a unique operator G : dom(S∗)→ H such
that (2.4) holds and, moreover,

Gu = γ(i)∗(S∗ − iI)u.

Next, we define the operator-valued functions Q(λ) ∈ L(H), G(λ) ∈ L(H,H),
Φ(λ) ∈ L(H,H), q(λ) ∈ L(H,H), λ ∈ ρ(SF) associated with the boundary triplet
for S∗, see [11]:

Q(λ)
def
= Gγ(λ) = γ(i)∗(S∗F − iI)γ(λ) = (λ− i)γ(i)∗γ(λ), (2.5)

q(λ)
def
=
(
G(S∗F −λ̄I)−1

)∗
,

G(λ)
def
=

(
S

1
2
FRPFγ(λ̄)

)∗
,

Φ(λ)
def
=

(
S

1
2
FR(S∗F − λ̄I)−1

)∗
.

Observe that the function Q(λ) is an analog of the Weyl function (1.13)
corresponding to a boundary triplet of the adjoint to a symmetric operator, while
q(λ) is an analog of the function from (1.12).

Let L be a linear operator in L defined as follows:

dom(L) = dom(SF)uNi,

L(uF + ui) = SFuF − iui, uF ∈ dom(SF), ui ∈ Ni. (2.6)
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Definition 2.3 ([11]). Let S be a closed densely defined sectorial operator
and let {H,Γ} be a boundary pair for S. A triplet {H, G∗,Γ} is called a boundary
triplet for L if G∗ : dom(L)→ H is a linear operator such that

l[u, v] = (Lu, v)− (G∗u,Γv)H, ∀u ∈ dom(L), ∀v ∈ L.

The operator G∗ is uniquely defined [11] and, moreover, for each λ ∈ ρ(SF),

G∗f = γ(λ̄)
∗
(SF − λI)f, f ∈ dom(SF),

G∗q(λ)e = Q(λ̄)
∗
e, e ∈ H. (2.7)

Thus, given a boundary pair {H,Γ} for an operator S, the boundary triplets
corresponding to it are {H, G,Γ} for S∗ and {H, G∗,Γ} for L, and we have the
abstract Green formula

(Lu, v)− (u, S∗v) = (G∗u,Γv)H − (Γu,Gv)H, ∀u ∈ dom(L), ∀v ∈ dom(S∗).

Theorem 2.4 ([11]). Let S be a densely defined closed sectorial operator.
Let {H,Γ} be a boundary pair for S and {H, G,Γ} be a corresponding boundary
triplet for S∗. If S̃ is an m-accretive extension of S, then there exist the linear
operators

Z : dom(S̃)→ H and X : dom(X) = Γdom(S̃)→ ran(SF)

such that:

1) dom(S) ⊆ ker(Z);

2) (S̃u, v) = l[u, v] + (Zu,Γv)H + 2(XΓu, S
1
2
FRPFv), ∀u ∈ dom(S̃), v ∈ L;

3) Z = {〈Γu, Zu〉, u ∈ dom(S̃)} is an m-accretive linear relation in H;

4) ‖Xe‖2 6 Re(Z(e), e)H for all e ∈ dom(Z) = Γdom(S̃).

Theorem 2.5 ([11]). There is a bijective correspondence between all m-
accretive extensions S̃ of S and all pairs 〈Z, X〉, where Z is an m-accretive linear
relation in H and X : dom(Z)→ ran(SF) is a linear operator such that

‖Xe‖2 6 Re(Z(e), e)H ∀e ∈ dom(Z). (2.8)

This correspondence is given by the boundary conditions for the domain and the
action of S̃ as follows: for all Reλ < 0,

dom(S̃) = {u ∈ L : 1) u− (q(λ)− 2Φ(λ)X)Γu ∈ dom(SF);

2) G∗(u+ 2Φ(λ)XΓu) ∈ (Z + 2G(λ)X)Γu} ,

S̃u =SF

(
u− (q(λ)− 2Φ(λ)X)Γu

)
+ λ

(
q(λ)− 2Φ(λ)X

)
Γu. (2.9)
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Set
W(λ) := Z−Q(λ̄)

∗
+ 2G(λ), λ ∈ ρ(SF). (2.10)

Then

1) a number λ ∈ ρ(SF) is a regular point of S̃ iff W(λ)−1 ∈ L(H), and

(S̃ − λI)−1 =(SF − λI)−1 + (q(λ)− 2Φ(λ)X)W(λ)−1γ(λ̄)
∗
, (2.11)

dom(S̃)=
(
I + (q(λ)− 2Φ(λ)X)W(λ)−1γ(λ̄)

∗
(SF − λI)

)
dom(SF), (2.12)

S̃u=(SF − λI)f + λu (2.13)

for

u =
(
I + (q(λ)− 2Φ(λ)X)W(λ)−1γ(λ̄)

∗
(SF − λI)

)
f, f ∈ dom(SF); (2.14)

2) a number λ ∈ ρ(SF) is an eigenvalue of S̃ iff ker (W(λ)) 6= {0}, and

ker(S̃ − λI) = (q(λ)− 2Φ(λ)X) ker (W(λ)) .

Remark 2.6. Relations (2.9) remain valid for all λ ∈ ρ(S̃)∩ ρ(SF). The resol-
vent formula (2.11) is an analog of (1.15).

Let S be a densely defined closed sectorial operator. Following [7, 8], we can
define the linear operator Sz for all z ∈ C, Re z ≤ 0:

dom(Sz) = dom(S)uNz and Szh = Sϕ− zϕz, h = ϕ+ ϕz ∈ dom(Sz). (2.15)

Proposition 2.7 ([7, 8]). The operator Sz is an m-accretive extension of S.

Proof. Proposition was proved in [7, 8] for Re z < 0. Let us prove the state-
ment for z = ix, x ∈ R. Let g = ϕ+ ϕix, ϕ ∈ dom(S), ϕix ∈ Nix. Then

(Sixg, g) = (Sϕ− ixϕix, ϕ+ ϕix) = (Sϕ,ϕ)− ix‖ϕix‖2 − 2i Im(ix(ϕix, ϕ)).

Hence Re(Sg, g) = Re(Sϕ,ϕ) ≥ 0 for all g ∈ dom(Six). Furthermore, it is easy
to verify that

dom(S∗ix) = (S∗F − ixI)−1(S + ixI)dom(S)+̇Nix,

S∗ix
(
(S∗F − ixI)−1(S + ixI)f+ϕix

)
= S∗F(S∗F − ixI)−1(S + ixI)f+ixϕix,

f ∈ dom(S), ϕix ∈ Nix,

Re(S∗ixh, h) = Re
(
S∗F(S∗F − ixI)−1(S + ixI)f, (S∗F − ixI)−1(S + ixI)f

)
≥ 0

for h = (S∗F − ixI)−1(S + ixI)f + ϕix, f ∈ dom(S), ϕix ∈ Nix. This means
that S∗ix is accretive. Thus, Six and S∗ix are accretive. It follows that Six is
m-accretive.
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Note that in general from (2.15) it follows for Re z ≤ 0 that

dom(S∗z ) = {g ∈ dom(S∗) : (S∗ + z̄I)g ∈ ran(S − z̄I)} , S∗z = S∗�dom(S∗z ).

In addition, for the boundary operators in the boundary triplets in Definitions
2.2 and 2.3, the following equalities hold:

ker(G) = dom(S∗i ), ker(G∗) = dom(Si).

Next we give expressions for the operators Zz and Xz in the pair 〈Zz, Xz〉
corresponding to Sz, Re z ≤ 0, in accordance with Theorem 2.4.

Proposition 2.8. Zz is the graph of the operator Zz = −Q(z), dom(Zz) =
H, and Xz = −G(z̄)∗. In addition, for u ∈ dom(Sz), v ∈ L,

(Szu, v) = l[u, v]−
(
Q(z)Γu,Γv

)
H
− 2
(
G(z̄)∗Γu, S

1
2
FRPFv

)
. (2.16)

Proof. Define for u ∈ dom(Sz),

Zzu := γ(i)∗(Sz + iI)u,

Mzu :=
1

2

(
Ŝ
− 1

2
FR (Szu+ iPiu)− (I + iGF)S

1
2
FRPFu

)
. (2.17)

Observe that from here one obtains the inclusions dom(S) ⊆ ker(Z) and
dom(S) ⊂ ker(Mz). In addition, due to definition of L (1.6), Definition 2.1 of
a boundary pair, and (2.15), we have

Γdom(Sz) = H.

