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Nonlinear Dynamics of Solitons for the

Vector Modified Korteweg–de Vries

Equation
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The vector generalization of the modified Korteweg–de Vries equation
is considered and the inverse scattering transform for solving this equation
is developed. The solitons and the breather solutions are constructed and
the processes of their interactions are studied. It is shown that along with
one-component soliton solutions, there are three-component solutions which
have essentially a three-component structure.
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1. Introduction

The Korteweg–de Vries equation (KdV)

∂tu− 6u∂xu+ ∂3xu = 0 (1.1)

is a classical equation in the theory of nonlinear waves. It was integrated for
the first time in [7] by the inverse scattering transform method. Later the same
method was applied to integrate other physically interesting equations. Their
soliton and multi-soliton solutions were found and interactions of these solutions
were studied (see, e.g., [1, 2, 4–6,10,12,16]).

Among these equations there is the modified Korteweg–de Vries (mKdV)
equation

∂tu+ αu2∂xu+ ∂3xu = 0. (1.2)

The mKdV equation, like the KdV equation, describes nonlinear waves in media
with dispersion, and it is completely integrable. The dynamics of solutions for this
equation depends essentially on the sign of nonlinearity α, ±α > 0. In particular,
the soliton solutions exist for α > 0 only.

Along with the scalar mKdV equation (1.2), the vector generalizations of this
equation

∂tu + 24|u|2∂xu + ∂3xu = 0,
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∂tu + 12∂x(|u|u)|u|+ ∂3xu = 0, u ∈ Rn, n ≥ 2,

are also explored (see, e.g., [2, 3, 13–15]). It should be mentioned that not all of
these generalizations are completely integrable.

In this paper, we consider another vector generalization of the mKdV equa-
tion (1.2),

∂tu + 6u× ∂2xu + 6
(
u∂x|u|2 − |u|2∂xu

)
+ ∂3xu = 0, u ∈ R3, (1.3)

where u(x, t) is a three-component vector function of the variables x ∈ R, t ∈
R, and the sign “×” means the vector product in R3. It turns out that this
equation is completely integrable. Notice that equation (1.3) is a polynomial
vector equation, but it does not belong to the integrable polynomial equations
studied in [13].

A more general equation of this type,

∂tu + au× ∂2xu + b
(
u∂x|u|2 − |u|2∂xu

)
+ c∂3xu = 0,

with constant coefficients a, b, c satisfying a2 = 6bc, b > 0, can be reduced to the
canonical form (1.3) by a simple change of variables. The first two summands
of these equations are the same as in the Ginzburg–Landau equation. They
appeared in the modelling of nonlinear magnetization waves in ferromagnetic
media [9, 11].

The goals of this paper are to develop the inverse scattering transform for
equation (1.3), to construct the explicit formulas for some soliton solutions and
to study their interactions.

2. Reduction of equation (1.3) to the matrix equation

In [8], it was mentioned that equation (1.3) can be reduced to the matrix
completely integrable equation. Namely, let

u(x, t) = (u1(x, t, ), u2(x, t, ), u3(x, t, )) (2.1)

be a real-valued solution of equation (1.3). Put

Φ(x, t) = −i(u1(x, t)σ1 + u2(x, t)σ2 + u3(x, t)σ3), (2.2)

where σ1 =

(
0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
are the Pauli matrices, and

i =
√
−1. By a straightforward computation, one can check that matrix-function

(2.2) satisfies the differential equation

∂tΦ + 3
[
Φ, ∂2xΦ

]
− 6Φ(∂xΦ)Φ− ∂3xΦ = 0, (2.3)

where [·, ·] is the commutator. On the other hand, if the complex valued matrix
solution of equation (2.3) satisfies the conditions

Φ∗ = −Φ, tr Φ = 0, (2.4)
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then this solution can be represented as in (2.2) with real functions u1(x, t),
u2(x, t), u3(x, t). Moreover, the vector (2.1) with these functions as components
satisfies equation (1.3). In (2.4), the star denotes the complex conjugation and
transpose, and “tr” is the trace of the matrix.

Conditions (2.4) are invariant under the action of the semigroup generated
by equation (2.3). The following lemma holds.

