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In the paper, the method of approximate solution of boundary integral
equations of the original problem is proposed. The systems of boundary
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ric representation of integral transforms. The convergence of approximate
solutions to the exact solution of the original problem is guaranteed by the
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1. Introduction

The modeling of electromagnetic waves diffraction on non-perfectly conduct-
ing gratings leads to the consideration of external mixed boundary value problems
for the Helmholtz equation [1].

Modern diffraction structures consist of large number of elements located in
different planes. It leads to the consideration of boundary value problems in
domains of complex shape. An effective way of solving these boundary value
problems was proposed by Yu.V. Gandel. It consists of two basic steps. First,
the initial boundary value problems are reduced to a system of boundary integral
equations by the method of parametric representations of integral transforms
[2–4]. Usually the systems of boundary integral equations consist of integral
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equations of different types: the first and second kind, singular and hypersin-
gular [5,6]. Second, finite-dimensional approximations of systems of boundary
integral equations are constructed by using the method of discrete singularities
(the method of discrete vortices [7]).

Methods of approximate solution of the first and second boundary value prob-
lems were well studied in [8–10]. Unfortunately, the theory of finding approxi-
mate solutions of boundary integral equation systems of the third boundary value
problems has not been sufficiently studied yet because of the complexity of these
systems. In particular, several types of equations depend on the same unknown
functions. This makes it impossible to solve the equations independently from
each other. Also, the presence of components with variable upper limit in the
integral equations makes it difficult to apply the classical scheme of the method
of discrete singularities.

In this article, a version of the approximate solution of boundary integral
equations of the third boundary value problem, which was considered in [11],
was proposed. The version is based on the ideas of [12,13], where the approxi-
mate solution of the diffraction problem of electromagnetic waves on a system of
superconductive bands [14] was considered.

2. System of Boundary Integral Equations

The system of boundary integral equations of the initial problem consists of
integral equations of two different types.

Equations of the first type are singular integral equations of the first kind:

1

π

1∫
−1

1

τ − ξ
νq (τ) dτ√

1− τ2
+

1

π

2R∑
p=1

1∫
−1

Qq,p (ξ, τ)
νp (τ) dτ√

1− τ2

− cq
π

ξ∫
−1

νq (τ) dτ√
1− τ2

= fq (ξ) , |ξ| < 1, q = 1, . . . , R; (1)

with the additional conditions

1

π

1∫
−1

vq (τ) dτ√
1− τ2

= 0, q = 1, . . . , R. (2)

Equations of the second type are Fredholm equations of the second kind:

νq (ξ) +
1

π

2R∑
p=1

1∫
−1

Qq,p (ξ, τ)
νp (τ) dτ√

1− τ2
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− cq
π

√
1− ξ2 ·

ξ∫
−1

νq−R (τ) dτ√
1− τ2

= fq (ξ) , |ξ| < 1, q = R+ 1, . . . , 2R. (3)

In equations (1), (3) it is assumed that

fq (ξ) ∈ C0, 1
2 [−1, 1] , Qq,p (ξ, τ) ∈ C0, 1

2 ([−1, 1]× [−1, 1]) ,

p = 1, . . . , 2R, q = 1, . . . , 2R.

In these equations R is the number of plane-parallel slits.
Let L2

ρ,α, (α = ±1) , be the Hilbert spaces of measurable functions with respect
to the inner product

(u, ν)α =

1∫
−1

u (τ) v̄ (τ) ρα (τ) dτ, ρ (τ) =
√

1− τ2,

and the norm ‖ν‖α =
√

(v, ν)α. Also we take under consideration the space

L2,0
ρ,−1 =

{
u ∈ L2

ρ,−1 | (u, 1)−1 = 0
}
.