According to the proof of Theorem 2.4 (see [11]), the relations

Zz = {〈Γu, Zzu〉 , u ∈ dom(Sz)} and XzΓu = Mzu

hold. Then, taking into account that u = γ(z)Γu and relations (2.4), (2.5), (2.15),
we have

Zzu = γ(i)∗(Sz + iI)γ(z)Γu = γ(i)∗(−zγ(z)Γu+ iγ(z)Γu) = −Q(z)Γu.

Let Γu = e, then u = ϕ+ γ(z)e, ϕ ∈ dom(S), and

XzΓu = Mzu = Mzγ(z)e

=
1

2

(
Ŝ
− 1

2
FR (Szγ(z)e+ iPiγ(z)e)− (I + iGF)S

1
2
FRPFγ(z)e

)
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=
1

2

(
Ŝ
− 1

2
FR (−zγ(z)e+ iγ(i)e)− (I + iGF)S

1
2
FRPFγ(z)e

)
=

1

2

(
Ŝ
− 1

2
FR (−S∗γ(z)e+ S∗γ(i)e)− (I + iGF)S

1
2
FRPFγ(z)e

)
=

1

2

(
−Ŝ−

1
2

FRS
∗
FPFγ(z)e− (I + iGF)S

1
2
FRPFγ(z)e

)
=

1

2

(
−(I − iGF)S

1
2
FRPFγ(z)e− (I + iGF)

)
S

1
2
FRPFγ(z)e

= −S
1
2
FRPFγ(z)e = −G(z̄)∗Γu.

Equality (2.16) follows from Theorem 2.4.

3. m-Sectorial Extensions

By Theorem 2.5, there is a bijective correspondence between all m-accretive
extensions S̃ of S and all pairs 〈Z, X〉 satisfying condition (2.8). In the sequel
we will assume that a densely defined closed sectorial operator S admits more
than one m-sectorial extension, i.e., one of the equivalent conditions in (1.8) is
satisfied. Our main goal is to establish additional conditions for a pair 〈Z, X〉
guaranteeing that the corresponding m-accretive extension S̃ is sectorial.

Next, we will need the following auxiliary result:

Lemma 3.1. The following assertions hold.

1. If T is m-accretive and β ∈ (0, π/2), then

lim
z→0,

π/2+β≤| arg z|≤π

z(T − zI)−1h =

{
−h, h ∈ ker(T )

0, h ∈ ran(T )
. (3.1)

2. If T is m-α-sectorial and β ∈ (α, π/2), then

lim
z→0,

z∈C\Θ(β)

z(T − zI)−1h =

{
−h, h ∈ ker(T )

0, h ∈ ran(T )
. (3.2)

Proof. 1. Let h ∈ ker(T ). Then (T − zI)−1h = −h
z for all z ∈ ρ(T ) \ {0}.

Therefore,
lim
z→0,

π/2+β≤| arg z|≤π

z(T − zI)−1h = −h.

Now let h ∈ ran(T ). Then h = Tϕ, ϕ ∈ dom(T ) and

z(T − zI)−1h = z(T − zI)−1Tϕ
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= z(T − zI)−1(T − zI + zI)ϕ = zϕ− z2(T − zI)−1ϕ.

Taking into account that

‖(T − zI)−1‖ 6
1

|Re z|
, Re z < 0,

and |Re z| ≥ |z| sinβ for π/2 + β ≤ | arg z| ≤ π, we get for all ϕ ∈ dom(T ) that

lim
z→0,

π/2+β≤| arg z|≤π

z(T − zI)−1Tϕ = 0.

Further, since ran(T ) is dense in ran(T ) and

‖z(T − zI)−1‖ 6
1

sinβ
, π/2 + β ≤ | arg z| ≤ π,

we have
lim
z→0,

π/2+β≤| arg z|≤π

z(T − zI)−1h = 0

for all h ∈ ran(T ). Thus (3.1) is valid.
2. Relation (3.2) follows from (0.1).

Proposition 3.2. Let S be a densely defined closed α-sectorial operator, γ(z)
be its γ-field corresponding to the boundary pair {H,Γ} of S. Suppose SF 6= SN.
Then for all e ∈ H such that γ(λ)e ∈ D[SN],

lim
z→0,

z∈C\Θ(β)

zγ(z)e = 0, where β ∈ (α, π/2).

Proof. Let γ(λ)e ∈ D[SN]. Since D[SN] ∩ Nλ = R[SF] ∩ Nλ, then γ(λ)e ∈
R[SF]. Since R[SF] = ran(SF) = ran(S∗F), from Lemma 3.1 and (2.1), we have

lim
z→0,

z∈C\Θ(β)

zγ(z)e = lim
z→0,

z∈C\Θ(β)

(
zγ(λ)e+ (z − λ)z(S∗F − zI)−1γ(λ)e

)
= 0.

Theorem 3.3. Let S be a densely defined closed sectorial operator, γ(z) be
its γ-field corresponding to the boundary pair {H,Γ} of S. Define a set in H:

D0 :=

{
e ∈ H : lim

z→0,
z∈C\Θ(α)

|(Q(z)e, e)H| <∞

}
. (3.3)

Then
γ(µ)D0 = Nµ ∩D[SN]
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for all µ ∈ C \Θ(α) and
D0 = ΓD[SN].

Moreover, for all e, g ∈ D0 the following limits exist:

Ω0[e, g] =− lim
z→0

z∈C\Θ(β)

(Q(z)e, g) = i (γ(i)e, γ(i)g)

+

(
(I − iGF)−1Ŝ

− 1
2

FR γ(i)e, Ŝ
− 1

2
FR γ(i)g

)
= i (γ(i)e, γ(i)g) + S∗−1

F [γ(i)e, γ(i)g] , (3.4)

X0e :=− lim
z→0

z∈C\Θ(β)

G(z̄)∗e = i(I − iGF)−1Ŝ
− 1

2
FR γ(i)e, β ∈ (α, π/2). (3.5)

Proof. Let e ∈ H. Using (2.1) and (2.5), we have

(Q(z)e, e)H = (z − i)(γ(i)e+ (z − i)((S∗F − zI)−1γ(i)e, γ(i)e)

for z ∈ C \Θ(α). Hence,

((S∗F − zI)−1γ(i)e, γ(i)e) = −
1

z − i
(γ(i)e, γ(i)e) +

1

(z − i)2
(Q(z)e, e)H.

The latter equality and (1.1) yield

lim
z→0,

z∈C\Θ(α)

|(Q(z)e, e)H| <∞ ⇐⇒ lim
z→0,

z∈C\Θ(α)

∣∣((S∗F − zI)−1γ(i)e, γ(i)e)
∣∣ <∞

⇐⇒ γ(i)e ∈ R[SF] ∩Ni.

Let D0 be defined by (3.3). Then, using (1.4), (1.9) and Proposition 3.2, we
obtain

e ∈ D0 ⇐⇒ γ(i)e ∈ Ni ∩D[SN].

Hence γ(µ)D0 = Nµ ∩ D[SN] for all µ ∈ C \ Θ(α). Observe that D0 is a linear
manifold. Equality (1.5) yields that ΓD[SN] = D0.

From the equality γ(z) = γ(i) + (z− i)(S∗F− zI)−1γ(i), taking account of the

inclusion γ(i)D0 ⊆ ran(S∗F) and applying Proposition 3.2, we obtain

lim
z→0,

z∈C\Θ(β)

zγ(z)e = 0, for e ∈ D0, β ∈ (α, π/2).

We will now prove the remaining equalities of the theorem.
Let e, g ∈ H and z ∈ C \Θ(β), β ∈ (α, π/2). Using (1.2), we have

Ω0[e, g] = − lim
z→0

(Q(z)e, g)
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= − lim
z→0

(
(z − i)(γ(i)e+ (z − i)((S∗F − zI)−1γ(i)e, γ(i)g)

)
= i (γ(i)e, γ(i)g) +

(
(I − iGF)−1Ŝ

− 1
2

FR γ(i)e, Ŝ
− 1

2
FR γ(i)g

)
.

