The Existence of Heteroclinic Travelling Waves in the Discrete Sine-Gordon Equation with Nonlinear Interaction on a 2D-Lattice

S. Bak

The article deals with the discrete sine-Gordon equation that describes an infinite system of nonlinearly coupled nonlinear oscillators on a 2D-lattice with the external potential $V(r) = K(1-\cos r)$. The main result concerns the existence of heteroclinic travelling waves solutions. Sufficient conditions for the existence of these solutions are obtained by using the critical points method and concentration-compactness principle.

Key words: discrete sine-Gordon equation, nonlinear oscillators, 2D-lattice, heteroclinic travelling waves, critical points, concentration-compactness principle.

Mathematical Subject Classification 2010: 34G20, 37K60, 58E50.

1. Introduction

In the paper, we study the discrete sine-Gordon equation that describes the dynamics of an infinite system of nonlinearly coupled nonlinear oscillators on a two-dimensional lattice. Let $q_{n,m}$ be a generalized coordinate of the (n,m)-th oscillator at the time t. It is assumed that each oscillator interacts nonlinearly with its four nearest neighbors. The equation of motion of the system considered is of the form

$$\ddot{q}_{n,m} = V'(q_{n+1,m} - q_{n,m}) - V'(q_{n,m} - q_{n-1,m}) + V'(q_{n,m+1} - q_{n,m}) - V'(q_{n,m} - q_{n,m-1}) - K\sin(q_{n,m}), \quad (n,m) \in \mathbb{Z}^2,$$
(1)

where K > 0. Equations (1) form an infinite system of ordinary differential equations.

System (1) can be considered as a 2D version of the Frenkel–Kontorova model (see, e.g., [11]). Notice that this system represents a wide class of systems called lattice dynamical systems extensively studied in last decades. In this area of research, a great attention is paid to an important specific class of solutions called travelling waves solutions. A comprehensive presentation of the results on travelling waves for 1D Fermi–Pasta–Ulam lattices is given in [19]. The existence

of periodic travelling waves in the Fermi-Pasta-Ulam system on a 2D-lattice is studied in [4]. On the other hand, some results on the chains of oscillators are also known in the literature. In particular, in [14] they are obtained by means of bifurcation theory, while in [1] and [2] the existence of periodic and solitary travelling waves is studied by means of the critical point theory. In papers [3,10,12,13], travelling waves for infinite systems of linearly coupled oscillators on a 2D-lattice are studied. Paper [18] is devoted to periodic and homoclinic travelling waves for the infinite one-dimensional chain of nonlinearly coupled nonlinear particles. In [6], a result on the existence of subsonic periodic travelling waves for the system of nonlinearly coupled nonlinear oscillators on a 2D-lattice is obtained, and in [7], supersonic periodic travelling waves for these systems are studied. Paper [15] contains a result on the existence of heteroclinic travelling waves for the discrete sine-Gordon equation with linear interaction. In [16], periodic, homoclinic and heteroclinic travelling waves for such systems with nonlinear interaction are studied. In paper [5], a result on the existence of periodic travelling waves for the discrete sine-Gordon equation with nonlinear interaction on a 2D-lattice is obtained. [8] is devoted to the existence of heteroclinic travelling waves for the discrete sine-Gordon equation with linear interaction on a 2D-lattice.

The problem statement

A travelling wave solution of equation (1) is a function of the form

$$q_{n,m}(t) = u(n\cos\varphi + m\sin\varphi - ct)$$
,

where the profile function u(s) of the wave, or simply profile, satisfies the equation

$$c^{2}u''(s) = V'(u(s + \cos\varphi) - u(s)) - V'(u(s) - u(s - \cos\varphi)) + V'(u(s + \sin\varphi) - u(s)) - V'(u(s) - u(s - \sin\varphi)) - K\sin(u(s)).$$
(2)

The constant $c \neq 0$ is called the speed of the wave. If c > 0, then the wave moves to the right, otherwise to the left.