Define the operators:

Θq,p : L2
ρ,−1 → L2

ρ,1, (Θq,pu) (ξ) =
1

π

1∫
−1

Qq,p (ξ, τ)
u (τ) dτ√

1− τ2
,

|ξ| < 1; q = 1, . . . , R; p = 1, . . . , 2R; (4)

Θq,p : L2
ρ,−1 → L2

ρ,−1, (Θq,pu) (ξ) =
1

π

1∫
−1

Qq,p (ξ, τ)
u (τ) dτ√

1− τ2
,

|ξ| < 1; q = R+ 1, . . . , 2R; p = 1, . . . , 2R; (5)

Φ : L2,0
ρ,−1 → L2

ρ,1, (Φu) (ξ) =
1

π

ξ∫
−1

u (τ) dτ√
1− τ2

, |ξ| < 1; (6)

Ψ : L2,0
ρ,−1 → L2

ρ,−1, (Ψu) (ξ) =

√
1− ξ2

π

ξ∫
−1

u (τ) dτ√
1− τ2

, |ξ| < 1; (7)

Γ : L2,0
ρ,−1 → L2

ρ,1, (Γu) (ξ) =
1

π

−1∫
−1

1

τ − ξ
u (τ) dτ√

1− τ2
, |ξ| < 1. (8)

256 Journal of Mathematical Physics, Analysis, Geometry, 2017, Vol. 13, No. 3



. . . the Third Boundary Value Problems for Helmholtz Equations . . .

From [15], it is known that

Γ :T0 (τ)→ 0, Tn (τ)→ Un−1 (ξ) , n ∈ N ; (9)

Φ :Tn (τ)→ −Un−1 (ξ)

n

√
1− ξ2, n ∈ N, (10)

where Tn (τ) are the Chebyshev polynomials of the first kind, and Un (ξ) are the
Chebyshev polynomials of the second kind.

Combining (7) and (10), we get

Ψ : Tn (τ)→ −Un−1 (ξ)

n

(
1− ξ2

)
, n ∈ N (11)

and
‖Γ‖

L2,0
ρ,−1→L2

ρ,1
= 1, ‖Ψ‖

L2,0
ρ,−1→L2

ρ,−1
≤ 1, ‖Φ‖

L2,0
ρ,−1→L2

ρ,1
≤ 1. (12)

We introduce the Hilbert spaces H2
1 and H2

2 :

~V = (v1, v2, . . . , v2R) ∈ H2
1

⇔
(
vq ∈ L2,0

ρ,−1, q = 1, . . . , R; vq ∈ L2
ρ,−1, q = R+ 1, . . . , 2R

)
;

~W = (w1, w2, . . . , w2R) ∈ H2
2

⇔
(
wq ∈ L2

ρ,1, q = 1, . . . , R; wq ∈ L2
ρ,−1, q = R+ 1, . . . , 2R

)
,

with the inner products

(
~V , ~U

)
H2

1

=
2R∑
i=1

(vi, ui)L2
ρ,−1

,

(
~W, ~S

)
H2

2

=

R∑
i=1

(vi, si)L2
ρ,1

+

2R∑
i=R+1

(vi, si)L2
ρ,−1

and the norms
∥∥∥~V ∥∥∥

H2
1

=

√(
~V , ~V

)
H2

1

,
∥∥∥ ~W∥∥∥

H2
2

=

√(
~W, ~W

)
H2

2

.

Consider the operators:

G : H2
1 → H2

2 ,
(
~W = G~V

)
⇔
{
wq = Γvq, q = 1, . . . , R
wq = vq, q = R+ 1, . . . , 2R

}
; (13)

Z : H2
1 → H2

2 ,
(
~W = Z~V

)
⇔
{
wq = cqΦvq, q = 1, . . . , R
wq = cqΨvq−R, q = R+ 1, . . . , 2R

}
; (14)
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K : H2
1 → H2

2 ,
(
~W = K~V

)
⇔

wq =

2R∑
p=1

Θq,pvp, q = 1, . . . , 2R

 ; (15)

A : H2
1 → H2

2 , A = G− Z + K. (16)

With the notation (13)–(16), the system of equations (1)–(3) can be written as

A~V = ~F , (17)

where ~F = (f1, f2, . . . , f2R).

Lemma 1. The operator G : H2
1 → H2

2 is invertible and the operator G−1 :
H2

2 → H2
1 is bounded.