Analogously, using (1.3), for X0 we have

X0e = − lim
z→0
G(z̄)∗e = − lim

z→0
S

1
2
FRPFγ(z̄)e

= − lim
z→0

(z̄ − i)S
1
2
FR(S∗F − z̄I)−1S

1
2
FRŜ

− 1
2

FR γ(i)e = i(I − iGF)−1Ŝ
− 1

2
FR γ(i)e.

Clearly, the form Ω0[e, g] can also be rewritten as follows:

Ω0[e, g] = i (γ(i)e, γ(i)g)− i
(
X0e, Ŝ

− 1
2

FR γ(i)g

)
, e, g ∈ D0.

Using the expressions for Ω0 and X0, by straightforward calculations, one can
deduce that

Re Ω0[e] =

∥∥∥∥(I + iGF)−1Ŝ
− 1

2
FR γ(i)e

∥∥∥∥2

= ‖X0e‖2, e ∈ D0. (3.6)

It follows that the sesquilinear form Ω0[e, g] is accretive and, moreover, the form
Re Ω0 is closed in the Hilbert space H. Observe that the form

t0[e, g] : = Ω0[e, g]− i(γ(i)e, γ(i)g) = S∗−1
F [γ(i)e, γ(i)g], e, g ∈ D0,

is closed and sectorial in H. Let the linear relation T0 be associated with t0 by
the First Representation Theorem (see [34] for nondensely defined closed sectorial
forms). Then define Z0 = T0 + iPD0

γ∗(i)γ(i), where PD0
is the orthogonal

projection in H onto the subspace D0. The linear relation Z0 is m-accretive and
is associated with the form Ω0 in the sense

(Z0e, g)H = Ω0[e, g] for all e ∈ dom(Z0) and all g ∈ D0.

Theorem 3.4. Let {H,Γ} be a boundary pair of S. Then the pair 〈Z0, X0〉
corresponds to the Krĕın–von Neumann extension SN of the operator S in accor-
dance with Theorem 2.4.

Proof. It follows from (2.3) and Theorem 3.3 that

SN[u, v] = l[u, v] + Ω0[Γu,Γv] + 2

(
X0Γu, S

1
2
FRPFv

)
, u, v ∈ D[SN]. (3.7)

Journal of Mathematical Physics, Analysis, Geometry, 2017, Vol. 13, No. 3 219
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Let the pair 〈ZN, XN〉 corresponds to SN in accordance with Theorem 2.4,
dom(ZN) = dom(SN), dom(XN) = Γdom(SN), that is,

(SNu, v) = l[u, v] + (ZNu,Γv)H

+ 2

(
XNΓu, S

1
2
FRPFv

)
, u ∈ dom(SN), v ∈ L. (3.8)

Then (3.7) and (3.8) imply for v ∈ D[S] that

(
X0Γu, S

1
2
FRv

)
=

(
XNΓu, S

1
2
FRv

)
.

Hence XN = X0�Γdom(SN). Further,

Ω0[Γu,Γv] = (ZNu,Γv)H, u ∈ dom(SN), v ∈ D[SN].

Therefore, the m-accretive linear relation ZN = {{Γu, ZNu}, u ∈ dom(SN)} is
associated with the form Ω0. This proves the equality ZN = Z0.

Remark 3.5. If the set D0 in Theorem 3.3 is trivial, then the operator S
admits a unique m-sectorial extension, namely the Friedrichs extension SF.

Let

SN[u, v] =

(
(I + iGN)S

1
2
NRu, S

1
2
NRv

)
, u, v ∈ D[SN].

Since SN[u, v] = SF[u, v], for all u, v ∈ D[S], there exists an isometry UF mapping
ran(SF) onto ran(SN) such that (see [6]):

S
1
2
NRu = UFS

1
2
FRu, u ∈ D[S],

GNUF = UFGF,

S
1
2
NRϕµ = µUF(I − iGF)−1Ŝ

− 1
2

FRϕµ, ϕµ ∈ Nµ ∩D[SN].

It follows that

S
1
2
NRu = UFS

1
2
FRPFu+ UFX0Γu, (3.9)

A description of all closed sesquilinear forms associated with m-sectorial ex-
tensions of the operator S in terms of the boundary pairs has been obtained by
the first author. For this purpose, the following notion of the boundary pair is
defined.

Definition 3.6 ( [5, 9]). The pair {H′,Γ′} is called a boundary pair of the
operator S if H′ is a Hilbert space, and Γ′ : D[SN]→ H′ is a linear operator such
that ker(Γ′) = D[S], ran(Γ′) = H′.
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Remark 3.7. Since D[S] is a subspace in D[SN], the boundary pairs {H′,Γ′}
for the operator S exist. As has been mentioned in Subsection 1.2, in general,
D[SN] ⊆ L and the equality D[SN] = L holds true iff dom(S∗) ⊂ D[SN]. Thus, a
boundary pair in the sense of Definition 3.6 is not, in general, a boundary pair
in the sense of Definition 2.1.

Theorem 3.8 ([5, 9]). Let {H′,Γ′} be a boundary pair of S in the sense of
Definition 3.6. Then the formula

S̃[u, v] = SN[u, v] + ω′
[
Γ′u,Γ′v

]
+ 2

(
X ′Γ′u, S

1
2
NRv

)
,

u, v ∈ D[S̃] = Γ′−1D[ω′] (3.10)

establishes a bijective correspondence between all closed forms associated with the
m-sectorial extensions S̃ of S and all pairs 〈ω′, X ′〉, where

1) ω′ is closed and sectorial sesquilinear in the Hilbert space H′;
2) X ′ : dom(ω′)→ ran(S) is a linear operator such that for some δ ∈ [0, 1):

‖X ′e‖2 ≤ δ2 Reω′[e], ∀e ∈ dom(ω′).

Let {H,Γ} be a boundary pair for S in the sense of Definition 2.1. Set

H′ = D0 (= dom(Ω0)),

(e, g)H′ = (e, g)H + Re Ω0[e, g] = (e, g)H + (X0e,X0g),

Γ′ = Γ�D[SN] = Γ� (D[S]u γ(i)D0) . (3.11)

Then H′ is a Hilbert space with respect to the inner product (·, ·)H′ , and {H′,Γ′}
is a boundary pair of S in the sense of Definition 3.6. Note that

1) the operators X0 and γ(λ) are continuous from H′ into H,

2) the sesquilinear form Ω0 is continuous in H′.
Further, using Theorem 2.4 and representation (3.7) for the form SN[u, v], we

are going to establish additional conditions on the pair 〈Z, X〉 ensuring that the
corresponding (by Theorem 2.5) extension is m-sectorial.

Theorem 3.9. Let {H,Γ} be a boundary pair of S (Definition 2.1) and let
the linear manifold D0, form Ω and the linear operator X0 be given by (3.3),
(3.4), and (3.5), respectively. Then the pair 〈Z, X〉 determines an m-sectorial
extension S̃ of S (see Theorem 2.5 and Remark 2.6) iff the following conditions
are fulfilled:

1) dom(Z) ⊆ D0;

Journal of Mathematical Physics, Analysis, Geometry, 2017, Vol. 13, No. 3 221
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2) the sesquilinear form

ω[e, g] = (Ze, g)H − Ω0[e, g]− 2((X −X0)e,X0g)

= (Ze, g)H + Ω∗0[e, g]− 2(Xe,X0g), e, g ∈ dom(Z) = Γdom(S̃) (3.12)

is sectorial and admits a closure in the Hilbert space H′;
3) ‖(X −X0)e‖2 6 δ2 Reω[e], e ∈ dom(Z) for some δ ∈ [0, 1).