An important role is played by the quantity c_1 defined by the equation

$$c_1^2 := 2 \sup_{|r| < 6\pi} \left| \frac{V(r)}{r^2} \right|.$$

We consider the case of heteroclinic travelling waves. The profile function of this wave satisfies the conditions:

$$\lim_{s \to -\infty} u(s) = -\pi \quad \text{and} \quad \lim_{s \to +\infty} u(s) = \pi. \tag{3}$$

In what follows, a solution of equation (2) is understood as a function u(s)from the space $C^2(\mathbb{R})$ satisfying equation (2) for all $s \in \mathbb{R}$.

3. Variational setting

To equation (2), we associate the functional

$$J(u) := \int_{-\infty}^{+\infty} \left[\frac{c^2}{2} (u'(s))^2 - V(u(s + \cos \varphi) - u(s)) - V(u(s + \sin \varphi) - u(s)) + K(1 + \cos(u(s))) \right] ds, \tag{4}$$

defined on the Hilbert space

$$E := \{ u \in H^1_{loc}(\mathbb{R}) : u' \in L^2(\mathbb{R}) \}$$

with the scalar product

$$(u,v)_E = u(0)v(0) + \int_{-\infty}^{+\infty} u'(s)v'(s) ds.$$

It is not so difficult to verify that the critical points of the functional J are the solutions of equation (2).

Now we introduce the following notation:

$$\mathcal{M}_{-\pi,\pi} = \{ u \in E : u(-\infty) = -\pi, u(+\infty) = \pi \},$$

$$Au(s) := u(s + \cos \varphi) - u(s),$$

$$Bu(s) := u(s + \sin \varphi) - u(s).$$

According to Lemma 3.1 from [10],

$$||Au(s)||_{L^{2}(\mathbb{R})} \le |\cos \varphi| \cdot ||u'(s)||_{L^{2}(\mathbb{R})}, \qquad u \in E,$$

 $||Bu(s)||_{L^{2}(\mathbb{R})} \le |\sin \varphi| \cdot ||u'(s)||_{L^{2}(\mathbb{R})}, \qquad u \in E.$

Then the functional J can be expressed in the form

$$J(u) := \int_{-\infty}^{+\infty} \left[\frac{c^2}{2} (u'(s))^2 - V(Au(s)) - V(Bu(s)) + K(1 + \cos(u(s))) \right] ds. \tag{5}$$

Throughout the paper we will assume that the interaction potential V(r) satisfies the following conditions:

- (i) $V(r) \in C^1(\mathbb{R})$, V(0) = 0 and $V(r) \ge 0$ for all $r \in \mathbb{R}$;
- (ii) $\lim_{r\to\pm\infty} V(r) = +\infty$;
- (iii) there exists finite $\lim_{r\to 0} \left| \frac{V(r)}{r^2} \right|$;
- (iv) the wave speed c satisfies $c^2 > c_1^2$.

The following lemma can be obtained by a straightforward calculation (see [15] for details).

Lemma 3.1. Let $v_0 : \mathbb{R} \to [-\pi, \pi]$ be a monotone function in $C^{\infty}(\mathbb{R})$ such that $v_0(s) = -\pi$ for s < -1 and $v_0(s) = \pi$ for s > 1. Define the functional $\Psi : H^1(\mathbb{R}) \to \mathbb{R}$ by

$$\Psi(v) := J(v_0 + v)$$

and suppose that assumptions (i)-(iv) are satisfied. Then the following holds:

- (i₁) $\Psi(v) < +\infty$ for all $v \in H^1(\mathbb{R})$ (equivalently, $J(u) < +\infty$ for all u of the form $u = v_0 + v$ for some $v \in H^1(\mathbb{R})$);
- (ii₁) $J(u) = +\infty$ for all $u \in \mathcal{M}_{-\pi,\pi}$ which are not of the form $u = v_0 + v$ for some $v \in H^1(\mathbb{R})$. In particular, a minimizer u of J on $\mathcal{M}_{-\pi,\pi}$ can be expressed as $u = v_0 + v$ for some $v \in H^1(\mathbb{R})$;
- (iii₁) $\Psi \in C^1$ on $H^1(\mathbb{R})$;
- (iv₁) let $v \in H^1(\mathbb{R})$ be a critical point of Ψ and set $u := v_0 + v$. Then $u, v \in C^2(\mathbb{R})$, and u is a solution of (2) with boundary conditions (3).

