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The purpose of the article is to study an f -cosymplectic manifold M ad-
mitting Ricci solitons. Here we consider mainly two classes of Ricci solitons
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1. Introduction

In contact geometry, an important class of almost contact manifolds that are
almost Kenmotsu manifolds, was first introduced by Kenmotsu in [11]. Given
an almost Kenmotsu structure (φ, ξ, η, g), we can get an almost α-Kenmotsu
structure by a homothetic deformation

φ′ = φ, η′ =
1

α
η, ξ′ = αξ, g′ =

1

α2

for some non-zero real constant α. Note that almost α-Kenmotsu structures are
related to some special conformal deformations of almost cosymplectic structures
[18].

The notion of almost cosymplectic manifolds was first given by Goldberg
and Yano in [6]. Later Kim and Pak in [12] defined a new class of manifolds
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called as almost α-cosymplectic manifolds by combining almost cosymplectic and
almost α-Kenmotsu manifolds, where α is a real number. Recently, basing on
Kim and Pak’s work, Aktan et al. [1] considered a wide subclass of almost contact
manifolds, which are called almost f -cosymplectic manifolds, defined by choosing
a smooth function f in the conception of almost α-cosymplectic manifolds instead
of any real number α.

In the following, we recall that a Ricci soliton (g, V ) is a Riemannian metric
g together with a vector field V that satisfies the equation

1

2
LV g + Ric−λg = 0, (1.1)

where λ is a constant and V is a potential vector field. The Ricci soliton is said
to be shrinking, steady or expanding depending on whether λ is positive, zero or
negative, respectively. When the potential vector V is taken as the Reeb vector
field on an almost contact metric manifold, it is called a contact Ricci soliton,
and if V = DF , the gradient vector field of some function F on M , the Ricci
soliton is called a gradient Ricci soliton. The Ricci soliton is important not only
for studying the topology of manifolds, but also in the string theory. Compact
Ricci solitons are the fixed points of the Ricci flow, ∂

∂tg = −2 Ric, projected from
the space of metrics onto its quotient modulo diffeomorphisms and scalings, and
often arise as blow-up limits for the Ricci flows on compact manifolds.

The study of Ricci solitons has a long history, and a lot of conclusions were
acquired, see [3,5,8,9,13,14,16] etc. In particular, we should note that Ghosh [7]
studied a three-dimensional Kenmotsu manifold admitting a Ricci soliton and
proved it to be of constant curvature −1.

As the generalization of Kenmotsu manifolds, in this paper, we study a normal
almost f -cosymplectic manifold, which is said to be an f -cosymplectic manifold,
and get the classifications of f -cosymplectic manifolds whose metrics are contact
Ricci solitons and gradient Ricci solitons, respectively. In order to prove our
theorems we need some basic concepts which are given in Section 2. Section 3
contains the main results and proofs.

2. Some Basic Concepts and Related Results

LetM2n+1 be a (2n+1)-dimensional Riemannian manifold. An almost contact
structure on M is a triple (φ, ξ, η), where φ is a (1, 1)-tensor field, ξ is a unit vector
field, η is a one-form dual to ξ, satisfying

φ2 = −I + η ⊗ ξ, η ◦ φ = 0, φ ◦ ξ = 0. (2.1)

A smooth manifold with such a structure is called an almost contact manifold.
It is well known that there exists a Riemannian metric g such that

g(φX, φY ) = g(X,Y )− η(X)η(Y ), (2.2)
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for any X,Y ∈ X(M). From (2.1) and (2.2), it is easy to get

g(φX, Y ) = −g(X,φY ), g(X, ξ) = η(X). (2.3)

An almost contact structure (φ, ξ, η) is said to be normal if the Nijenhuis torsion