Moreover, the closed sesquilinear form associated with S̃ is given by

S̃[u, v] = l[u, v] + Z[Γu,Γv]

+ 2

(
XΓu, S

1
2
FRPFv

)
, u, v ∈ D[S̃] = Γ−1dom(ω), (3.13)

where X is a continuous extension of X on the domain dom(ω) of the closure ω
of ω, and

Z[e, g] := ω[e, g]− Ω∗0[e, g] + 2
(
Xe,X0g

)
, e, g,∈ dom(ω). (3.14)

Proof. Let S̃ be an m-sectorial extension of S determined by 〈Z, X〉 in ac-
cordance with Theorem 2.4. Note that since S̃ is an m-sectorial extension of S,
we have dom(S̃) ⊂ D[S̃] ⊆ D[SN], and Γdom(S̃) is the core of the linear manifold
ΓD[S̃]. Then,(

S̃u, v
)

= l[u, v] + (ZΓu,Γv)H + 2

(
XΓu, S

1
2
FRPFv

)
, u, v ∈ dom(S̃).

Using (3.7), one obtains(
S̃u, v

)
= SN[u, v] + (ZΓu,Γv)H − Ω0[Γu,Γv] + 2

(
(X −X0)Γu, S

1
2
FRPFv

)
.

From (3.9) S
1
2
FRPFv = U∗FS

1
2
NRv −X0Γv. Hence,(

S̃u, v
)

= SN[u, v] + (ZΓu,Γv)H − Ω0[Γu,Γv]

− 2((X −X0)Γu,X0Γv) + 2

(
UF(X −X0)Γu, S

1
2
NRv

)
= SN[u, v] + ω[Γu,Γv] + 2

(
UF(X −X0)Γu, S

1
2
NRv

)
= SN[u, v] + ω[Γ′u,Γ′v] + 2

(
X̃Γ′u, S

1
2
NRv

)
, u, v ∈ dom(S̃),
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where ω is given by (3.12), and X̃ = UF(X −X0). From Theorem 3.8, it follows
that ω is a sectorial form, dom(ω) = dom(Z) ⊆ D0 = H′, and∥∥∥X̃e∥∥∥2

= ‖(X −X0)e‖2 ≤ δ2 Reω[e]

for all e ∈ dom(Z) where δ ∈ [0, 1). Moreover, the form ω admits the closure ω
in the Hilbert space H′, and X̃ has a continuous extension to dom (ω) as a linear
operator from dom (ω) with the inner product

(e, g)ω = (e, g)H′ + Reω[e, g].

Since X0 is continuous from H′ into H, the operator X admits a continuation X
on dom (ω). It follows that the form Z given by (3.14) is well defined and the
closed form S̃[u, v] associated with S̃ is of the form (3.13).

Conversely, let conditions 1)–3) of the theorem be fulfilled. Denote by ω
the closure in H′ of the sesquilinear form ω given by (3.12), and by X ′ the
continuation of the operator X̃ = UF(X − X0) on dom(ω), which exists due
condition 2). Then, by Theorem 3.8, the pair 〈ω,X ′〉 determines by (3.10) a closed
sectorial form S̃[u, v] associated with some m-sectorial extension S̃ of S.

Remark 3.10. We can rewrite condition 3) of Theorem 3.9 in a slightly dif-
ferent form. Let us find the real part of the form ω[e, e]. We have

ω[e, e] = (Ze, e)H − Ω0[e, e]− 2((X −X0)e,X0e).

Using (3.6), we obtain

Reω[e, e] = Re(Ze, e)H + ‖(X −X0)e‖2 − ‖Xe‖2.

Then the inequalities

‖(X −X0)e‖2 6 δ2 Reω[e] = δ2
(
Re(Ze, e)H + ‖(X −X0)e‖2 − ‖Xe‖2

)
and 0 ≤ δ < 1 imply

M‖(X −X0)e‖2 6 Re(Ze, e)H − ‖Xe‖2, where M =
1− δ2

δ2
> 0.

Thus, condition 3) can be rewritten as

Re(Ze, e)H − ‖Xe‖2 >M‖(X −X0)e‖2, M > 0.
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4. Nonnegative Symmetric Operator and its Quasi-Selfadjoint
m-Accretive Extensions

In this section, we will consider a densely defined closed nonnegative symmet-
ric operator A, and parameterize all its quasi-selfadjoint m-accretive extensions
in terms of abstract boundary conditions. We will use a boundary pair and the
boundary triplets defined in Definitions 2.1, 2.2, and 2.3. In this case, if {H,Γ}
is a boundary pair for A in the sense of Definition 2.1, then the sesquilinear form
Ω0 and the linear operator X0 defined on the linear manifold D0 = ΓD[AN] (see
Theorem 3.3) are of the form

Ω0[e, g] = i (γ(i)e, γ(i)g) +

(
Â
− 1

2
F γ(i)e, Â

− 1
2

F γ(i)g

)
,

X0e = iÂ
− 1

2
F γ(i)e, e, g ∈ D0.

In addition, from (1.7), it follows that

AN[u, v] =

((
A

1
2
FPz,Fu+ zÂ

− 1
2

F Pzu
)
,

(
A

1
2
FPz,Fv + zÂ

− 1
2

F Pzv
))

, (4.1)

where u, v ∈ D[AN] = D[AF]+̇

(
Nz ∩ ran

(
A

1
2
F

))
= D[AF]+̇γ(z)D0. It is es-

tablished in [10] that the following assertions are equivalent for an m-accretive
extension Ã of A:

1) A is a quasi-selfadjoint extension;

2) dom
(
Ã
)
⊆ D[AN] and Re(Ãf, f) ≥ AN[f ] for all f ∈ dom(Ã).

Observe that the operator L defined in (2.6) is of the form

dom(L) = dom(A∗), Lu = A∗u− 2iui,

where u = uF + ui, uF ∈ dom(AF), ui ∈ Ni. If {H,Γ} is a boundary pair for A
(see Definition 2.1), then

Lu = A∗u− 2iγ(i)Γu, u ∈ dom(A∗).

Proposition 4.1. Let A be a closed densely defined nonnegative symmetric
operator in H and let {H,Γ} be its boundary pair (in the sense of Definition 2.1).
Assume D0 6= {0}. Then a pair 〈Z, X〉 determines a quasi-selfadjoint m-accretive
extension Ã of A in accordance with Theorem 2.5 iff the following conditions hold
true:

1) dom(Z) ⊆ D0,

2) X = X0�dom(Z) = iÂ
− 1

2
F γ(i)�dom(Z).
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Proof. Let Ã be a quasi-selfadjoint m-accretive extension of the operator A.
Then dom(Ã) ⊆ D[AN]. By Theorem 2.4, this implies the inclusion dom(Z) ⊆
ΓD[AN] = D0. Taking into account the decomposition dom(A∗) = dom(AF) u
Ni, from (2.17) for dom(Ã) 3 u = uF + ui, uF ∈ dom(AF), ui ∈ Ni, we have

XΓu = Mu =
1

2

(
Â
− 1

2
FR (Ãu+ iPiu)− (I + iGF)A

1
2
FRPFu

)
=

1

2

(
Â
− 1

2
F (A∗u+ iui)−A

1
2
FuF

)
=

1

2

(
Â
− 1

2
F (AFuF + 2iui)−A

1
2
FuF

)
= iÂ

− 1
2

F γ(i)Γu = X0Γu.

Now consider a pair 〈Z, X〉, where Z is an m-accretive linear relation in H
such that (a) dom(Z) ⊆ D0 and (b) Re(Ze, e)H ≥ ||X0e||2 for all e ∈ dom(Z).
This pair determines an m-accretive extension Ã. Let us prove that Ã ⊆ A∗.
Note that for all u ∈ L, v ∈ H,

(Φ(λ)X0Γu, v) = i

(
Â
− 1

2
F γ(i)Γu,A

1
2
F(AF − λ̄I)−1v

)
= i
(
(AF − λI)−1γ(i)Γu, v

)
.

So,
Φ(λ)X0Γu = i(AF − λI)−1γ(i)Γu ⊂ dom(AF). (4.2)

Using (4.2), one gets

q(λ)− 2Φ(λ)X0 = γ(i) + (λ− i)(AF − λI)−1γ(i) = γ(λ). (4.3)

From boundary conditions (2.9), for u ∈ L, we have

u ∈ dom(Ã)⇒ u− (q(λ)− 2Φ(λ)X0)Γu ∈ dom(AF)⇒ u− γ(λ)Γu ∈ dom(AF)

and, therefore, u ∈ dom(AF)uNλ = dom(A∗). Further, for u = Pλ,Fu+ Pλu,

Ãu = AF

(
u− (q(λ)− 2Φ(λ)X0)Γu

)
+ λ
(
q(λ)− 2Φ(λ)X0

)
Γu

= AF

(
u− γ(λ)Γu

)
+ λγ(λ)Γu = AFPλ,Fu+ λPλu = A∗(Pλ,Fu+ Pλu).