Proof. We introduce the vector-functions:

~Xk,q (τ) = (xk,q,1 (τ) , xk,q,2 (τ) , . . . , xk,q,2R (τ)) ,

xk,q,p =

{
δq,pTk+1 (τ) , q = 1, . . . , R

δq,pTk (ξ) , q = R+ 1, . . . , 2R
, (18)

~Yk,q (ξ) = (yk,q,1 (ξ) , yk,q,2 (ξ) , . . . , yk,q,2R (ξ)) ,

yk,q,p (ξ) =

{
δq,pUk (ξ) , q = 1, . . . , R

δq,pTk (ξ) , q = R+ 1, . . . , 2R
, (19)

where δq,p is a Kronecker delta, and k = 0, 1, 2, . . . .

The set of vector functions
2R⋃
q=0

∞⋃
k=1

~Xk,q is an orthogonal basis in H2
1 and the

set of vector functions
2R⋃
q=1

∞⋃
k=0

~Yk,q is an orthogonal basis in H2
2 . Using (9), (13),

(18), and (19), we get

G ~Xk,q = ~Yk,q, k = 0, 1, 2, . . . ; q = 1, . . . , 2R. (20)

Thus, the operator G maps the basis of the space H2
1 onto the basis of the

space H2
2 , and ‖G‖H2

1→H2
2

= 1. Therefore, the operator G is bijective and

bounded. So, by the Banach Isomorphism Theorem [16, p. 113] the operator
G has a bounded inverse.

Lemma 2. The operator A : H2,0
ρ,−1 → H2

ρ,1 is invertible and the operator

A−1 is bounded.
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Proof. The operator A is the sum of the invertible operator G : H2
1 → H2

2

and the compact operator −Z + K : H2
1 → H2

2 . Hence, by virtue of Nikolsky
criterion (see [16, p. 150]),

ind
(

A|H2
1→H2

2

)
= 0.

From the uniqueness of the problem solutions (1)-(3), it follows that

dim ker
(

A|H2
1→H2

2

)
= 0.

Consequently,
A
(
H2

1

)
= H2

2 .

Finally, by the Banach Isomorphism Theorem (see [16, p. 113]), the operator
A has a bounded inverse.

3. Approximate Systems of Integral Equations (1)–(3) and Their
Properties

Put

tni = cos

(
2i− 1

2n
π

)
, i = 1, . . . , n;

tn0,j = cos

(
j

n
π

)
, j = 1, . . . , n− 1.

The points tnk are the zeros of Chebychev polynomials of the first kind Tn(τ)
and tn0,j denote the zeros of Chebychev polynomials of the second kind Un−1(ξ).

Define the basis polynomials:

l1,n−1,i (τ) =
1

n

1 + 2

n−1∑
p=1

Tp (τ) Tp (tni )

 , i = 1, . . . , n;

l2,n−2,j(ξ) =
Un−1 (ξ)

U ′n−1

(
tn0,j

)(
ξ − tn0,j

) , j = 1, . . . , n− 1.

They have the properties:

l1,n−1,i (tnm) = δi,m, i = 1, . . . , n; m = 1, . . . , n;

l2,n−2,j

(
tn0,s
)

= δj,s, j = 1, . . . , n− 1; s = 1, . . . , n− 1.

We introduce the Lagrange interpolation polynomials:

Qq,p,n (ξ, τ) =

n−1∑
j=1

n∑
i=1

Qq,p
(
tn0,j , t

n
i

)
l2,n−2,j (ξ) l1,n−1,i (τ) ,
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q = 1, . . . , R; p = 1, . . . , 2R;

Qq,p,n (ξ, τ) =
n∑
j=1

n∑
i=1

Qq,p
(
tnj , t

n
i

)
l1,n−1,j (ξ) l1,n−1,i (τ) ,

q = R+ 1, . . . , 2R; p = 1, . . . , 2R;

fq,n (ξ) =

n−1∑
j=1

fq
(
tn0,j
)
l2,n−2,j (ξ) , q = 1, . . . , R;

fq,n (ξ) =
n∑
i=1

fq (tni ) l1,n−1,i (ξ) , q = R+ 1, . . . , 2R.