Nφ(X,Y ) = φ2[X,Y ] + [φX, φY ]− φ[φX, Y ]− φ[X,φY ] + 2dη(X,Y )ξ

vanishes for any vector fields X,Y on M .
Denote by ω the fundamental 2-form on M defined by ω(X,Y ) := g(φX, Y )

for all X,Y ∈ X(M). If η and ω are closed, then an almost contact structure is
called almost cosymplectic, and it is said to be cosymplectic if in addition the
almost contact structure is normal. An almost contact structure is said to be
almost α-Kenmotsu if dη = 0 and dω = 2αη ∧ω for a non-zero constant α. More
generally, if the constant α is any real number, then an almost contact structure is
said to be almost α-cosymplectic [15]. Moreover, Aktan et al. [1] generalized the
real number α to a smooth function f on M and defined an almost f -cosymplectic
manifold, which is an almost contact metric manifold (M,φ, ξ, η, g) such that
dω = 2fη ∧ ω and dη = 0 for a smooth function f satisfying df ∧ η = 0.

In addition, if the almost f -cosymplectic structure on M is normal, we say
that M is an f -cosymplectic manifold. Obviously, if f is constant, then an
f -cosymplectic manifold is either cosymplectic under condition f = 0, or α-
Kenmotsu (α = f 6= 0). Furthermore, there exists a distribution D of an f -
cosymplectic manifold defined by D = ker η, which is integrable since dη = 0.

Besides, for an almost contact manifold (M,φ, ξ, η, g), we denote h := 1
2Lξφ,

which is a self-dual operator. Since an f -cosymplectic manifold is normal, h =
0. Therefore, in virtue of [1, Proposition 9, Proposition 10], we know that for a
(2n+ 1)-dimensional f -cosymplectic manifold the following identities are valid:

∇Xξ = −fφ2X, (2.4)

Qξ = −2nf̃ξ, (2.5)

R(X,Y )ξ = f̃ [η(X)Y − η(Y )X], (2.6)

where ∇ and Q denote respectively the Levi–Civita connection and the Ricci
operator of M , and f̃ , ξ(f) + f2.

Proposition 2.1. For any f -cosymplectic manifold, if ξ(f̃) = 0, then f̃ =
const.

Proof. Differentiating (2.6) along any vector field Z, we have

(∇ZR)(X,Y )ξ = ∇Z(R(X,Y )ξ)−R(∇ZX,Y )ξ −R(X,∇ZY )ξ −R(X,Y )∇Zξ
= Z(f̃)[η(X)Y − η(Y )X] + f̃f [g(X,Z)Y − g(Y, Z)X]
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− fR(X,Y )Z.

Then, using the second Bianchi identity

(∇ZR)(X,Y )ξ + (∇XR)(Y, Z)ξ + (∇YR)(Z,X)ξ = 0,

we have

[Y (f̃)η(Z)− Z(f̃)η(Y )]X + [Z(f̃)η(X)−X(f̃)η(Z)]Y

+ [X(f̃)η(Y )− Y (f̃)η(X)]Z − f [R(X,Y )Z +R(Y, Z)X +R(Z,X)Y ] = 0.

By taking Z = ξ and using (2.6), we know

ξ(f̃)[η(Y )X − η(X)Y ]−X(f̃)φ2Y + Y (f̃)φ2X = 0. (2.7)

If we assume ξ(f̃) = 0, then we can obtain X(f̃) = 0 for every vector field X
by taking the inner product of (2.7) with Y , putting Y = ei and summing over i
in the resulting equation (where {ei} is the local orthonormal frame of M).

Obviously, taking into account df∧η = 0, it deduces immediately the following
corollary.

Corollary 2.2. An f -cosymplectic manifold is an α-cosymplectic manifold if
f vanishes along ξ.

Proposition 2.3. A compact f -cosymplectic manifold M2n+1 with ξ(f̃) = 0
is α-cosymplectic. In particular, if f̃ = 0, then M is cosymplecitc.

Proof. As ξ(f̃) = ξ(ξ(f)) + 2fξ(f) = 0, we obtain ξ(ξ(f)) = −2fξ(f). On
the other hand, we know that f satisfies df ∧ η = 0, which means that Df =
ξ(f)ξ, where D is the gradient operator with respect to g. For every field X, it
follows from (2.4) that

∇XDf = X(ξ(f))ξ + ξ(f)∇Xξ = X(ξ(f))ξ − fξ(f)φ2X.