So, Ã ⊆ A∗.

Theorem 4.2. Let {H,Γ} and {H, G∗,Γ} be a boundary pair for A and
the corresponding boundary triplet for L (see Definition 2.3). Assume D0 6=
{0}. Then there is a bijective correspondence between all m-accretive quasi-
selfadjoint extensions Ã of A and all m-accretive linear relations Z in H such
that dom(Z) ⊆ D0, and

Re(Ze, e) >

∥∥∥∥Â− 1
2

F γ(i)e

∥∥∥∥2

, ∀e ∈ dom(Z).
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This correspondence is given by

dom(Ã) =
{
u ∈ dom(A∗) : G∗u ∈

(
Z− 2iγ(i)∗γ(i)

)
Γu
}
, Ãu = A∗u. (4.4)

Moreover,

1) a number λ ∈ ρ(AF) is a regular point of Ã iff(
Z− λ+ i

λ− i
Q(λ)

)−1

∈ L(H)

and

(Ã− λI)−1 = (AF − λI)−1 + γ(λ)

(
Z− λ+ i

λ− i
Q(λ)

)−1

γ(λ̄)
∗
; (4.5)

2) a number λ ∈ ρ(AF) is an eigenvalue of Ã iff

ker

(
Z− λ+ i

λ− i
Q(λ)

)
6= {0}

and

ker(Ã− λI) = γ(λ) ker

(
Z− λ+ i

λ− i
Q(λ)

)
.

Proof. We will use (2.9). Due to (4.3), the boundary condition 1) in (2.9) is
fulfilled. Let us transform boundary condition 2). Due to (2.7), we have for λ ∈
ρ(AF),

G∗(f + q(λ)e) = γ(λ̄)
∗
(AF − λI)f +Q(λ̄)

∗
e, f ∈ dom(AF), f ∈ dom(AF).

Hence

G∗(u+ 2Φ(λ)XΓu) = G∗(u+ (q(λ)− γ(λ))Γu)

= G∗
(
u+ 2i(AF − λI)−1γ(i)Γu

)
= G∗u+ 2iγ(λ̄)

∗
γ(i)Γu

= γ(λ̄)
∗
(AF − λI)Pλ,Fu+Q(λ̄)

∗
Γu.

On the other hand,

W(λ) = Z−Q(λ̄)
∗

+ 2G(λ)X0

= Z− (λ+ i)γ(λ̄)
∗
γ(i) + 2(λ+ i)γ(i)∗Φ(λ)X0

= Z− (λ+ i)
(
γ(i)∗ + (λ+ i)γ(i)∗(AF − λI)−1

)
γ(i)

− 2(λ+ i)iγ(i)∗(AF − λI)−1γ(i)
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= Z− (λ+ i)γ(i)∗
(
I + (λ+ i)(AF − λI)−1 − 2i(AF − λI)−1

)
γ(i)

= Z− (λ+ i)γ∗(i)γ(λ) = Z− λ+ i

λ− i
Q(λ).

Then

Z + 2G(λ)X0 = Z +Q(λ̄)
∗ − λ+ i

λ− i
Q(λ).

So, for the boundary condition 2) from (2.9), one has

G∗u+ 2iγ(λ̄)
∗
γ(i)Γu ∈

(
Z +Q(λ̄)

∗ − λ+ i

λ− i
Q(λ)

)
Γu

⇐⇒ G∗u ∈
(

Z +Q(λ̄)
∗ − λ+ i

λ− i
Q(λ)− 2iγ(λ̄)

∗
γ(i)

)
Γu

⇐⇒ G∗u ∈
(

Z + (λ+ i)γ(λ̄)
∗
γ(i)− λ+ i

λ− i
Q(λ)− 2iγ(λ̄)

∗
γ(i)

)
Γu

⇐⇒ G∗u ∈
(

Z +
λ− i
λ+ i

Q(λ̄)
∗ − λ+ i

λ− i
Q(λ)

)
Γu.

Further, using that Q(λ) = (λ− i)γ(i)∗γ(i), we get(
Z + (λ− i)γ(λ̄)

∗
γ(i) −(λ+ i)γ(i)∗γ(λ)) Γu

=
(
Z + (λ− i)

(
γ(i)∗ + (λ+ i)γ(i)∗(AF − λI)−1

)
γ(i)

−(λ+ i)γ(i)∗
(
γ(i) + (λ− i)(AF − λI)−1γ(i)

))
Γu

=
(
Z + γ(i)∗

(
(λ− i)I + (λ2 + 1)(AF − λI)−1

)
−
(
(λ+ i)I + (λ2 + 1)(AF − λI)−1

))
γ(i)Γu

= (Z− 2iγ(i)∗γ(i)) Γu.

Remark 4.3. The boundary condition (4.4) can also be written for any λ ∈
ρ(Ã) ∩ ρ(AF) as

dom(Ã) =

{
u ∈ dom(A∗) :

γ(λ̄)
∗
(AF − λI)(u− γ(λ)Γu) ∈

(
Z− λ+ i

λ− i
Q(λ)

)
Γu

}
,

and
Ãu = A∗u = AF(u− γ(λ)Γu) + λγ(λ)Γu.

From Theorems 3.9 and 4.2, we obtain

Corollary 4.4. Let Z be an m-accretive linear relation corresponding to a
quasi-selfadjoint m-accretive extension Ã of A by Theorem 4.2. Then the exten-
sion Ã is sectorial (nonnegative) iff
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1) dom(Z) ⊆ H′(= dom(Ω0) = D0);

2) the form ω̃[e, g] = (Ze, g)H − Ω0[e, g] is sectorial (nonnegative).

Remark 4.5. The form ω̃ admits a closure in the Hilbert space H′ defined by
(3.11). Actually, since ω̃[e, g] = (Ze, g)H − Ω0[e, g] is sectorial, the form

η[e, f ] = (Ze, g)H − i(γ(i)e, γ(i)f), e, f ∈ H′(= D0)

is sectorial as well. If lim
n→∞

en = 0 in H′ and lim
m,n→∞

ω̃[en − em] = 0, then

lim
n→∞

en = 0 in H, lim
n→∞

Re Ω[en] = lim
n→∞

‖X0en‖2 = 0 and lim
n→∞

γ(i)en = 0 in H.

Since the linear relation Z is m-accretive and Z − iγ∗(i)γ(i) is sectorial, we get
lim
n→∞

(Zen, en)H = 0 (see [23]).

Next we will find relationships between

• a boundary triplet {H,Γ1,Γ0} for A∗ given by Definition 1.2 and the boundary
triplets {H, G,Γ}, {H, G∗,Γ} from Definitions 2.2 and 2.3;

• the parameterizations of the quasi-selfadjoint m-accretive extensions given by
Theorems 1.3 and 4.2.

Let {H,Γ1,Γ0} be a boundary triplet for A∗ (see Definition 1.2) such that
ker(Γ0) = dom(AF). Then

1) since dom(AF) is the core of D[A] and ker(Γ0) = dom(AF), we can define a
boundary pair {H,Γ0}, where Γ0 is a continuation of Γ0 onto L = D[A]uNi

from dom(A∗) = dom(AF)uNi;

2) it follows that

γ(λ) =
(
Γ0�Nλ

)−1
= Γ0(λ);

3) because relation (1.14) can be rewritten as

M0(λ)−M0(z) = (λ− z)γ(z̄)∗γ(λ),

using (2.5), one gets

Q(λ) = (λ− i)γ(i)∗γ(λ) =
λ− i
λ+ i

(M0(λ)−M0(−i));

so,

M0(λ)−M0(−i) =
λ+ i

λ− i
Q(λ); (4.6)
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4) equation (4.6) yields that the linear manifolds D0 in Theorems 1.3 and 3.3
coincide and

τ [h, g] = (M0(−i)h, g)H + Ω0[h, g], h, g ∈ D0;

5) comparing resolvent formulae (1.15) and (4.5), we obtain that the linear
relation Z from Theorem 4.2 and the linear relation T̃ from Theorem 1.3
(see (1.11), (1.16)) are connected by the equality

Z = T̃−M(−i). (4.7)

Proposition 4.6. Let {H,Γ} be a boundary pair for a nonnegative symmetric
operator A. Let Ã be a quasi-selfadjoint m-accretive extension of A and let Z be
the corresponding linear relation in H (see Theorem 4.2). Then

Z∗ + 2iγ(i)∗γ(i)

corresponds to the adjoint extension Ã∗.

