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The present paper is devoted to the functions from a certain subclass
of non-differentiable functions. The arguments and values of the considered
functions are represented by the s-adic representation or the nega-s-adic
representation of real numbers. The technique of modeling these functions
is the simplest as compared with the well-known techniques of modeling
non-differentiable functions. In other words, the values of these functions
are obtained from the s-adic or nega-s-adic representation of the argument
by a certain change of digits or combinations of digits.

Integral, fractal and other properties of the functions are described.
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1. Introduction

A nowhere differentiable function is a function whose derivative equals infinity
or does not exist at each point from the domain of definition.

The idea of the existence of continuous non-differentiable functions appeared
in the nineteenth century. In 1854, Dirichlet speaking at lectures at Berlin Uni-
versity said on the existence of a continuous function without derivative. In
1830, the first example of a continuous non-differentiable function was modeled
by Bolzano in “Doctrine on Function” but the paper was published one hun-
dred years later [1, 2]. In 1861, Rieman gave the following example of a non-
differentiable function without proof [37]:

f(x) =

∞∑
n=1

sin(n2x)

n2
. (1.1)

It was also studied by Hardy [3], Gerver [4], and Du Bois-Reymond. The function
has a finite derivative that equals 1

2 at the points of the form ξπ, where ξ is a
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rational number with an odd numerator and an odd denominator. Function (1.1)
does not have other points of differentiability.

In 1875, Du Bois-Reymond published the following example of the function [5]:

f(x) =
∞∑
n=1

an cos(bnπx),

where 0 < a < 1 and b > 1 is an odd integer number such that ab > 1 + 3
2π. The

last-mentioned function was modeled by Weierstrass in 1871. This function has
the derivative that equals (+∞) or (−∞) on an uncountable everywhere dense
set. The following example of non-differentiable function was modeled nearly
simultaneously and independently by Darboux in the paper [6]:

f(x) =
∞∑
n=1

sin((n+ 1)!x)

n!
.

In the sequel, other examples of the functions were constructed and classes
of non-differentiable functions were founded. The major contribution to these
studies was made by the following scientists: Dini [9, p. 148–158], Darboux [7],
Orlicz [8], Hankel [10, p. 61–65].

In 1929, the problem on the massiveness of the set of non-differentiable func-
tions in the space of continuous functions was formulated by Steinhaus. In 1931,
this problem was solved independently and by different ways by Banach [11] and
Mazurkiewicz [13]. So the following statement is true.

Theorem 1.1 (Banach–Mazurkiewicz). The set of non-differentiable func-
tions in the space C[0, 1] of functions, that are continuous on [0, 1], with the
uniform metric is a set of the second category.

There also exist functions that do not have a finite or infinite one-sided deriva-
tive at any point. In 1922, an example of such function was modeled by Besicov-
itch in [12]. The set of continuous on [0, 1] functions whose right-sided derivative
equals a finite number or equals +∞ on an uncountable set is a set of the second
Baire category in the space of all continuous functions. Hence the set of func-
tions, that do not have a finite or infinite one-sided derivative at any point, is a
set of the first category in the space of continuous on a segment functions. The
last-mentioned statement was proved by Saks in 1932 (see [14]).

Now researchers are trying to find simpler examples of non-differentiable func-
tions. Interest in such functions is explained by their connection with fractals,
modeling of real objects, processes, and phenomena (in physics, economics, tech-
nology, etc.).

The present paper is devoted to the simplest examples of non-differentiable
functions defined in terms of the s-adic or nega-s-adic representations.

In addition, we consider some examples of nowhere differentiable functions
defined by other ways.
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2. Certain examples of non-differentiable functions

Example 2.1. Consider the functions

f
(
∆3
α1α2...αn...

)
= ∆2

ϕ1(x)ϕ2(x)...ϕn(x)...
and g

(
∆s
α1α2...αn...

)
= ∆2

ϕ1(x)ϕ2(x)...ϕn(x)...
,

where s > 2 is a fixed positive integer number,

∆s
α1α2...αn... =

∞∑
n=1

αn
sn
, αn ∈ {0, 1, . . . , s− 1},

ϕ1(x) =

{
0 if α1(x) = 0

1 if α1(x) 6= 0
, ϕj(x) =

{
ϕj−1(x) for αj(x) = αj−1(x)

1− ϕj−1(x) for αj(x) 6= αj−1(x)
.