Since ∇ξξ = 0, for every point p ∈ M , we can take a locally orthonormal
basis {ei} of TpM such that e2n+1 = ξ and ∇eiei = 0. Therefore,

∆f =
∑
i

g (∇eiDf, ei) = ξ(ξ(f)) + 2nfξ(f) = (1− n)ξ(ξ(f)), (2.8)

where ∆ is the Laplace operator. Since ei(f) = g(Df, ei) = 0 for i = 1, . . . , 2n,
we find ∆f =

∑
i ei(ei(f)) = ξ(ξ(f)). Hence, it follows from (2.8) that ξ(ξ(f)) =

0, which shows that ∆f = 0, i.e., f is constant. If f̃ = 0, i.e., 0 = ξ(f) + f2 =
f2, then f = 0.
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Remark 2.4. In [2], Blair proved that a cosymplectic manifold is locally the
product of a Kähler manifold and an interval or unit circle S1.

Moreover, for the three-dimensional case, we have

Lemma 2.5. For a three-dimensional f -cosymplectic manifold M3, we have

QY =

(
−3f̃ − R

2

)
η(Y )ξ +

(
f̃ +

R

2

)
Y, (2.9)

where R is the scalar curvature of M .

Proof. It is well known that the curvature tensor of any three-dimensional
Riemannian manifold is written as

R(X,Y )Z = g(Y, Z)QX − g(X,Z)QY + Ric(Y,Z)X

− Ric(X,Z)Y − R

2
[g(Y,Z)X − g(X,Z)Y ]. (2.10)

Putting Z = ξ and using (2.5), (2.6), we have(
f̃ +

R

2

)
(η(Y )X − η(X)Y ) = η(Y )QX − η(X)QY.

Moreover, by taking X = ξ and using (2.6) again, we obtain (2.9).

3. Main Results and Proofs

In this section, we mainly discuss two classes of Ricci solitons, i.e., contact
Ricci solitons and gradient Ricci solitons in f -cosymplectic manifolds. At first,
for a general Ricci soliton we have the following lemma, which was shown by Cho.

Lemma 3.1 ([4, Lemma 3.1]). If (g, V ) is a Ricci soliton of a Riemannian
manifold, then we have

1

2
||LV g||2 = V (R) + 2div(λV −QV ),

where R denotes the scalar curvature.

Theorem 3.2. If an f -cosymplectic manifold M2n+1 admits a contact Ricci
soliton, then M2n+1 is locally isometric to the product of a line and a Ricci-flat
Kähler (Calabi–Yau) manifold.
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Proof. In view of (2.4), we have

(Lξg)(X,Y ) = g(∇Xξ, Y ) + g(X,∇Y ξ) = 2f [g(X,Y )− η(X)η(Y )].

Therefore it implies from the Ricci equation (1.1) with V = ξ that

Ric(X,Y ) = (λ− f)g(X,Y ) + fη(X)η(Y ). (3.1)

By (3.1), the Ricci operator Q is provided

QX = (λ− f)X + fη(X)ξ

for any vector field X on M . Thus,

Qξ =λξ, (3.2)

R =(2n+ 1)λ− 2nf. (3.3)

By Lemma 3.1, (3.2) and (3.3), we find that

1

2
||Lξg||2 = −2nξ(f). (3.4)

Since (Lξg)(X,Y ) = 2fg(φX, φY ) and f̃ = − λ
2n is constant that follows from

a comparison of (2.5) and (3.2), a straightforward computation implies f2 =
const, i.e., f is constant. Hence ξ is Killing by (3.4). Moreover, we get f = 0
from (Lξg)(X,Y ) = 2fg(φX, φY ). Namely, M is cosymplectic. Further we have
Ric = 0 since λ = −2nf̃ = 0. Thus we complete the proof of our result.