Lemma 2.1. Let Φ(x, t) be the solution of the Cauchy problem for equation
(2.3) with the initial condition Φ(x, 0) = Φ0(x) which satisfies conditions (2.4).
Then Φ(x, t) also satisfies conditions (2.4).

The proof of this lemma is straightforward and we omit it.
In [8], the matrix equation (2.3) is studied in the class of real-valued solutions

Φ(x, t). By use of the inverse scattering transform it is proved there that equation
(2.3) is completely integrable. Using the same approach, one can show that
these results are valid for complex valued Φ(x, t). In the next section, we will
list without proof those of the results of [8] which are necessary for our further
investigations.

3. The inverse scattering transform method

Matrix equation (2.3) admits the Lax representation

∂tL = [L,A], (3.1)

where [·, ·] is the commutator, L and A are the matrix differential operators

L = I∂2x + Φ(x, t)∂x,

A = 4I∂3x + 12Φ(x, t)∂2x + 6(∂xΦ(x, t) + Φ2(x, t))∂x,

and I is the identity 3× 3 matrix. Consider the spectral equation

(L+ k2I)U ≡ ∂2xU + 2Φ(x, t)∂xU + k2U = 0, x ∈ R, (3.2)

where t is fixed. In what follows, we assume that Φ(x, t) tends to 0 sufficiently
fast as x→ ±∞ such that∫ ∞

−∞

((
1 + x2

)
|Φ(x, t)|+ (1 + |x|)

∣∣∣∣ ∂∂xΦ(x, t)

∣∣∣∣) dx <∞, t > 0.

In this case, there exists a matrix solution of equation (3.2) which can be
represented as

U±(x, k, t) = e±ikxI± ik
∫ ±∞
x

A±(x, y, t)e±ikydy, (3.3)

where the matrices A+(x, y, t) and A−(x, y, t) belong to the spaces L1(x,∞) and
L1(−∞, x, t) with respect to y. The matrix Φ(x, t) can be computed as (recall
that t is a parameter )

Φ(x, t) = ±
dA±(x, x, t)

dx

(
I∓A±(x, x, t)

)−1
. (3.4)
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For Im k = 0, the matrix-functions U+(x, k, t) and U+(x,−k, t) form a fundamen-
tal system of solutions of (3.2). Then

U−(x, k, t) = U+(x, k, t)C11(k, t) + U+(x,−k, t)C12(k, t), (3.5)

where the matrices C11(k, t), C12(k, t) are independent of x. Notice that the
matrix C11(k, t) is continuous on R, and C11(k, t) = O(|k|−1) as |k| → ∞. The
matrix C12(k, t) is continuous on R and it can be continued analytically into
the upper half-plane C+ with C12(k, t) = C + O(|k|−1) as |k| → ∞, Im k ≥ 0,
detC12 6= 0.

We assume that detC12 6= 0 for real k. Consider the matrices

S12(k, t) = C11(k, t)C
−1
12 (k, t), as Im k = 0,

S11(k, t) = C−112 (k, t), as Im k ≥ 0,

which, by (3.3) and (3.5), are the reflection and the transmission matrices, re-
spectively. The matrix S11(k, t) is meromorphic in C+, its poles do not depend
on t and are located at the points kν , Im kν > 0, ν = 1, 2, . . . , N such that λν =
k2ν are eigenvalues of the operator L.

The poles kν can be multiple and in their neighborhoods Gν ⊂ C+ the de-
composition is valid,

S11(k, t) = (k − kν)−nνSνnν (t) + · · ·+ (k − kν)−1Sν1 (t) + Sν0 (k, t).