In order to solve the problem (1)–(3), we consider the following approximate
system of integral equations:

1

π

1∫
−1

1

τ − ξ
νq,n (τ) dτ√

1− τ2
+

1

π

2R∑
p=1

1∫
−1

Qq,p,n (ξ, τ)
νp,n (τ) dτ√

1− τ2

− cq
π

n−1∑
j=1

l2,n−2,j (ξ)

π

tn0,j∫
−1

νq,n (τ) dτ√
1− τ2

= fq,n (ξ) ,

|ξ| < 1, q = 1, . . . , R; (21)

1

π

1∫
−1

νq,n (τ) dτ√
1− τ2

= 0, q = 1, . . . , R; (22)

νq,n (ξ)− cq
π

n∑
i=1

√
1− (tni )2l1,n−1,i (ξ)

tni∫
−1

νq−R,n (τ) dτ√
1− τ2

+
1

π

2R∑
p=1

1∫
−1

Qq,p,n (ξ, τ)
νp,n (τ) dτ√

1− τ2
= fq,n (ξ) ,

|ξ| < 1, q = R+ 1, . . . , 2R. (23)

The functions νq,n are sought in the class of polynomials of degree n − 1.
Subsequently, the reasoning shows the existence of polynomial solutions.

We define the subspaces L2
ρ,α,n of the spaces L2

ρ,α. The elements of these
subspaces are polynomials of degree n. The subspaces

L2,0
ρ,α,n =

{
u ∈ L2

ρ,α,n | (u, 1)α = 0
}

of the spaces L2
ρ,α,n are also taken under consideration.
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Let us define the operators:

Θq,p,n : L2
ρ,−1,n−1 → L2

ρ,1,n−2, (Θq,p,nu) (ξ) =
1

π

1∫
−1

Qq,p,n (ξ, τ)
u (τ) dτ√

1− τ2
,

|ξ| < 1; i = 1, . . . , R; (24)

Θq,p,n : L2
ρ,−1,n−1 → L2

ρ,−1,n−1, (Θq,p,nu ) (ξ) =
1

π

1∫
−1

Qq,p,n (ξ, τ)
u (τ) dτ√

1− τ2
,

|ξ| < 1; i = R+ 1, . . . , 2R; (25)

Φn : L2,0
ρ,−1,n−1 → L2

ρ,1,n−2, (Φnu) (ξ) =
n−1∑
j=1

l2,n−2,j (ξ)

π

tn0,j∫
−1

u (τ) dτ√
1− τ2

,

|ξ| < 1; (26)

Ψn : L2,0
ρ,−1,n−1 → L2

ρ,−1,n−1, (Ψnu) (ξ) =
n∑
i=1

√
1− (tni )2

π
l1,n−1,j (ξ)

×

tni∫
−1

u (τ) dτ√
1− τ2

, |ξ| < 1. (27)

We introduce the subspaces H2
1,n of H2

1 and the subspaces H2
2,n of H2

2 :

~Vn ∈ H2
1,n ⇔

(
vq,n ∈ L2,0

ρ,−1,n−1, q = 1, . . . , R;

vq,n ∈ L2
ρ,−1,n−1, q = R+ 1, . . . , 2R

)
;

~Wn ∈ H2
2,n ⇔

(
wq,n ∈ L2

ρ,1,n−2, q = 1, . . . , R;

wq,n ∈ L2
ρ,−1,n−1, q = R+ 1, . . . , 2R

)
.

Consider the operators:

Zn : H2
1,n → H2

2,n,
(
~Wn = Zn ~Vn

)
⇔
{
wq,n = cqΦnvq,n, q = 1, . . . , R;
wq,n = cqΨnvq−R,n, q = R+ 1, . . . , 2R

}
; (28)

Kn : H2
1,n → H2

2,n,
(
~Wn = Kn

~Vn

)
⇔

wq,n =
2R∑
p=1

Θq,p,ntvp,n, q = 1, . . . , 2R

 ; (29)
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An : H2
1,n → H2

2,n, An = G− Zn + Kn. (30)