In view of the above proof, we get immediately the following corollary.

Corollary 3.3. A contact Ricci soliton in an f -cosymplectic manifold is
steady.

In the following, we will assume that an f -cosymplectic manifold M2n+1 ad-
mits a gradient Ricci soliton and the function f satisfies ξ(f̃) = 0.

Theorem 3.4. Let M2n+1 be an f -cosymplectic manifold with a gradient
Ricci soliton. If ξ(f̃) = 0, then one of the following statements holds:

1. M is locally the product of a Kähler manifold and an interval or unit circle S1.

2. M is Einstein.

In order to prove the theorem, we first prove

Lemma 3.5. Let M3 be a three-dimensional f -cosymplectic manifold with a
Ricci soliton. Then the following equation holds:

2ξ(f̃) +
ξ(R)

2
+ 2

(
3f̃ +

R

2

)
f = 0. (3.5)
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Proof. By Lemma 2.5, we compute

(∇X Ric) (Y, Z) =

[
−3X(f̃)− X(R)

2

]
η(Y )η(Z) +

[
−3f̃ − R

2

]
(∇Xη)(Y )η(Z)

+

[
−3f̃ − R

2

]
η(Y )(∇Xη)(Z) +

[
X(f̃) +

X(R)

2

]
g(Y,Z)

=

[
−3X(f̃)− X(R)

2

]
η(Y )η(Z) +

[
−3f̃ − R

2

]
fg(φX, φY )η(Z)

+

[
−3f̃ − R

2

]
fη(Y )g(φX, φZ) +

[
X(f̃) +

X(R)

2

]
g(Y, Z).

(3.6)
Notice that for every vector Z, the following relation holds:

3∑
i=1

[(∇Z Ric)(ei, ei)− 2(∇ei Ric)(ei, Z)] = 0, (3.7)

which follows from formulas (8) and (9) of [7], where {e1, , e2, e3 = ξ} is a local
orthonormal frame of M .

Making use of (3.6), we obtain from (3.7) that[
−3ξ(f̃)− ξ(R)

2

]
η(Z) + 2

(
−3f̃ − R

2

)
fη(Z) + Z(f̃) = 0.

Putting Z = ξ in the above formula gives (3.5).

Proof of Theorem 3.4. By Proposition 2.1, f̃ = const. It is clear that the
Ricci soliton equation (1.1) with V = DF for some smooth function F implies

∇YDF = −QY + λY. (3.8)

Therefore we have R(X,Y )DF = (∇YQ)X − (∇XQ)Y . Putting Y = ξ further
gives

R(X, ξ)DF = (∇ξQ)X − (∇XQ)ξ. (3.9)

On the other hand, from (2.6) and the Bianchi identity, we have

R(X, ξ)Y = f̃ [g(X,Y )ξ − η(Y )X]. (3.10)

Replacing Y by DF in (3.10) and comparing with (3.9), we get

(∇ξQ)X − (∇XQ)ξ = f̃ [X(F )ξ − ξ(F )X]. (3.11)

Taking the inner product of the previous equation with ξ and using (2.5), we
arrive at

f̃ [X(F )− ξ(F )η(X)] = 0. (3.12)
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Then we divide the proof into the following cases.
Case I: f̃ = 0 and n > 1. That is, if ξ(f) = −f2, then Df = −f2ξ. If f 6≡

0, then there is an open neighborhood U such f |U 6= 0. Thus in this case ξ =

−Df
f2 = D

(
1
f

)
. Since ∆f = 0 (see the proof of Proposition 2.3),

0 = ∆

(
f

1

f

)
=

1

f
∆f + 2g

(
Df,D

(
1

f

))
+ f∆

1

f
= 2ξ(f) + f div ξ.

From (2.4), we know that div ξ = 2nf . When n > 1, substituting this into the
previous equation implies f = 0, which leads to a contradiction. Hence f ≡ 0,
that is, M is cosymplectic.