Let F be a non-negative function in $C^{\infty}(\mathbb{R})$ such that

$$\begin{cases} F(r) = 0, & \text{if } |r| \le \frac{5\pi}{2}, \\ F(r) \ge 4 \left| \int_0^{2r} |V'(x)| dx \right| & \text{and } F(r) \ge 2K, & \text{if } |r| \ge 3\pi, \\ \frac{1}{2} \le 1 + \cos r + \frac{1}{2K} F(r), & \text{if } |r| \in \left(\frac{5}{2}\pi, 3\pi\right). \end{cases}$$
(6)

Now we define the modified functional $\tilde{J}: E \to \mathbb{R} \cup \{\infty\}$ by

$$\tilde{J}(u) := \int_{-\infty}^{+\infty} \left[\frac{c^2}{2} (u'(s))^2 - V(Au(s)) - V(Bu(s)) + K(1 + \cos(u(s))) + F(u(s)) \right] ds.$$
 (7)

Remark 3.2. Obviously, $\tilde{J}(u) = J(u)$ for all $u \in E$ with norm

$$||u||_{L^{\infty}(\mathbb{R})} \le \frac{5}{2}\pi.$$

Now we denote the modified potential of interaction by

$$\tilde{V}(r) = \left| \int_0^r |V'(x)| dx \right|.$$

Then from (6) for all $|r| \geq 3\pi$, we have

$$V(2r) \le \tilde{V}(2r) \le \frac{1}{4}F(r). \tag{8}$$

Hence, by (ii), $F(r) \to +\infty$ for $r \to \pm \infty$.

The lemma below can be found in [16, Lemma 2.5].

Lemma 3.3. Let $W \in C^1(\mathbb{R})$ be such that $W(\pm \pi) = 0$ and $W(\xi) > 0$ for $|\xi| < \pi$, and let

$$I(u) := \int_{-\infty}^{+\infty} [(u'(s))^2 + W(u(s))] ds.$$

Then the minimum of I on $\mathcal{M}_{-\pi,\pi}$ is attained and

$$\min_{u \in \mathcal{M}_{-\pi,\pi}} I(u) = 2 \int_{-\pi}^{\pi} \sqrt{W(\xi)} \, d\xi =: \vartheta.$$

Moreover, with the same ϑ ,

$$\inf_{T>0} \inf_{u\in H^1(-T,T)} \left\{ \int_{-T}^T [(u'(s))^2 + W(u(s))] \, ds : u(-T) = -\pi, u(T) = \pi \right\} = \vartheta.$$

Lemma 3.4. Assume conditions (i)–(iv) hold. Then for all $u \in E$,

$$\tilde{J}(u) \ge \int_{-\infty}^{+\infty} \left[\frac{c^2 - c_1^2}{2} (u'(s))^2 + K(1 + \cos(u(s)) + \frac{1}{2} F(u(s))) \right] ds, \tag{9}$$

and the functional \tilde{J} is bounded from below on $\mathcal{M}_{-\pi,\pi}$. Moreover,

$$8\sqrt{(c^2 - c_1^2)K} < \inf_{u \in \mathcal{M}_{-\pi,\pi}} \tilde{J}(u) < 8c\sqrt{K}.$$
 (10)

Proof. Since

$$|Au(s)| \le |u(s + \cos \varphi)| + |u(s)| \le 2 \max\{|u(s + \cos \varphi)|, |u(s)|\}, |Bu(s)| \le |u(s + \sin \varphi)| + |u(s)| \le 2 \max\{|u(s + \sin \varphi)|, |u(s)|\},$$

then for every k > 0,

$$\left\{ s \in \mathbb{R} : |Au(s)| > k \right\} \subseteq \left\{ s \in \mathbb{R} : \max\{|u(s + \cos\varphi)|, |u(s)|\} > \frac{k}{2} \right\}$$