Here nν is the order of the pole kν , Sνl (t), l = 1, 2, . . . , nν are constant matrices
with respect to k, Sν0 (k, t) is a holomorphic matrix-function in the domain Gν .
One can show that there exist the matrices Rν1(t), . . . , Rνnν (t), Rνnν (t) 6= 0, which
satisfy the equalities (we omit the dependence on t in (3.6))

U−(x, kν)Sνnν = U+(x, kν)Rνnν ,

U−(x, kν)Sνnν−1 + U
(1)
− (x, kν)Sνnν = U+(x, kν)Rνnν−1 + U

(1)
− (x, kν)Rνnν ,

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

U−(x, kν)Sν1 + U
(1)
− (x, kν)Sν2 + · · ·+ 1

(nν − 1)!
U

(nν−1)
− (x, kν)Sνnν =

= U+(x, kν)Rν1 + U (1)(x, kν)Rν2 + · · ·+ 1

(nν − 1)!
U

(nν−1)
+ (x, kν)Rνnν ,

(3.6)

where U
(s)
± (x, kν) :=

∂s

∂ks
U±(x, k, t)

∣∣∣∣∣
k=kν

. We call the matrices Rsnν (t) the norm-

ing matrices by an analogy with the norming constants in the scalar case. The
set

S(t) = {S12(k, t), kν , nν , Rν1(t), Rν2(t), . . . , Rνnν (t), (ν = 1, 2, . . . , N)} (3.7)

is called the scattering data for equation (3.2). The aim of the direct scattering
problem is to find these data for a given matrix Φ(x, t). The inverse scattering
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problem consists in the reconstruction of the matrix Φ(x, t) from the scattering
data of equation (3.2).

The recovery procedure is the following. Introduce the matrix-function

F (x, t) =
1

2π

∫ ∞
−∞

S12(k, t)e
ikxdk +

N∑
ν=1

Mν(x, t)eikνx, (3.8)

where

Mν(x, t) = −i
nν−1∑
j=0

(ix)j

j!
Rνj+1(t).

Consider the integral equation of the Fredholm type with respect to A(x, z, t) as
a function of z (x and t being the parameters):

A(x, z, t)−
∫ ∞
x

A(x, y, t)F (y + z, t)dy +

∫ ∞
x+z

F (y, t)dy = 0. (3.9)

This equation has the unique matrix solution A(x, z, t). The matrix Φ(x, t) is
connected with this solution by the formula

Φ(x, t) =
dA(x, x, t)

dx
(I−A(x, x, t))−1 . (3.10)

Let now Φ(x, t) be the solution of equation (2.3). Then the scattering data
evolve with respect to t as follows:

S12(k, t) = S12(k, 0)ei8k
3t, kν(t) = kν(0), nν(t) = nν(0), (3.11)

and the norming matrices Rνl (t), l = 1, 2, . . . , nν satisfy the differential equations

d

dt
Rνnν (t)− 8ik3νR

ν
nν (t) = 0,

d

dt
Rνnν−1(t)− 8ik3νR

ν
nν−1(t) = 24ik2νR

ν
nν (t),

d

dt
Rνnν−2(t)− 8ik3νR

ν
nν−2(t) = 24ik2νR

ν
nν−1(t) + 24ikνR

ν
nν (t),

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

d

dt
Rνnν−l(t)− 8ik3νR

ν
nν−l(t) = 24ik2νR

ν
nν−l+1(t) + 24ikνR

ν
nν−l+2(t)

+ 8iRνnν−l+3(t), l = 3, 4, . . . , nν − 1.

(3.12)

This procedure allows us to solve the Cauchy problem for equation (2.3) with
the initial matrix Φ0(x). First, let us solve the direct scattering problem for
equation (3.2) with matrix Φ(x, 0) = Φ0(x) and find the scattering data S(0).
Then, let us transform these data with respect to t according to (3.11), (3.12), get
S(t), introduce the function (3.8), solve equation (3.9), and obtain the solution
Φ(x, t) of the Cauchy problem by formula (3.10).
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In view of Lemma 2.1 and the equivalence of conditions (2.2) and (2.4), the
recovery procedure is also valid for the vector equation (1.3).

We do not intend to study this Cauchy problem in details in our paper. We
are aimed to construct some exact solutions of equation (1.3) starting from the
scattering data. To this end, we have to describe additional conditions on them
such that the inverse scattering transform procedure would lead to a matrix
(3.10) satisfying (2.4). In a very general form, additional conditions imposed on
the scattering data can be formulated as follows:

I. The poles kν of the transmission matrix S11(k, t) are located symmetrically
with respect to the imaginary axis and the norming matrices (3.7) satisfy
the conditions Rνp(t) = Rµp (t), where kν = −kµ and p = 1, . . . , nν with
nν = nµ.