Proof. The proof becomes easy if we recall that to the adjoint extension Ã∗

there corresponds the adjoint linear relation T̃∗. Since T̃ = Z+M(−i). Then we
have T̃∗ = Z∗+M(−i)∗. Again, taking the equality M(z)∗ = M(z̄) into account,
from (4.7) and (1.14) one gets that the adjoint extension Ã∗ corresponds to

T̃∗ −M(−i) = Z∗ +M(−i)∗ −M(−i) = Z∗ + 2iγ(i)∗γ(i).

5. m-Sectorial Extensions of a Symmetric Operator in the Model
of Two-Point Interactions on a Plane

Let y1, y2 ∈ R2. In the Hilbert space L2(R2), consider the operator A given
by

dom(A) =
{
f(x) ∈W 2

2 (R2) : f(y1) = f(y2) = 0, k = 1, 2
}
, Af = −∆f, (5.1)

where x = (x1, x2) ∈ R2, W 2
2 (R2) is the Sobolev space, and ∆ = ∂2

∂x2
1

+ ∂2

∂x2
2

is the

Laplacian.
The operator A is a densely defined closed nonnegative symmetric operator

with defect indices (2, 2) [2]. Such operators are basic in the models of point
interactions [2]. In the case of one point, the corresponding operator

dom(Ay) =
{
f(x) ∈W 2

2 (R2) : f(y) = 0
}
, Ayf = −∆f,

admits a unique nonnegative selfadjoint extension [1, 18], the free Hamiltonian,

dom(AF) = W 2
2 (R2), AFf = −∆f,
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Thus, Ay has no m-sectorial and quasi-selfadjoint m-accretive extensions. All m-
accretive extensions of Ay were described in [11]. For interactions with two and
more centers the relation AF 6= AN holds [1]. In this section, we apply Theorems
2.5 and 3.9 to parametrize all m-sectorial extensions of the operator A. It is
convenient to use the Fourier transform and the momentum representation of A:

Âf̂(p) = |p|2f̂(p),

dom(Â) =

{
f̂(p) ∈ L2(R2, dp) : 1) |p|2f̂(p) ∈ L2(R2, dp),

2)

∫
R2

f̂(p)eipy1 dp =

∫
R2

f̂(p)eipy2 dp = 0

}
,

where

f̂(p) = (Ff)(x) =
1

2π

∫
R2

f(x)e−ix·p dx, p = (p1, p2),

is the Fourier transform of f(x) ∈ L2(R2, dx). For a one-center point interac-
tion this method was used in [11]. In this paper, we omit the details in the
momentum representation for brevity and give the final results in the coordinate
representation.

The Friedrichs extension of A is the free Hamiltonian AF, and A
1
2
F = (−∆)

1
2

is a pseudodifferential operator of the form:

dom(A
1
2
F) = D[AF] = W 1

2 (R2),

A
1
2
Ff(x) =

1

4π2

∫∫
R2×R2

|p| exp (i(x− y)p)f(y) dy dp,

where W k
2 (R2), k = 1, 2, are the Sobolev spaces. Note that (see [2, p. 162]) for

all λ ∈ C \ [0,+∞), Im
√
λ > 0, the resolvent is of the form

(AF − λI)−1f(x) =
i

4

∫
R2

H
(1)
0 (
√
λ|x− y|)f(y) dy, f ∈ L2(R2),

where H
(1)
0 (·) denotes the Hankel function of the first kind and order zero [31,

p. 217]. It is well known [2, p. 160] that

Nλ =

{
πi

2

2∑
k=1

H
(1)
0

(√
λ|x− yk|

)
ck, c1, c2 ∈ C

}
, λ ∈ C \ [0,+∞), Im

√
λ > 0,

is the defect subspace of A, corresponding to λ.
Therefore, for the linear manifold L defined by (1.6), we have

L = W 1
2 (R2)+̇Nλ
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=

{
f(x) +

πi

2

2∑
k=1

H
(1)
0 (
√
λ|x− yk|)ck, f ∈W 1

2 (R2), c1, c2 ∈ C

}
,

where λ is a number from C \ [0,+∞). Now, let H = C2 and set

Γ

(
f(x) +

πi

2

2∑
k=1

H
(1)
0

(√
λ|x− yk|

)
ck

)
= ~c =

[
c1

c2

]
∈ C2, f(x) ∈W 1

2 (R2).

Then from the equality H
(1)
0

(√
λ|x|

)
= H

(2)
0

(√
λ|x|

)
[31, p. 226], it follows that

γ(λ)~c =
πi

2

2∑
k=1

H
(1)
0

(√
λ|x− yk|

)
ck, ~c =

[
c1

c2

]
∈ C2,

γ(λ̄)
∗
h(x) = −πi

2

∫R2 h(x)H
(2)
0

(√
λ|x− y1|

)
dx∫

R2 h(x)H
(2)
0

(√
λ|x− y2|

)
dx

 .
Set r = |y1− y2| and H(λ, r) = H

(1)
0 (
√
λr)−H(1)

0 (e3πi/4r). From (2.5), using the
unitarity of the Fourier transform, one can derive that the matrix Q(λ) in the
standard basis is of the form

Q(λ) =
λ− i
λ+ i

π

[
− ln(λi) πiH(λ, r)
πiH(λ, r) − ln(λi)

]
.

Hence,

Q(λ)∗ =
λ̄+ i

λ̄− i
π

 − ln
(
λ̄
i

)
−πiH̄(λ, r)

−πiH̄(λ, r) − ln
(
λ̄
i

)  .
Now we will find the subspace D0 and the sesquilinear form Ω0[·, ·] (see The-

orem 3.3). We have

(Q(λ)~c, ~d) =
λ− i
λ+ i

π

[
d1

d2

]∗ [ − ln(λi) πiH(λ, r)
πiH(λ, r) − ln(λi)

] [
c1

c2

]
=
λ− i
λ+ i

π
(
−(c1d̄1 + c2d̄2) ln(λi)

+ (c2d̄1 + c1d̄2)πi
(
H

(1)
0 (
√
λr)−H(1)

0 (e3πi/4r)
))

.

Taking into account the asymptotic behavior [31, p. 223]

H
(1)
0 (λ) = 1 +

2i

π

(
ln

(
λ

2

)
+ γ

)
+ o(λ), λ→ 0,
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where γ is Euler’s constant, we see that

D0 :=

{
e ∈ H : lim

z→0,
z∈C\[0,+∞)

|(Q(z)e, e)H| <∞

}
=

{[
ζ
−ζ

]
∈ C2 : ζ ∈ C

}
.

Set ~c0 =

[
1
−1

]
. Then for the form Ω0 given by (3.4), we have

Ω0[ζ~c0, η~c0] = −ζη̄ lim
λ→0
λ<0

(Q(λ)~c0,~c0)

= πζη̄ lim
λ→0
λ<0

(
−2 ln(λi)− 2πi

(
H

(1)
0

(√
λr
)
−H(1)

0

(
e3πi/4r

)))

= 2πζη̄ lim
λ→0
λ<0

(
− ln(λi)− πi

(
1 +

2i

π

(
ln

(√
λr

2

)
+ γ

)

−H(1)
0

(
e3πi/4r

)))

= 4πζη̄

(
ln
r

2
− 3πi

4
+ γ +

πi

2
H

(1)
0

(
e3πi/4r

))
= ω0ζη̄,

where ω0 = 4π
(

ln r
2 −

3πi
4 + γ + πi

2 H
(1)
0 (e3πi/4r)

)
. From the latter equality one

can obtain that

Re Ω0[ζ~c0, η~c0] = Reω0 · ζη̄ = 4π
(

ln
r

2
+ γ + ker(r)

)
ζη̄,

where the functions ker(·) and kei(·) are the Kelvin functions [31, p. 268], i.e.,

the real and the imaginary parts of the function
πi

2
H

(1)
0 (e3πi/4(·)), respectively:

ker(r) + ikei(r) =
πi

2
H

(1)
0 (e3πi/4r).