$$\subseteq \left\{ s \in \mathbb{R} : |u(s + \cos\varphi)| > \frac{k}{2} \right\} \cup \left\{ s \in \mathbb{R} : |u(s)| > \frac{k}{2} \right\},$$

$$\left\{ s \in \mathbb{R} : |Bu(s)| > k \right\} \subseteq \left\{ s \in \mathbb{R} : \max\{|u(s + \sin\varphi)|, |u(s)|\} > \frac{k}{2} \right\}$$

$$\subseteq \left\{ s \in \mathbb{R} : |u(s + \sin\varphi)| > \frac{k}{2} \right\} \cup \left\{ s \in \mathbb{R} : |u(s)| > \frac{k}{2} \right\}.$$

Making use of (8) and the monotonicity of the potential \tilde{V} on $(-\infty,0)$ and on $(0,+\infty)$, we have

$$\int_{\{s \in \mathbb{R}: |Au(s)| > 6\pi\}} V(Au(s)) ds \le \int_{\{s \in \mathbb{R}: |Au(s)| > 6\pi\}} \tilde{V}(Au(s)) ds$$

$$\le \int_{\{s \in \mathbb{R}: |Au(s)| > 6\pi\}} \tilde{V}(2 \max\{|u(s + \cos \varphi)|, |u(s)|\}) ds$$

$$\leq \int_{\{s \in \mathbb{R}: \max\{|u(s + \cos \varphi)|, |u(s)|\} > 3\pi\}} \frac{1}{4} F(\max\{|u(s + \cos \varphi)|, |u(s)|\}) ds
\leq 2 \int_{\{s \in \mathbb{R}: |u(s)| > 3\pi\}} \frac{1}{4} F(u(s)) ds \leq \frac{1}{2} \int_{-\infty}^{+\infty} F(u(s)) ds. \tag{11}$$

Similarly,

$$\int_{\{s \in \mathbb{R}: |Bu(s)| > 6\pi\}} V(Bu(s)) ds \le \frac{1}{2} \int_{-\infty}^{+\infty} F(u(s)) ds. \tag{12}$$

By the definition of c_1 , we obtain

$$\int_{\{s \in \mathbb{R}: |Au(s)| \le 6\pi\}} V(Au(s)) \, ds \le \int_{\{s \in \mathbb{R}: |Au(s)| \le 6\pi\}} \frac{c_1^2}{2} (Au(s))^2 \, ds
\le \int_{-\infty}^{+\infty} \frac{c_1^2}{2} (Au(s))^2 \, ds,
\int_{\{s \in \mathbb{R}: |Bu(s)| \le 6\pi\}} V(Bu(s)) \, ds \le \int_{\{s \in \mathbb{R}: |Bu(s)| \le 6\pi\}} \frac{c_1^2}{2} (Bu(s))^2 \, ds
\le \int_{-\infty}^{+\infty} \frac{c_1^2}{2} (Bu(s))^2 \, ds.$$

Then it follows from (11) and (12) that

$$\begin{split} \tilde{J}(u) &\geq \int_{-\infty}^{+\infty} \left[\frac{c^2}{2} (u'(s))^2 - \frac{c_1^2}{2} (Au(s))^2 - \frac{c_1^2}{2} (Bu(s))^2 \right. \\ &+ K (1 + \cos(u(s))) + F(u(s)) \right] \, ds \\ &- \int_{\{s \in \mathbb{R}: |Au(s)| > 6\pi\}} V(Au(s)) ds - \int_{\{s \in \mathbb{R}: |Bu(s)| > 6\pi\}} V(Bu(s)) \, ds \\ &\geq \int_{-\infty}^{+\infty} \left[\frac{c^2 - c_1^2}{2} (u'(s))^2 + K (1 + \cos(u(s))) + \frac{1}{2} F(u(s)) \right] \, ds \end{split}$$

for all $u \in E$, and (9) holds true.