II. The matrix function F (x, t) in (3.8) can be represented as

F (x, t) = f0(x, t)I + i[f1(x, t)σ1 + f2(x, t)σ2 + f3(x, t)σ3], (3.13)

where the functions fl(x, t) are real and σl are the Pauli matrices.

III. Integral equation (3.9) has the solution of the form

A(x, y, t) = a0(x, y, t)I + i[a1(x, y, t)σ1 + a2(x, y, t)σ2 + a3(x, y, t)σ3],

with the real-valued functions al(x, y, t), l = 0, 1, . . . , 3 satisfying the equal-
ity

3∑
l=0

a2l (x, x, t) = 2a0(x, x, t). (3.14)

Then, according (2.2), (2.1) and (3.10), the u(x, t) of equation (1.3) are
determined by the formulas:

u1 = a′2a3 − a′3a2 − a′1(1− a0)− a1a′0,
u2 = a′3a1 − a′1a3 − a′2(1− a0)− a2a′0,
u3 = a′1a2 − a′2a1 − a′3(1− a0)− a3a′0,

where a′l :=
∂al

∂x
(x, x, t), l = 1, 2, 3.

Further, put S12(k, t) ≡ 0 and choose such kν , nν and Rνl that satisfy I, II
with f0(x, t) = 0. Then the kernel of the integral equation (3.9) is degenerated,
and this equation is reduced to a linear algebraic system of equations which can
be solved exactly.

In the next section, this approach is used for constructing exact solutions of
the vector modified Korteweg–de Vries equation (1.3).
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4. Analytical solutions of the vector mKdV equation

4.1. Single soliton solution. We begin with the simplest case. Assume
that the transmission matrix S11(k, t) has a simple pole at the point k1 = iµ, µ >
0, n1 = 1. Choose the matrix R1

1(0) of the form

R1
1(0) = ασ1 + βσ2 + γσ3 =

(
γ α− iβ

α+ iβ −γ,

)
, (4.1)

where α, β, γ are real constants. Then conditions I and II are satisfied. Solv-
ing equation (3.9) with the kernel F (x, t) = −ie−µxR1

1(t), we get the following
solution:

A(x, y, t) = i
R1

1(0)

µ
e−µ(x+y−8µ

2)t

(
1 + i

R1
1(0)

2µ
e−µ(2x−8µ

2)t

)−1
.

Denote v = (α, β, γ), ‖v‖ =
√
α2 + β2 + γ2. Taking into account (3.10), we

represent the solution of the matrix equation (2.3) as

Φ(x, t) = −i 2µ

ch (2µ(x− 4µ2t)− ln ‖v‖+ ln 2µ)

R1
1(0)

‖v‖
. (4.2)

Denote now a = 2µ, c = a2, ϕ =
1

a
ln

(
a

‖v‖

)
, e =

v

‖v‖
.

According to (2.2), (2.1), (4.1) and (4.2), the vector function

u(x, t) =
a

ch(a(x− ct)− ϕ)
e (4.3)

is a single-soliton solution of the vector mKdV equation (1.3). This soliton has
an amplitude a, speed c, phase ϕ, and it is directed along the vector e. This
direction does not depend on spatial and time variables. Note that the scalar
function in front of the vector e in (4.3) is the well-known single-soliton solution
to the scalar mKdV equation (see [10]).