Case II: f̃ 6= 0. By (3.12), the following identity is obvious:

DF = ξ(F )ξ. (3.13)

Substituting this into (3.8) and using (2.4), we get

Y (ξ(F ))ξ − fξ(F )φ2Y = −QY + λY. (3.14)

By taking an inner product with ξ and using (2.5), we further find

Y (ξ(F )) = (2nf̃ + λ)η(Y ). (3.15)

Now taking (3.15) into (3.14) implies that for every vector X,

λg(X,Y )− Ric(X,Y ) = (2nf̃ + λ)η(X)η(Y ) + fξ(F )g(φX, φY ). (3.16)

Moreover, we derive from (3.16) that the scalar curvature

R = 2n(−f̃ + λ− fξ(F )). (3.17)

On the other hand, using (3.13) and (2.5), we have

Ric(X,DF ) = ξ(F )g(QX, ξ) = −2nf̃η(X)ξ(F ). (3.18)

It is well known that for any vector field X on M ,

g(DR,X) = 2 Ric(DF,X), (3.19)

which can be found in [10]. Applying (3.18) and (3.17) to this identity, we have

X(f)ξ(F ) + (2nf̃ + λ)η(X) = 2fξ(F )η(X). (3.20)

Substituting X = ξ into (3.20), we get

(ξ(f)− 2f̃)ξ(F ) + f(2nf̃ + λ) = 0. (3.21)
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Differentiating (3.21) along ξ, we obtain from (3.15) that

ξ(ξ(f))ξ(F ) + 2(ξ(f)− f̃)(2nf̃ + λ) = 0. (3.22)

Since ξ(f̃) = 0, we have ξ(ξ(f)) = −2fξ(f). Substituting this into (3.22) yields

fξ(f)ξ(F ) + f2(2nf̃ + λ) = 0. (3.23)

Differentiating the above formula again along ξ, we obtain(
ξ(f)2 − 2f2ξ(f)

)
ξ(F ) + 3fξ(f)(2nf̃ + λ) = 0.

Applying (3.21) to this equation implies(
ξ(f) + 4f2

)
ξ(f)ξ(F ) = 0.

Now, if ξ(f) + 4f2 = 0 on some neighborhood O of p ∈M , then 3f2 = −f̃ is
constant, i.e., f is constant on O. Further, we know f = 0, which implies f̃ = 0
on O. It is a contradiction with the assumption f̃ 6= 0. Therefore ξ(f)ξ(F ) = 0,
and it follows from (3.23) that

f2(2nf̃ + λ) = 0.

If 2nf̃ + λ = 0, then it deduces from (3.21) that (ξ(f) − 2f̃)ξ(F ) = 0, i.e.,
(ξ(f) + 2f2)ξ(F ) = 0. As before, we know ξ(F ) = 0. It shows that DF is
identically zero because of (3.13). Thus M is Einstein. Moreover, from (3.17) we
get R = 2n(λ− f̃).

If 2nf̃ + λ 6= 0, we have f ≡ 0, that is, M is cosymplectic.
In particular, when n = 1, we know that λ + 2f̃ = 0 and R = 2(λ − f̃).

Moreover, using Lemma 2.5, we obtain

QY = (−2f̃ − λ)η(Y )ξ + λY = −2f̃Y.

Case III: f̃ = 0 and n = 1. If f ≡ 0, then M is cosymplectic. Further we
will assume f 6= 0 on some neighborhood. By (2.5), we have Qξ = 0 when f̃ =
0. Because f̃ is constant, we obtain ξ(R) = 0 from (3.19). That means R = 0 by
(3.5). Moreover, in view of Lemma 2.5, we get Q = 0.

Summarizing the above discussion, we have proved that either f ≡ 0 or QY =
−2f̃Y . Thus, by Remark 2.4, we complete the proof of the theorem.

Since an α-cosymplectic manifold is actually an f -cosymplectic manifold such
that f is constant, we obtain the corollary below from Theorem 3.4.