Applying Lemma 3.3 to the functional

$$I_1(u) = \frac{c^2 - c_1^2}{2} \int_{-\infty}^{+\infty} \left[(u'(s))^2 + W_1(u(s)) \right] ds,$$

where

$$W_1(x) := \frac{2K}{c^2 - c_1^2} [1 + \cos x + \frac{1}{2K} F(x)],$$

and making use of (9), we obtain

$$\inf_{u \in \mathcal{M}_{-\pi,\pi}} \tilde{J}(u) \ge \left(c^2 - c_1^2\right) \left| \int_{-\pi}^{\pi} \sqrt{W_1(x)} \, dx \right|$$
$$= \sqrt{2(c^2 - c_1^2)K} \left| \int_{-\pi}^{\pi} \sqrt{1 + \cos x + 0} \, dx \right| = 8\sqrt{(c^2 - c_1^2)K}.$$

Furthermore, since $V \geq 0$, we have

$$\tilde{J}(u) \le \frac{c^2}{2} \int_{-\infty}^{+\infty} \left[(u'(s))^2 + \frac{2}{c^2} \left(K(1 + \cos(u(s))) + \frac{3}{2} F(u(s)) \right) \right] ds.$$

Now, we apply Lemma 3.3 to the functional

$$I_2(u) = \frac{c^2 - c_1^2}{2} \int_{-\infty}^{+\infty} \left[(u'(s))^2 + W_2(u(s)) \right] ds,$$

where

$$W_2(x) := \frac{2K}{c^2} [1 + \cos x + \frac{3}{2K} F(x)].$$

As a consequence, we obtain

$$\inf_{u \in \mathcal{M}_{-\pi,\pi}} \tilde{J}(u) \le c^2 \left| \int_{-\pi}^{\pi} \sqrt{W_2(x)} dx \right| < 8c\sqrt{K},$$

from which inequalities (10) follow.

The following lemma can be proved in the same way as Lemma 2.7 from [16].

Lemma 3.5. Assume conditions (i)–(iv) hold. Let $\tilde{u} \in \mathcal{M}_{-\pi,\pi}$ be a minimizer of \tilde{J} on $\mathcal{M}_{-\pi,\pi}$, then

$$\|\tilde{u}\|_{L^{\infty}(\mathbb{R})} \le \frac{3}{2}\pi + \delta,$$

where

$$\delta := \frac{4c_1^2}{c^2 - c_1^2 + c\sqrt{c^2 - c_1^2}}. (13)$$

In particular, if the speed c is large enough to ensure $\delta < \pi$, then $\|\tilde{u}\|_{L^{\infty}(\mathbb{R})} \leq \frac{5}{2}\pi$.

4. Main result

In order to prove the main result, we need the following version of the concentration-compactness principle obtained in [15, Lemma 4.1] (see [16, 17, 19] for other versions of this principle).

Given T > 1 and $\eta \in \mathbb{R}$, we define a truncated version of \tilde{J} by

$$\tilde{J}_{T}(u,\eta) := \int_{0}^{1} \int_{\eta-T+\tau}^{\eta+T-1+\tau} \frac{c^{2}}{2} (u'(s))^{2} ds d\tau - \int_{\eta-T}^{\eta+T-1} V(Au(s)) ds - \int_{\eta-T}^{\eta+T-1} V(Bu(s)) ds + \int_{\eta-T+\frac{1}{2}}^{\eta+T-\frac{1}{2}} \left[K(1+\cos(u(s))) + \frac{3}{2} F(u(s)) \right] ds.$$

Lemma 4.1 (Concentration-compactness). Assume conditions (i)–(iv) hold. Let $(u_n) \subset \mathcal{M}_{-\pi,\pi}$ be a minimizing sequence for \tilde{J} on $\mathcal{M}_{-\pi,\pi}$, and let c be large enough to ensure $\delta < \pi$ for δ defined in (13). Then there exists a subsequence, still denoted by (u_n) , such that one of the following holds:

$$|\tilde{J}(u_n) - \tilde{J}_T(u_n, \eta_n)| < \varepsilon$$

for every $n \in \mathbb{N}$;