4.2. Solutions of the soliton-antisoliton type. Consider now the case
of a double pole k1 = iµ, µ > 0, n1 = 2. Choose the matrices R1

1(0), R1
2(0) as

R1
1(0) = α1σ1 + β1σ2 + γ1σ3, R1

2(0) = i(α2σ1 + β2σ2 + γ2σ3),

where αl, βl, γl, l = 1, 2 are real constants. Denote

vl = (αl, βl, γl), l = 1, 2. (4.4)

Since the kernel of the integral equation (3.9) has the form

F (x, t) = −i(R1
1(t) + ixR1

2(t))e−µx,

then conditions I, II are satisfied. In this case, the described above approach
leads to a solution u(x, t) to (1.3) of the type soliton-antisoliton. This solution is
sometimes called doublet.
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Consider first the special case R1
1(0) = 0. Put a = 2µ, c = a2 and φ = ln c

‖v2‖ .
After the change of variables

x→ x+
1 + 3ϕ

2a
, t→ t+

1 + ϕ

3ac
,

this doublet can be represented as

u(x, t) = 2a
a sh(a(x− ct))(3ct− x) + ch(a(x− ct))

ch2(a(x− ct)) + a2(3ct− x)2
e2, (4.5)

where e2 = v2
‖v2‖ (cf. (4.4)).

For sufficiently large time, the doublet splits into a sum of oppositely directed
solitons with the amplitudes a (the soliton and antisoliton). The distance between
them grows logarithmically with respect to time

u(x, t) = e2

{
a

ch(a(x−ct)−ln(4a3t)) −
a

ch(a[x−ct]+ln(4a3t))
, t→∞,

− a
ch(a(x−ct)−ln(4a3|t|)) + a

ch(a(x−ct)+ln(4a3|t|)) , t→ −∞.

When the time increases, the soliton catches up with the antisoliton and then
overtakes it. At their closest approach and interaction, there occurs the resulting
impulse

u(x, 0) = 2a
ch(ax)− ax sh(ax)

ch2(ax) + (ax)2
e2.

The motion phases of the doublet are shown on Fig. 4.1.

0 20 40-20-40

0

2

4

-2

t=-8 t=-4

t=0

t=4 t=8

Fig. 4.1: The motion phases of the doublet (R1
1(0) = 0, µ = 1).

The constructed vector solution (4.5) is one-component, because it is directed,
for any x ∈ R and t ∈ R, along the constant vector e2. The scalar function in front
of e2 in (4.5) satisfies the scalar mKdV equation (1.2), for which a doublet-type
solution is well known [2,16].

Consider now a more general case. Suppose that R1
1(0) 6= 0, and this matrix

is not proportional to R1
2(0). Then the doublet-type solution loses the property

to be one-component, and the vector equation (1.3) can not be reduced to the
scalar mKdV equation. Indeed, suppose that the unit vectors e1 = v1

‖v1‖ and e2 =
v2
‖v2‖ are orthogonal. Denote

δ =
‖v1‖
‖v2‖

, ρ =
aδ

2
. (4.6)



Nonlinear Dynamics of Solitons for the Vector Modified Korteweg–de Vries 161

Then in the shifted coordinate system

x→ x+
1 + 3ϕ

2a
− δ

2
, t→ t+

1 + ϕ

3ac
− δ

4c
,

this doublet has the form

u(x, t) = u1(x, t)e1 + u2(x, t)e2 + u3(x, t)(e1 × e2), (4.7)

where

u1(x, t) = 2aρ

{
− ch(a(x− ct))

ch2(a(x− ct)) + a2(3ct− x)2 + ρ2

+ 4
ch(a(x− ct))− a(3ct− x) sh(a(x− ct))(

ch2(a(x− ct)) + a2(3ct− x)2 + ρ2
)2 },

u2(x, t) = 2a

{
ch(a(x− ct)) + a(3ct− x) sh(a(x− ct))

ch2(a(x− ct)) + a2(3ct− x)2 + ρ2

− ρ2 ch(a(x− ct))(
ch2(a(x− ct)) + a2(3ct− x)2 + ρ2

)2},
u3(x, t) = −4aρ

2a(3ct− x) + ch(2a(x− ct)(
ch2(a(x− ct)) + a2(3ct− x)2 + ρ2

)2 .

Asymptotic analysis of these formulas as t → ±∞ shows that doublet (4.7)
splits into two oppositely directed solitons with the amplitude a oriented along
the vector e2. The solitons approach as |t| → 0 and interact with each other. For
t = 0, they produce the resulting three-component impulse depending on δ (cf.
(4.6)), as is shown on Fig. 4.2.

u 1

u 2

u 1

u 3

0-4 -2 2 4

0

1

2

3

-1

4

d=0.1

0-4 -2 2 4

0

1

-1

-2

u 1

u 2

u 3

d=10

Fig. 4.2: The components of the resulting impulse of the doublet (µ = 1) at δ =
0.1 and δ = 10.