With the notation (28)–(30), the system of equations (21)–(23) can be written as

An
~Vn = ~Fn, (31)

where ~Fn = (f1,n, f2,n, . . . , f2R,n) .
For all n ≥ 4, the following estimates hold true [15]:

‖fq,n − fq‖L2
ρ,1
≤ M1√

n
, q = 1, . . . , R; (32)

‖fq,n − fq‖L2
ρ,−1
≤ M1√

n
, q = R+ 1, . . . , 2R; (33)

‖Θq,p,n −Θq,p‖L2
ρ,−1→L2

ρ,1
≤ M2√

n
, q = 1, . . . , R; p = 1, . . . , 2R; (34)

‖Θq,p,n −Θq,p‖L2
ρ,−1→L2

ρ,−1
≤ M2√

n
, q = R+ 1, . . . , 2R; p = 1, . . . , 2R, (35)

where

M1 = 24
√

2π max
q=1,...,2R

‖fq‖C[−1,1],

M2 = 48
√

2π max
q=1,...,2R

‖Qq,p‖C([−1,1]×C[−1,1]).

These estimates are the consequences of Jackson’s Theorems (see Corollary 1
of Theorem 2 in [17, p. 128]).

Lemma 3. For all natural n, the inequality

‖A−An‖H2
1,n→H2

2
≤ M∗√

n
(36)

holds true. Besides,

‖A−An‖H2
1,n→H2

2
→ 0, n→∞. (37)

Proof. The following inequality clearly holds:

‖A−An‖H2
1,n→H2

2
≤ ‖Zn − Z‖H2

1,n→H2
2

+ ‖Kn −K‖H2
1,n→H2

2
. (38)

The set of vector functions

E1,n =

 R⋃
q=1

n−2⋃
k=0

~Xk,q

⋃ 2R⋃
q=R+1

n−1⋃
k=0

~Xk,q
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is an orthogonal basis in H2
1,n and the set of vector functions

E2,n =

 R⋃
q=1

n−2⋃
k=0

~Yk,q

⋃ 2R⋃
q=R+1

n−1⋃
k=0

~Yk,q


is an orthogonal basis in H2

2,n. Let us note that dim
(
H2

1,n

)
= dim

(
H2

2,n

)
=

R (2n− 3).

The estimations ∥∥∥(K−Kn) ~Xk,q

∥∥∥
H2

2∥∥∥ ~Xk,q

∥∥∥
H2

1

≤ 2M2R√
n

(39)

hold true for all ~Xk,q ∈ E1,n. Inequality (39) is the consequence of estimates (34)
and (35). Furthermore,

‖(K−Kn)‖H2
1,n→H2

2
≤ 2M2R√

n
. (40)

Let un(τ) be a polynomial of degree (n− 1) with the property (un, 1)−1 = 0.
Properties (10), (11) of the operators Φ and Ψ imply that the function Φun ∈
C0, 1

2 and Ψun ∈ L2
ρ,1,n.

Reasoning as in [15, p. 60], we get

‖Φ− Φn‖L2
ρ,−1,n−1→L2

ρ,1
≤ 24√

n
,

‖Ψ−Ψn‖L2
ρ,−1,n−1→L2

ρ,−1
≤ 24√

n
, ∀un ∈ L2,0

ρ,−1,n−1. (41)

Hence, estimations (41) show that the operators

Φn : L2,0
ρ,−1,n−1 → L2

ρ,1,n−2, Ψn : L2,0
ρ,−1,n−1 → L2

ρ,−1,n−1

are bounded.

Taking into account (14) and (28), we obtain∥∥∥(Z− Zn) ~Xk,q

∥∥∥
H2

1

=0, q = R+ 1, . . . , 2R,

and∥∥∥(Z− Zn) ~Xk,q

∥∥∥
H2

1

≤ |cq| ‖(Φ− Φn)Tk‖L2
ρ,−1→L2

ρ,1
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+ |cq+R| ‖(Ψ−Ψn)Tk‖L2
ρ,−1→L2

ρ,−1
, q = 1, . . . , R. (42)

Moreover,

‖Z− Zn‖H2
1,n→H2

2
= max

~Xk,q∈E1,n

∥∥∥(Z− Zn) ~Xk,q

∥∥∥
H2

2∥∥∥ ~Xk,q

∥∥∥
H2

1

≤ 48C√
n
, (43)

where C = max
q=1,...,2R

|cq|. Finally, the validity of Lemma 3 follows from (38), (40),

and (43), where M∗ = 2RM2 + 48C.