(ii₂) (vanishing) for all T > 0,

$$\lim_{n\to\infty} \sup_{\eta\in\mathbb{R}} \tilde{J}_T(u_n,\eta) = 0;$$

(iii₂) (dichotomy) there exists $\varepsilon_1 > 0$ such that for every $0 < \varepsilon < \varepsilon_1$ there are $(f_n), (g_n) \subset E$ such that

$$|u_n - (f_n + g_n - \pi)| \le \varepsilon, \quad |\tilde{J}(u_n) - (\tilde{J}(f_n) + \tilde{J}(g_n))| \le \varepsilon,$$

$$\lim_{n \to \infty} \operatorname{dist}(\operatorname{supp}(f'_n), \operatorname{supp}(g'_n)) = +\infty, \quad \lim_{n \to \infty} \tilde{J}(f_n) = \alpha, \lim_{n \to \infty} \tilde{J}(g_n) = \beta,$$

for some $0 < \alpha, \beta < \inf_{u \in \mathcal{M}_{-\pi,\pi}} \tilde{J}(u)$ (π is needed in the first inequality to ensure $J(f_n) < +\infty$ and $J(g_n) < +\infty$).

Lemma 4.2. Under the assumptions of Lemma 4.1, the functional \tilde{J} has a minimizer on $\mathcal{M}_{-\pi,\pi}$.

Proof. By Lemma 3.4, the functional \tilde{J} is bounded from below on $\mathcal{M}_{-\pi,\pi}$. Let $(u_n) \subset \mathcal{M}_{-\pi,\pi}$ be a minimizing sequence. Then, by Lemma 4.1, the subsequence exists, still denoted by (u_n) , which satisfies either of the following criteria: concentration, vanishing or dichotomy.

Vanishing is impossible (see the proof of Lemma 5.1 in [15]).

We will show that dichotomy is also impossible. Indeed, as $f_n, g_n \in E$ and $\tilde{J}(f_n), \tilde{J}(g_n) < +\infty$, the analogous statement of Lemma 3.1 (with J replaced by \tilde{J}) shows that $f_n(\pm \infty), g_n(\pm \infty) \in \{\pm \pi\}$. Since $f_n + g_n - \pi \in \mathcal{M}_{-\pi,\pi}$, then only $f_n(-\infty) = f_n(+\infty)$ or only $g_n(-\infty) = g_n(+\infty)$. In the first case, we set $\tilde{u}_n := g_n$ and in the second case, $\tilde{u}_n := f_n$. Then $(\tilde{u}_n) \subset \mathcal{M}_{-\pi,\pi}$ and, by (iii₂), possibly after passing to a subsequence, we have

$$\lim_{n \to \infty} \tilde{J}(\tilde{u}_n) < \inf_{u \in \mathcal{M}_{-\pi,\pi}} \tilde{J}(u) = \lim_{n \to \infty} \tilde{J}(u_n).$$

We obtained a contradiction to the assumption that $(u_n) \subset \mathcal{M}_{-\pi,\pi}$ is a minimizing sequence of \tilde{J} .

Thus (i₂) holds. Hence, given $\varepsilon > 0$, there exists a sequence $(\eta_n) \subset \mathbb{R}$ and $T_0 > 0$ such that

$$|\tilde{J}(u_n) - \tilde{J}_{T_0}(u_n, \eta_n)| < \varepsilon.$$

Let $w_n(s) = u_n(\eta_n + s)$. The sequence (w_n) is bounded in E. Indeed, by (9),

$$||w_n'||_{L^2(\mathbb{R})} = ||u_n'||_{L^2(\mathbb{R})} \le \frac{2}{c^2 - c_1^2} J(u_n),$$

and by Lemma 3.5,

$$|w_n(0)| \le \frac{3}{2}\pi + \delta.$$

Hence, (w_n) contains a subsequence, still denoted by (w_n) , that converges weakly to some limit $u \in E$. The convergence is uniform on $[-T_0, T_0]$, and

$$||u'||_{L^2(-T_0,T_0)} \le \lim_{n\to\infty} \inf ||w'_n||_{L^2(-T_0,T_0)}.$$

Since the functions V(u), $1 + \cos u$ and F(u) belong to $C^1(\mathbb{R})$ and therefore are Lipschitz continuous for $|u| \leq \frac{3}{2}\pi + \delta$, there exists $n_0 \in \mathbb{N}$ such that for all $n > n_0$,

$$\left| \left(\tilde{J}(u) - \frac{c^2}{2} \|u'\|_{L^2(\mathbb{R})} \right) - \left(\tilde{J}_{T_0}(w_n) - \frac{c^2}{2} \|u'\|_{L^2(-T_0, T_0)} \right) \right| \le \varepsilon.$$