Corollary 3.6. Let M2n+1 be an α-cosymplectic manifold with a gradient
Ricci soliton. Then M is either locally the product of a Kähler manifold and an
interval or unit circle S1, or Einstein.
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We note that Perelman in [14] proved that on a compact Riemannian manifold
a Ricci soliton is always a gradient Ricci soliton. Thus the following corollary is
clear from Theorem 3.4.

Corollary 3.7. Let M2n+1 be a compact f -cosymplectic manifold with a Ricci
soliton. If ξ(f̃) = 0, then M is either locally the product of a Kähler manifold
and an interval or unit circle S1, or Einstein.

When n = 1, we have

Corollary 3.8. Let M3 be a three-dimensional α-cosymplectic manifold with
a Ricci soliton. If ξ(R) = 0, then M is either locally the product of a Kähler
manifold and an interval or unit circle S1, or Einstein.

Proof. Since an α-cosymplectic manifold is an f -cosymplectic manifold, where
f = α is constant, we have f̃ = α2. Since ξ(R) = 0, making use of (3.5), we
obtain (

3α2 +
R

2

)
α = 0.

Therefore, α = 0 or R = −6α2. We complete the proof of Lemma 2.5.

Finally we give an example of an f -cosymplectic manifold satisfying ξ(f̃) = 0.

Example 3.9. As in the example of three dimension in [1], we also consider a
three-dimensional manifold M = {(x, y, z) ∈ R3}, where x, y, z are the standard
coordinates in R3. On M , we define the Riemannian metric

g =
1

e2θ(z)
(dx⊗ dx+ dy ⊗ dy) + dz ⊗ dz,

where θ(z) is a smooth function on M .

Clearly, the vector fields

e1 = eθ(z)
∂

∂x
, e2 = eθ(z)

∂

∂y
, e3 =

∂

∂z

are linearly independent with respect to g at each point of M . Also, we see that
g(ei, ej) = δij for i, j = 1, 2, 3.

Let η be the 1-form defined by η(X) = g(X, e3) for every field X and φ be the
(1, 1)-tensor field defined by φ(e1) = e2, φ(e2) = −e1, φ(e3) = 0. Hence, it is easy
to get that η = dz, ω(e1, e2) = g(φ(e1), e2) = 1 and ω(e1, e3) = ω(e2, e3) = 0.

Furthermore, a straightforward computation gives the brackets of the vector
fields e1, e2, e3:

[e1, e2] = 0, [e1, e3] = −θ′(z)e1, [e2, e3] = −θ′(z)e2.
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Consequently, the the Nijenhuis torsion of φ is zero, i.e., M is normal.
On the other hand, as in [1], it easily follows

ω =
1

e2θ(z)
dx ∧ dy

and
dω = −2θ′(z)e−2θ(z)dx ∧ dy ∧ dz = 2θ′(z)ω ∧ η.

Therefore, M is an f -cosymplectic manifold with f(x, y, z) = θ′(z).
In order that ξ(f̃) = 0, i.e.,

θ′′′(z) + 2θ′(z)θ′′(z) = 0,

we need θ′′(z)+[θ′(z)]2 = c for a constant c. In view of theory of ODE, the above
equation is solvable.
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[15] H. Öztürk, N. Aktan, and C. Murathan, Almost α-Cosymplectic (κ, µ, ν)-Spaces,
arXiv:1007.0527v1, 24 pp.

[16] P. Petersen and W. Wylie, Rigidity of Ggradient Ricci Solitons, Pacific. J. Math.
241 (2) (2009), 329–345.

[17] R. Sharma, Certain Results on K-Contact and (κ, µ)-Contact Manifolds, J. Geom.
89 (2008), 138–147.

[18] K. Vaisman, Conformal Changes of Almost Contact Metric Manifolds, In: Lecture
Notes in Mathematics 792, Springer, Berlin, 1980, 435–443.

Journal of Mathematical Physics, Analysis, Geometry, 2017, Vol. 13, No. 3 253