Similarly, one can consider the case of a one pole k1 = iµ, µ > 0, with a higher
multiplicity n1 ≥ 3. Analytical formulas for this case are quite cumbersome. For
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this reason, for the case n1 = 3 we perform numerical computations based on
the inverse scattering transform given by (3.7)–(3.10). We choose the norming
matrices as R1

l (0) = (i)l−1(αlσ1 + βlσ2 + γlσ3), where αl, βl, γl ∈ R, l = 1, 2, 3.
One can check that in this case conditions I, II are also satisfied.

Numerical computations show that in this case the solution of (1.3) is of the
type soliton-antisoliton-soliton, and one can call it a triplet. For large times,
the triplet splits into three mutually oppositely directed solitons of the same
amplitude. The distance between them grows logarithmically with respect to
time as t→ ±∞. When |t| → 0, these solitons merge into the resulting impulse.
In the general case, when the vectors vl = (αl, βl, γl), l = 1, 2, 3 are not collinear,
this impulse has three components depending on x and t. If the vectors vl are all
collinear, then the triplet is one-component. This case is illustrated by Fig. 4.3.

0 20 40-20-40

0

2

4

-2

6

t=-8

t=-4

t=0

t=4

t=8

Fig. 4.3: The motion phases of the triplet (R
(1)
1 (0) = R

(1)
2 (0) = 0, µ = 1).

4.3. The breather-type solutions. Consider now the case of two simple

poles k1,2 = ±λ+iµ, λ, µ > 0. Let R
(2)
1 = R

(2)
2 = ασ1+βσ2+γσ3, where α, β, γ ∈

R. Then
F (x, 0) = −2i(ασ1 + βσ2 + γσ3)e

−µxcos(λx),

and one can check that conditions I, II are satisfied. In this case, we obtain the
multisoliton solution of (2.2) of the breather type. Put v = (α, β, γ),

cµ = 4(µ2 − 3λ2), cλ = 4(3µ2 − λ2), ψ = arctan
λ

µ
, ϕ = ln

(
4µ2

‖v‖
|µ2 − λ2|
µ2 + λ2

)
.

Then in the shifted coordinate system

x→ x+
1

2

(
ψ

λ
cµ −

ϕ

µ
cλ

)
1

cµ − cλ
, t→ t+

1

2

(
ψ

λ
− ϕ

µ

)
1

cµ − cλ
,

the breather-type solution can be represented as (see Fig. 4.4)

u(x, t) =
λ cos(2λ(x− cλt)) ch(2µ(x− cµt))

λ
4µ ch2(2µ(x− cµt)) + µ

4λ sin2(2λ(x− cλt))

+
+µ sin(2λ(x− cλt)) sh(2µ(x− cµt))

λ
4µ ch2(2µ(x− cµt)) + µ

4λ sin2(2λ(x− cλt))
e,
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Fig. 4.4: The motion phases of the breather for µ = 1, λ = 4.

where e = v
‖v‖ .

When λ → 0, the solution degenerates into a doublet, and when µ � λ, one
gets the soliton with an internal motion

u(x, t) = 4µ
sin(2λ(x− cλt))
ch(2µ(x− cµt))

e, cµ = 3cλ < 0. (4.8)

This solution is one-component since e is a constant vector. Therefore solution
(4.8) coincides with a breather-type solution for the scalar mKdV equation.