For the functions Φ(λ), G(λ), Q(λ̄)
∗
, and q(λ) on D0 = dom(Ω0) defined in

(2.5), we have

Φ(λ)X

[
ζ
−ζ

]
=

ζ

4π2

∫∫
R2×R2

|p|
|p|2 − λ

exp (i(x− y)p)g(y) dy dp,

G(λ)X

[
ζ
−ζ

]
= −πi(λ+ i)ζ

2

[∫
R2 Φ(λ)(f(x))H

(2)
0

(
e3πi/4|x− y1|

)
dx∫

R2 Φ(λ)(f(x))H
(2)
0

(
e3πi/4|x− y2|

)
dx

]
,

Q(λ̄)
∗
[
ζ
−ζ

]
=
λ+ i

λ− i
π

(
− ln

(
λ

i

)
+ πiH(λ̄, |y1 − y2|)

)[
ζ
−ζ

]
,
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q(λ)

[
ζ
−ζ

]
=
πi

2

1

i− λ
ζ
(

(i+ λ)(H
(1)
0

(√
λ|x− y2|)−H(1)

0

(√
λ|x− y1|

))
+ 2i

(
H

(1)
0

(
eπi/4|x− y1|

)
−H(1)

0

(
eπi/4|x− y2|

)))
.

Now we find the operator X0e = iÂ
− 1

2
F γ(i)e, e ∈ D0, from Theorem 3.3. As

we have mentioned above, it is convenient to use the momentum representation.
Let γ̂(λ) = Fγ(λ). Then,

γ̂(λ)~c =
2∑

k=1

ck
e−ipyk

|p|2 − λ
, ∀~c =

[
c1

c2

]
∈ C2.

Hence,

X̂0

[
ζ
−ζ

]
= FX0

[
ζ
−ζ

]
= iÂ

− 1
2

F γ(i)

[
ζ
−ζ

]
=
i
(
e−ipy1 − e−ipy2

)
|p| (|p|2 − i)

ζ.

So, X̂0

[
ζ
−ζ

]
= ĝ0(p)ζ, where

ĝ0(p) =
i
(
e−ipy1 − e−ipy2

)
|p| (|p|2 − i)

. (5.2)

Getting back to the coordinate representation, by using [35], [22, p.671], we obtain

g0(x) = F−1ĝ0(p) =
1

2π

∫
R2

i
(
eip(x−y1) − eip(x−y2)

)
|p| (|p|2 − i)

dp

= i

∫ +∞

0

J0 (ρ|x− y1|)− J0 (ρ|x− y2|)
ρ2 − i

dρ

=
πi

2
√
−i

(
I0

(√
−i|x− y1|

)
− L0

(√
−i|x− y1|

))
− πi

2
√
−i

(
I0

(√
−i|x− y2|

)
− L0

(√
−i|x− y2|

))
= −π

2
e3πi/4

(
M0

(
e−πi/4|x− y1|

)
−M0

(
e−πi/4|x− y2|

))
,

where I0(·) is the Bessel function and L0(·),M0(·) are the modified Struve func-
tions [31, p. 288]. So,

X0

[
ζ
−ζ

]
= g0(x)ζ,

where g0(x) = −π
2 e

3πi/4
(
M0

(
e−πi/4|x− y1|

)
−M0

(
e−πi/4|x− y2|

))
. According

to (3.6), we have

‖g0‖2L2(R2) = Reω0 = 4π
(

ln
r

2
+ γ + ker(r)

)
.
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Remark 5.1. Since ‖g0(x)‖2L2(R2) = ‖ĝ0(p)‖2L2(R2) (the unitarity of the Fourier

transform), expression (5.2) for ĝ0(p) gives ‖ĝ0(p)‖2L2(R2) = 4π
∫∞

0
1−J0(rρ)
ρ(ρ4+1)

dρ. On

the other hand, due to (3.6), we have ‖g0(x)‖2L2(R2) = Reω0. This leads to the

value of the improper integral
∫∞

0
1−J0(rρ)
ρ(ρ4+1)

dρ:∫ ∞
0

1− J0(rρ)

ρ(ρ4 + 1)
dρ =

1

4π
Reω0 =

(
ln
r

2
+ γ + ker(r)

)
.

To describe all m-sectorial extensions of A, we have to define the pairs 〈Z, X〉
satisfying conditions 3), 4) from Theorem 2.4 and conditions 1)–3) from Theo-
rem 3.9. Since Z is an m-accretive linear relation in C2 and dom(Z) ⊆ D0, there
are only two possible cases:

1. Z =

〈[
ζ
−ζ

]
, z ·

[
ζ
−ζ

]〉
⊕
〈

0,

[
η
η

]〉
, ζ, η, z ∈ C, Re z > 0.

2. Z = 〈0,C2〉. As [11] says, this linear relation corresponds to the Friedrichs
extension AF of A.

In the first case, the operator X, acting from dom(Z) into L2(R2), takes the form

X

[
ζ
−ζ

]
= ζg(x), where a function g ∈ L2(R2) satisfies the condition

‖g‖2L2(R2) =

∫
R2

|g|2dx 6 2 Re z. (5.3)

For the form ω[·, ·] defined by (3.12), we have

ω[ζ~c0, η~c0] = (Zζ~c0, η~c0)− Ω0[ζ~c0, η~c0]− 2((X −X0)ζ~c0, X0η~c0)

=

(
2z − ω0 − 2

∫
R2

(g(x)− g0(x))g0(x) dx

)
ζη̄,

Reω[ζ~c0] =

(
2 Re z +

∫
R2

|g(x)− g0(x)|2 dx−
∫
R2

|g(x)|2 dx
)
|ζ|2.

Thus, the form ω[·, ·] is determined by the number

w〈z,g〉 = 2z − ω0 − 2

∫
R2

(g(x)− g0(x))g0(x) dx. (5.4)

Clearly, the form ω[·, ·] is sectorial iff

Rew〈z,g〉 = 2 Re z +

∫
R2

|g(x)− g0(x)|2 dx

−
∫
R2

|g(x)|2 dx > 0 or w〈z,g〉 = 0. (5.5)

234 Journal of Mathematical Physics, Analysis, Geometry, 2017, Vol. 13, No. 3



On m-Sectorial Extensions of Sectorial Operators

Remark 5.2. Due to 2 Re z−
∫
R2 |g(x)|2 dx ≥ 0, the equality w〈z,g〉 = 0 implies

that g(x) = g0(x) almost everywhere and z = ω0/2.

Further, condition 3) from Theorem 3.9 takes the form

M

∫
R2

|g(x)− g0(x)|2 dx 6 2 Re z −
∫
R2

|g(x)|2 dx,

where M > 0. The latter inequality can be simplified as follows:

2 Re z −
∫
R2

|g(x)|2 dx > 0. (5.6)

So, conditions (5.3), (5.5) are satisfied. Note that in this case, the linear relation
W(λ), see (2.10), is of the form

W(λ) =

〈[
ζ
−ζ

]
,

(
z − λ+ i

λ− i
π

(
− ln

(
λ

i

)
+ πiH

(
λ̄, |y1 − y2|

)))[ ζ
−ζ

]
− πi(λ+ i)ζ

[∫
R2 Φ(λ)(g(x))H

(2)
0

(
e3πi/4|x− y1|

)
dx∫

R2 Φ(λ)(g(x))H
(2)
0

(
e3πi/4|x− y2|

)
dx

]
+

[
η
η

]〉

for all λ ∈ ρ(AF) = C \ [0,+∞). Then

W(λ)−1 =

〈[
ζ
η

]
,

1

w〈z,g〉(λ)

[
ζ − η
−ζ + η

]〉
,

where

w〈z,g〉(λ) = 2

(
z − λ+ i

λ− i
π

(
− ln

(
λ

i

)
+ πiH

(
λ̄, |y1 − y2|

)))
− πi(λ+ i)

∫
R2

Φ(λ)(g(x))
(
H

(2)
0

(
e3πi/4|x− y1|

)
−H(2)

0

(
e3πi/4|x− y2|

))
dx.