In fact, this inequality holds for all $T > T_0$ instead of T_0 . By Lemma 3.1, $u \in \mathcal{M}_{-\pi,\pi}$. Furthermore, as $T \mapsto \tilde{J}_T(w_n,0)$ is non-decreasing for every $n \in \mathbb{N}$, we obtain that $\tilde{J}_T(w_n,0) \leq \tilde{J}(w_n)$. Then,

$$\begin{split} \tilde{J}(u) &= \lim_{T \to \infty} \tilde{J}_T(u,0) \leq \lim_{T \to \infty} \lim_{n \to \infty} \inf \tilde{J}_T(w_n,0) \\ &\leq \lim_{T \to \infty} \lim_{n \to \infty} \tilde{J}(w_n) = \lim_{n \to \infty} \tilde{J}(w_n) = \lim_{n \to \infty} \tilde{J}(u_n), \end{split}$$

and thus u is a minimizer of the functional \tilde{J} on $\mathcal{M}_{-\pi,\pi}$.

The following theorem is the main result of the paper.

Theorem 4.3. Assume conditions (i)–(iv) hold. Suppose that c is large enough to ensure $\delta < \pi$ for δ defined by (13). Then equation (2) has a solution u that satisfies boundary conditions (3).

Proof. By Lemma 3.1, the modified functional J has a minimizer $u_* \in \mathcal{M}_{-\pi,\pi}$. We have to show that u_* is a solution of equation (2) with boundary conditions (3). We define the functional $\tilde{\Psi}$ similarly to Ψ but in terms of \tilde{J} . Then the function $v_* = u_* - v_0$ minimizes $\tilde{\Psi}$ on $H^1(\mathbb{R})$. Since the embedding $H^1(\mathbb{R}) \subset L^{\infty}(\mathbb{R})$ is continuous, we have that

$$\|v_0 + v\|_{L^{\infty}(\mathbb{R})} < \frac{5}{2}\pi$$

for all v in the neighborhood $\Delta \subset H^1(\mathbb{R})$ of v_* . Then, by Remark 3.2, for all $v \in \Delta$,

$$\Psi(\upsilon) = J(\upsilon_0 + \upsilon) = \tilde{J}(\upsilon_0 + \upsilon) = \tilde{\Psi}(\upsilon),$$

and v_* minimizes Ψ as well as $\tilde{\Psi}$ in Δ . In particular, v_* is a local minimizer of the functional Ψ on $H^1(\mathbb{R})$, i.e., v_* is a critical point of Ψ . Hence, by Lemma 3.1 (iv₁), $u_* = v_0 + v_*$ is the solution of equation (2) that satisfies boundary conditions (3).