However, if the poles k1,2 = ±λ+iµ are multiple, the solution loses its property
to be one-component, and the vector equation (1.3) can not be reduced to a scalar
equation. Analytical formulas for the solution in this case are quite cumbersome
and thus we compute the solution of (1.3) numerically. Indeed, assume that the
pole k1 = λ + iµ has multiplicity 2, and the respective norming matrices have
a form R1

l (0) = αlσ1 + βlσ2 + γlσ3, where αl, βl, γl ∈ R, l = 1, 2. According to
condition I, the second pole k2 = −λ+ iµ is also double with the same norming
matrices. Condition II is also fulfilled due to the structure of the matrices. The
simulation shows that for t → ±∞ the solution splits into two one-component
breathers, and the distance between them increases logarithmically with time.
When they approach each other, the resulting impulse has a three-component
character if the vectors vl = (αl, βl, γl), l = 1, 2 are not collinear. If the vectors
vl are collinear, then the vector solution is one-component and directed for all
x, t along the same vector. The graph of the scalar function in front of this vector
is shown on Fig. 4.5.

0 20 40-20-40

0

2

-2

-4

-8

4

t=0

t=-0.1 t=-0.2t=0.2 t=0.1

Fig. 4.5: The motion phases of the linked breathers with µ = 1, λ = 4.

4.4. Interacting solitons. Consider now the case of two simple purely
imaginary poles of the transmission matrix S11(k, 0): kj = iµj , µ1 > µ2 > 0. As
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usual, we choose the norming matrices as Rl1(0) = αlσ1 + βlσ2 + γlσ3, l = 1, 2,
where αl, βl, γl ∈ R. It is clear that conditions I, II are fulfilled. Assume first
that the vectors vl = (αl, βl, γl) are collinear, that is,

e :=
v1

‖v1‖
= ε

v2

‖v2‖
, ε = ±1. (4.9)

Put

aj = 2µj , cj = a2j , ϕj = ln

(
aj
‖vj‖

)
, yj := aj(x− cjt), j = 1, 2. (4.10)

Then the change of variables

x→ x− 1

c1 − c2

(
ϕ2

a2
c1 −

ϕ1

a1
c2

)
, t→ t+

1

c1 − c2

(
ϕ2

a2
− ϕ1

a1

)
, (4.11)

leads to the following solution of (1.3):

u(x, t) =
2(a21 − a22)(a1 ch(y2) + εa2 ch(y1))

4εa1a2 + (a1 + a2)2 ch(y2 − y1) + (a1 − a2)2 ch(y2 + y1)
e. (4.12)

One can see that for large |t| this solution splits into two noninteracting
solitons

u(x, t) = e

{
a1

ch(y1−ψ) + εa2
ch(y2+ψ)

, t→ −∞,
a1

ch(y1+ψ)
+ εa2

ch(y2−ψ) , t→∞,
(4.13)

where ψ = ln a1+a2
a1−a2 , a1 > a2.

When these solitons approach each other, they begin to interact strongly with
the resulting impulse

u(x, 0) =
2(a21 − a22)(a1 ch(a2x) + εa2 ch(a1x))e

4εa1a2 + (a1 + a2)2 ch(a2x− a1x) + (a1 − a2)2 ch(a2x+ a1x)
, (4.14)

whose graph is shown on Fig. 4.6.

8

Fig. 4.6: The resulting impulse of the collinear solitons: the merge-split type
(µ1 = 3, µ2 = 1), the bounce-exchange type (µ1 = 3, µ2 = 2) for unipolar solitons,
and the absorb-emit type (µ1 = 3, µ2 = 1) for heteropolar ones.

The solution of the scalar mKdV equation (1.2) corresponds to the solution
(4.12) as it is one-component and directed along the vector e independently of
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x, t. This scalar solution was constructed in [2]. Notice that in [2] an interesting
interpretation of the resulting impulse graph is given. The graph is treated as a
characteristics of the interaction type for solitons. Namely, the resulting impulse
with two humps corresponds to the bounce-exchange interaction of unipolar soli-
tons. This type of interaction occurs when the amplitudes do not differ from

each other significantly: 3−
√
5

2 a1 < a2 < a1. In this case, the solitons do not
stick together, but the faster soliton gives its power to the slower soliton, then
the faster soliton decelerates, and the other one accelerates. The impulse with
one hump corresponds to the merge-split type of the unipolar solitons interaction

with a larger difference of amplitudes a2 <
3−
√
5

2 a1. Here the faster soliton ab-
sorbs the slower solitons during interaction and then restores. The impulse with
three extrema corresponds to the interaction of the heteropolar solitons when the
so-called absorbance-emit mode appears (see [2]).