Clearly, ker(W(λ)) 6= {0} iff w〈z,g〉(λ) = 0 and

ker(W(λ)) = dom(W(λ)) =

[
η
−η

]
, η ∈ C.

Let an m-sectorial extension Ã of A be defined by a pair 〈z, g(x)〉 satisfying (5.6)
(see Theorem (3.9)). Since Ã is an m-sectorial extension, and

G(−i) = 0, Q(−i)∗ = 0, q(−i) = γ(i),
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it is suitable to take λ = −i and apply Theorem 2.5, Remark 2.6, and equali-
ties (2.12), (2.13), (2.14). Then,

W = W(−i) = Z =

〈[
ζ
−ζ

]
, z

[
ζ
−ζ

]〉
⊕
〈[

0
0

]
,

[
η
η

]〉
,

W−1 =

〈[
ζ
η

]
,

1

2z

[
ζ − η
−ζ + η

]〉
.

By (2.12),

dom(Ã) =
(
I + (q(−i)− 2Φ(−i)X)W(−i)−1γ(−i)∗(AF + iI)

)
dom(AF).

Further, let δ(x), x = (x1, x2) be the Dirac delta-function. Then δ(x) ∈
W−2

2 (R2) [2]. Since F(δ(x)) = 1/2π, then F−1(1) = 2πδ(x). So, if F(h(x)) =

ĥ(p) and h(x) ∈ dom(AF) = W 2
2 (R2), then∫

R2

(
eipy1 − eipy2

)
ĥ(p) dp = 2π(h(y1)− h(y2)).

Using the latter equality and the Fourier transform, we obtain

W(−i)−1γ(−i)∗(AF + iI)h(x) =
π(h(y1)− h(y2))

z
.

If h ∈ dom(AF), then

dom(Ã) =

{
u(x) = h(x) +

π(h(y1)− h(y2))

z

(
πi

2

(
H

(1)
0

(
e3πi/4|x− y1|

)
−H(1)

0

(
e3πi/4|x− y2|

))
− 2Φ(−i)(g(x))

)}
. (5.7)

Then, applying Theorems 2.5, 3.9, we arrive at the following statement.

Theorem 5.3. There is a bijective correspondence between all m-sectorial
extensions Ã (except Friedrichs and Krĕın–von Neumann extensions) of A given
by (5.1) and all pairs 〈z, g〉, where z ∈ C and a function g ∈ L2(R2) are such that

‖g‖2L2(R2) < 2 Re z.

This correspondence is given by (5.7), where h ∈W 2
2 (R2), and by the relation

Ãu(x) =−∆h(x)− iπ(h(y1)− h(y2))

z

×
(
πi

2

(
H

(1)
0 (e3πi/4|x− y1|)−H(1)

0 (e3πi/4|x− y2|)
)
− 2Φ(−i)(g(x))

)
.

Moreover,
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1) a number λ ∈ C \ [0,+∞) is a regular point of Ã iff w〈z,g(x)〉(λ) 6= 0, and

(Ã− λI)−1h(x) =
i

4

∫
R2

H
(1)
0 (
√
λ|x− y|)f(y) dy +

1

w〈z,g(x)〉

×
(
πi

2

1

i− λ

(
(i+ λ)(H

(1)
0 (
√
λ|x− y2|)−H(1)

0 (
√
λ|x− y1|))

+ 2i (H
(1)
0 (eπi/4|x− y1|)−H(1)

0 (eπi/4|x− y2|))
)
− 2Φ(λ)(g(x))

)
×
(
−πi

2

)∫
R2

(
H

(2)
0 (
√
λ|x− y1|)−H(2)

0 (
√
λ|x− y2|)

)
h(x)dx;

2) a number λ ∈ ρ(AF) is an eigenvalue of Ã iff w〈z,g(x)〉(λ) = 0, and

ker(Ã− λI) =

(
πi

2

1

i− λ

(
(i+ λ)(H

(1)
0 (
√
λ|x− y2|)−H(1)

0 (
√
λ|x− y1|))

+ 2i (H
(1)
0 (eπi/4|x− y1|)−H(1)

0 (eπi/4|x− y2|))
)

−2Φ(λ)(g(x))

)
η, η ∈ C.

Corollary 5.4. Let A be given by (5.1). Then there is a bijective corre-
spondence between all m-accretive quasi-selfadjoint extensions Ã of A (except
Friedrichs and Krĕın–von Neumann extensions) and all complex numbers z ∈ C
such that

Re z ≥ 2π

(
ln
|y1 − y2|

2
+ γ + ker(|y1 − y2|)

)
.

Moreover, an extension Ã is m-sectorial iff

Re z > 2π

(
ln
|y1 − y2|

2
+ γ + ker(|y1 − y2|)

)
,

and nonnegative selfadjoint iff

Im z = π (−3π + 4 kei(|y1 − y2|)) .

The correspondence is given by the relations

dom(Ã) =

{
u(x) = h(x) +

π(h(y1)− h(y2))

z

(
πi

2

(
H

(1)
0 (e3πi/4|x− y1|)

−H(1)
0 (e3πi/4|x− y2|)

))
, h(x) ∈W 2

2 (R2)

}
, (5.8)

Ãu(x) =−∆h(x) +
π2(h(y1)− h(y2))

2z

(
H

(1)
0

(
e3πi/4|x− y1|

)
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−H(1)
0

(
e3πi/4|x− y2|

))
. (5.9)

Moreover,

1) a number λ ∈ C \ [0,+∞) is a regular point of Ã iff

w(z, λ) = z − π ln(λi)− π2i(H
(1)
0 (
√
λ|y1 − y2|)−H(1)

0 (e3πi/4|y1 − y2|)) 6= 0,

and

(Ã− λI)−1h(x) =
i

4

∫
R2

H
(1)
0 (
√
λ|x− y|)f(y)dy

+
π2

8w(z, λ)

(
H

(1)
0 (
√
λ|x− y1|)−H(1)

0 (
√
λ|x− y2|)

)
×
∫
R2

(
H

(2)
0 (
√
λ|x− y1|)−H(2)

0 (
√
λ|x− y2|)

)
h(x) dx;

2) a number λ ∈ C \ [0,+∞) is an eigenvalue of Ã iff w(z, λ) = 0, and

ker(Ã− λI) =
(
H

(1)
0 (
√
λ|x− y1|)−H(1)

0 (
√
λ|x− y2|)

)
η, η ∈ C.

Remark 5.5. One can obtain a description of the Krĕın–von Neumann exten-
sion AN of A from relations (5.8), (5.9) by substituting

2z = ω0 = 4π

(
ln
|y1 − y2|

2
− 3πi

4
+ γ +

πi

2
H

(1)
0 (e3πi/4|y1 − y2|)

)
.

It follows from (4.1) that the form AN[u, v], associated with the Krĕın–von Neu-
mann extension AN, can be given by

D[AN] =

{
u(x) = h(x) +

πi

2

(
H

(1)
0 (eπi/4|x− y1|)−H(1)

0 (eπi/4|x− y2|)
)
ω,

h(x) ∈W 1
2 (R2), ω ∈ C

}
,

and if

u(x) = h1(x) +
πi

2

(
H

(1)
0 (eπi/4|x− y1|)−H(1)

0 (eπi/4|x− y2|)
)
ω1,

v(x) = h2(x) +
πi

2

(
H

(1)
0 (eπi/4|x− y1|)−H(1)

0 (eπi/4|x− y2|)
)
ω2,

where h1(x), h2(x) ∈W 1
2 (R2), ω1, ω2 ∈ C, then

AN[u, v] =

∫
R2

∇h1(x)∇h2(x)dx
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− πω̄2

2

∫
R2

h1(x)
(
H

(1)
0 (eπi/4|x− y1|)−H(1)

0 (eπi/4|x− y2|)
)
dx

− πω1

2

∫
R2

(
H

(1)
0 (eπi/4|x− y1|)−H(1)

0 (eπi/4|x− y2|)
)
h2(x)dx

+ 4π

(
ln
|y1 − y2|

2
+ γ + ker |y1 − y2|

)
ω1ω̄2.
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