References

- [1] S.M. Bak, Traveling waves in chains of oscillators, Mat. Stud. 26 (2006), 140–153 (Ukrainian).
- [2] S.M. Bak, Periodic traveling waves in chains of oscillators, Commun. Math. Anal. **3** (2007), 19–26.
- [3] S.M. Bak, Existence of periodic traveling waves in a system of nonlinear oscillators on a two-dimensional lattice, Mat. Stud. 35 (2011), 60–65 (Ukrainian).
- [4] S.M. Bak, Existence of periodic traveling waves in the Fermi-Pasta-Ulam system on a two-dimensional lattice, Mat. Stud. 37 (2012), 76–88 (Ukrainian).
- [5] S.M. Bak, Periodic traveling waves in the discrete sine-Gordon equation on 2Dlattice, Mat. Komp. Model. Ser.: Fiz.-Mat. Nauky 9 (2013), 5–10 (Ukrainian).
- [6] S.M. Bak, Existence of the subsonic periodic traveling waves in the system of nonlinearly coupled nonlinear oscillators on 2D-lattice, Mat. Komp. Model. Ser.: Fiz.-Mat. Nauky **10** (2014), 17–23 (Ukrainian).
- [7] S.M. Bak, Existence of the supersonic periodic traveling waves in the system of nonlinearly coupled nonlinear oscillators on 2D-lattice, Mat. Komp. Model. Ser.: Fiz.-Mat. Nauky **12** (2015), 5–12 (Ukrainian).
- [8] S.M. Bak, Existence of heteroclinic traveling waves in a system of oscillators on a two-dimensional lattice, Mat. Metodi Fiz.-Mekh. Polya 57 (2014), 45–52 (Ukrainian); Engl. transl.: J. Math. Sci. (N.Y.) 217 (2016), 187–197.
- [9] S.N. Bak, Existence of solitary traveling waves for a system of nonlinear coupled oscillators on a two-dimensional lattice, Ukraïn. Mat. Zh. 69 (2017), 435–444 (Ukrainian); Engl. transl.: Ukrainian Math. J. **69** (2017), 509–520.
- [10] S.N. Bak and A.A. Pankov, Traveling waves in systems of oscillators on twodimensional lattices, Ukr. Mat. Visn. 7 (2010), 154–175 (Ukrainian); Engl. transl.: J. Math. Sci. (N.Y.) **174** (2011), 437–452.
- [11] O.M. Braun and Y.S. Kivshar, The Frenkel-Kontorova Model. Concepts, Methods, and Applications. Texts and Monographs in Physics, Springer-Verlag, Berlin, 2004.
- [12] M. Fečkan and V. Rothos, Travelling waves in Hamiltonian systems on 2D lattices with nearest neighbour interactions, Nonlinearity 20 (2007), 319–341.
- [13] G. Friesecke and K. Matthies, Geometric solitary waves in a 2D math-spring lattice, Discrete Contin. Dyn. Syst. Ser. B 3 (2003), 105–114.
- [14] G. Ioos and K. Kirchgässner, Travelling waves in a chain of coupled nonlinear oscillators, Comm. Math. Phys. 211 (2000), 439–464.
- [15] C.-F. Kreiner and J. Zimmer, Heteroclinic travelling waves for the lattice sine-Gordon equation with linear pair interaction, Discrete Contin. Dyn. Syst. 25 (2009), 915 - 931.
- [16] C.-F. Kreiner and J. Zimmer, Travelling wave solutions for the discrete sine-Gordon equation with nonlinear pair interaction, Nonlinear Anal. 70 (2009), 3146–3158.
- [17] P.-L. Lions, The concentration—compactness principle in the calculus of variations. The locally compact case, I, II, Ann. Inst. H. Poincaré Anal. Non Linéaire 1 (1984), 223 - 283.

[18] P.D. Makita, Periodic and homoclinic travelling waves in infinite lattices, Nonlinear Anal. 74 (2011), 2071–2086.

[19] A. Pankov, Travelling Waves and Periodic Oscillations in Fermi–Pasta–Ulam Lattices. Imperial College Press, London, 2005.

Received June 22, 2017.

S. Bak,

Vinnytsia Mykhailo Kotsiubynskyi State Pedagogical University, 32 Ostrozkogo St., Vinnytsia, 21001, Ukraine,

E-mail: sergiy.bak@gmail.com

Існування гетероклінічних рухомих хвиль в дискретному рівнянні синус-Ґордона на двовимірній ґратці

С. Бак

Статтю присвячено дискретному рівнянню синус-Ґордона, яке описує нескінченну систему нелінійно зв'язаних нелінійних осциляторів на двовимірній ґратці із зовнішнім потенціалом $V(r) = K(1-\cos r)$. Основний результат стосується існування розв'язків у вигляді гетероклінічних рухомих хвиль. За допомогою методу критичних точок і принципу концентрованої компактності отримано достатні умови існування таких розв'язків.

Ключові слова: дискретне рівняння синус-Ґордона, нелінійні осцилятори, двовимірна ґратка, гетероклінічні рухомі хвилі, критичні точки, принцип концентрованої компактності.