Consider the case when the vectors vl = (αl, βl, γl), l = 1, 2, are not collinear,
moreover, they are orthogonal. Then the solution of the vector mKdV equation
(1.3) is essentially a three-component solution. Indeed, denote el = vl

‖vl‖ . Then in

the shifted coordinate system (4.11) the solution of (1.3) is given by the formula

u(x, t) = u1(x, t)e1 + u2(x, t)e2 + u3(x, t)(e1 × e2),

where

u1(x, t) = (a21 − a22)a1

×(a1 − a2)2 ch(2y2 + y1) + (a1 + a2)
2 ch(2y2 − y1) + 2(5a22 − 3a21) ch(y1)

((a1 − a2)2 ch(y2 + y1) + (a1 + a2)2 ch(y2 − y1))2
,

u2(x, t) = (a21 − a22)a2

×(a1 − a2)2 ch(y2 + 2y1) + (a1 + a2)
2 ch(y2 − 2y1) + 2(5a21 − 3a22) ch(y2)

((a1 − a2)2 ch(y2 + y1) + (a1 + a2)2 ch(y2 − y1))2
,

u3(x, t) = 4(a21 − a22)2
(a1 − a2) sh(y1 + y2) + (a1 + a2) sh(y1 − y2)

((a1 − a2)2 ch(y2 + y1) + (a1 + a2)2 ch(y2 − y1))2
.

As |t| → ∞, this solution splits into two noninteracting solitons oriented in the
orthogonal directions e1 and e2,

u(x, t) =

{
e1

a1
ch(y1−ψ) + e2

a2
ch(y2+ψ)

, t→ −∞,
e1

a1
ch(y1+ψ)

+ e2
a2

ch(y2−ψ) , t→∞,
(4.15)

where yj and ψ are defined by (4.10) and (4.13), respectively.
When |t| → 0, these solitons interact and form a three-component resulting

impulse as it is shown on Fig. 4.7.
If the vectors vj are not orthogonal, the analytical formulas are quite com-

plicated. Therefore the analysis of the resulting three-component impulse was
given numerically. We found that the module of its graph can have one, two or
three maximums, depending on the ratio of the amplitudes of the solitons and
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Fig. 4.7: The components of the resulting impulse (µ1 = 3, µ2 = 1 and µ1 =
3, µ2 = 2).
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Fig. 4.8: Types of two-soliton interactions depending on the amplitudes and
directions (ϕ is the angle between the vectors e1 and e2).

their directions. Following [2], it is naturally to call this cases as merge-split,
bounce-exchange and absorbance-emit interactions (Fig. 4.8).

The examples considered above show that one can construct different types
of solutions for the vector mKdV equation by choosing appropriate singularities
of the transmission matrix S11(k, 0). If we choose the transmission matrix with
simple purely imaginary poles, then we get a multi-soliton solution. If the poles
are multiple, then we get the duplet, triplet etc. solutions. These solutions are
connected solitons with the growing with respect to time distance between them.
The choice of the transmission matrix with the simple complex pole symmetric
with respect to the imaginary axis leads to the solutions of the breather type,
i.e., to the solitons with the internal motion. If the poles are multiple, then we
get a solution of the type of the connected breathers. The distance between them
grows logarithmically with respect to time.

Moreover if the norming matrices Rνp(0) are generated by the non-collinear
vectors, then all these solutions are essentially three-component.
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Нелiнiйна динамiка солiтонiв для модифiкованого
векторного рiвняння Кортевега–де Фрiза

V. Fenchenko and E. Khruslov

Розглянуто векторне узагальнення модифiкованого рiвняння Корте-
вега–де Фрiза та розроблено обернене перетворення розсiювання для
розв’язання цього рiвняння. Побудовано солiтони та брiзернi розв’яз-
ки рiвняння i дослiджено процеси їхньої взаємодiї. Показано, що поряд
з однокомпонентними солiтонними розв’язками iснують розв’язки, що
мають iстотно трикомпонентну структуру.

Ключовi слова: векторне mKdV, обернене перетворення розсiювання,
солiтон, зiткнення.
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