In [18], the following theorem can be found.

Theorem 1. Let X and Y be normed linear spaces and let X̃ ⊂ X and
Ỹ ⊂ Y be finite-dimensional subspaces of the same dimension. We consider two
equations.

The equation for the exact solution of the problem

Au = f, u ∈ X, f ∈ Y, (44)

and the equation for the approximate solution of the problem

Ãũ = f̃ , ũ ∈ X̃, f̃ ∈ Ỹ , (45)

where A and Ã are the linear operators

Assume that

1) the operator A is invertible and the operator A−1 : Y → X is bounded,

2) the inequality

p =
∥∥∥A−1

∥∥∥
Y→X

∥∥∥A− Ã∥∥∥
X̃→Y

< 1

holds.

Then

1) for any function f̃ ∈ Ỹ , the equation (45) has the unique solution ũ∗ ∈ X̃;

2) let u∗ ∈ X be the solution of equation (44) and let δ =
∥∥∥f − f̃∥∥∥

Y
, then

‖u∗ − ũ∗‖ ≤
∥∥A−1

∥∥
Y→X (1− p)−1 (δ + p ‖f‖Y ) .

Lemmas 1–3 and Theorem 1 lead us to the following result.
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Theorem 2. Let us denote

M =
(

2M∗
∥∥A−1

∥∥
H2

2→H2
1

)2
. (46)

For all natural n > M, the following statements hold true.

1. Problems (31) have unique solutions.

2. The vector-functions ~Vn ∈ H2
1,n.

3. The sequence
{
~Vn

}∞
n=[M ]+1

of the approximate solutions of problems (31)

converges to the exact solution of problem (17) in the norm of the space H2
1 .

Moreover, ∥∥∥~V − ~Vn

∥∥∥
H2

1

≤ M∗∗√
n
. (47)

Proof. Let us define the numbers

pn =
∥∥A−An

∥∥
H2

1,n→H2
2

∥∥A−1
∥∥
H2

2→H2
1
. (48)

It follows from estimation (36) and (46) that pn ≤ 1
2 for n > M .

Appealing to Theorem 1 and the previous estimation concludes the unique-
ness and existence of solutions of problems (31), where ~Vn ∈ H2

1,n. Also, the
estimations∥∥∥~V − ~Vn

∥∥∥
H2

1

≤
∥∥A−1

∥∥
H2

2→H2
1

(1− pn)−1

×
(∥∥∥~Fn − ~F

∥∥∥
H2

2

+ pn

∥∥∥~F∥∥∥
H2

1

)
, n > M, (49)

follow from the statements of Theorem 1. Thus, inequality (47) holds true for

M∗∗ = 2
∥∥A−1

∥∥
H2

2→H2
1

(
2RM1 +M∗

∥∥A−1
∥∥
H2

2→H2
1

∥∥∥~F∥∥∥
H2

1

)
.

We obtain the value of M∗∗ as a direct consequence of estimations (32), (33),
(36), and (49) . This completes the proof of Theorem 2.

Corollary 1. For all natural n > M , the following statements hold true.

1. The systems of integral equations (21)–(23) have a unique solution, where the
functions vq,n are the polynomials of degree (n− 1).

2. For all q = 1, . . . ,M , the sequences {vq,n}∞n=[M ]+1 converge to the functions

vq, which are the exact solutions of problem (1)–(3) in the norm of the space
L2
ρ,−1. Moreover,

‖vq,n − vq‖L2
ρ,−1
≤ M∗∗√

n
, ∀n ∈ N, n > M.
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4. Conclusions

The justification of the method of approximate solution of the boundary in-
tegral equations considered in [19] was given. The results obtained in the paper
can be used as basic solutions of other problems considered in [20–22].
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