In 1952, the function g was introduced by Bush in [15], and the function f was
modeled by Wunderlich in [38]. The functions f and g are non-differentiable.

In [17], Salem modeled the function

s(x) = s
(
∆2
α1α2...αn...

)
= βα1 +

∞∑
n=2

(
βαn

n−1∏
i=1

qαi

)
= y = ∆Q2

α1α2...αn...,

where q0 > 0, q1 > 0, and q0 + q1 = 1. That is, βαn = 0 whenever αn =
0, βαn = q0 whenever αn = 1, and qαn ∈ {q0, q1}. This function is a singular
function. However, generalizations of the Salem function can be non-differentiable
functions or do not have the derivative on a certain set.

In October 2014, generalizations of the Salem function such that their argu-
ments are represented in terms of positive [16] or alternating [36] Cantor series or
the nega-Q̃-representation [29–31] were considered by Serbenyuk in [25–28,32,35].

Consider these generalizations of the Salem function.

Example 2.2 ([28]). Let (dn) be a fixed sequence of positive integers, dn > 1,
and (An) be a sequence of the sets An = {0, 1, . . . , dn − 1}.

Let x ∈ [0, 1] be an arbitrary number represented by a positive Cantor series

x = ∆D
ε1ε2...εn... =

∞∑
n=1

εn
d1d2 . . . dn

, where εn ∈ An.

Let P = ‖pi,n‖ be a fixed matrix such that pi,n ≥ 0, n = 1, 2, . . . , and i =

0, dn − 1,
∑dn−1

i=0 pi,n = 1 for an arbitrary n ∈ N, and
∏∞
n=1 pin,n = 0 for any

sequence (in).
Suppose that elements of the matrix P = ‖pi,n,‖ can be negative numbers as

well, but
β0,n = 0, βi,n > 0 for i 6= 0, and max

i
|pi,n| < 1.

Here

βεk,k =

{
0 if εk = 0∑εk−1

i=0 pi,k if εk 6= 0
.

Then the following statement is true.
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Theorem 2.3. Given the matrix P such that for all n ∈ N the following
are true: pεn,npεn−1,n < 0, moreover dnpdn−1,n ≥ 1 or dnpdn−1,n ≤ 1; and the
conditions

lim
n→∞

n∏
k=1

dkp0,k 6= 0, lim
n→∞

n∏
k=1

dkpdk−1,k 6= 0

hold simultaneously. Then the function

F (x) = βε1(x),1 +
∞∑
k=2

(
βεk(x),k

k−1∏
n=1

pεn(x),n

)

is non-differentiable on [0, 1].

Example 2.4 ([35]). Let P = ‖pi,n‖ be a given matrix such that n = 1, 2, . . .
and i = 0, dn − 1. For this matrix the following system of properties holds:

1◦. ∀n ∈ N pi,n ∈ (−1, 1);

2◦. ∀n ∈ N
∑dn−1

i=0 pi,n = 1;

3◦. ∀(in), in ∈ Adn
∏∞
n=1 |pin,n| = 0;

4◦. ∀in ∈ Adn \ {0} 1 > βin,n =
∑in−1

i=0 pi,n > β0,n = 0.

Let us consider the function

F̃ (x) = βε1(x),1 +
∞∑
n=2

β̃εn(x),n n−1∏
j=1

p̃εj(x),j

,
where

β̃εn(x),n =

{
βεn(x),n if n is odd

βdn−1−εn(x),n if n is even
,

p̃εn(x),n =

{
pεn(x),n if n is odd

pdn−1−εn(x),n if n is even
,

βεn(x),n =

{
0 if εn = 0∑εn−1

i=0 pi,n if εn 6= 0
.

Here x is represented by an alternating Cantor series, i.e.,

x = ∆−(dn)ε1ε2...εn... =

∞∑
n=1

1 + εn
d1d2 . . . dn

(−1)n+1,

where (dn) is a fixed sequence of positive integers, dn > 1, and (Adn) is a sequence
of the sets Adn = {0, 1, . . . , dn − 1}, and εn ∈ Adn .
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Theorem 2.5. Let pεn,npεn−1,n < 0 for all n ∈ N, εn ∈ Adn \ {0} and
conditions

lim
n→∞

n∏
k=1

dkp0,k 6= 0, lim
n→∞

n∏
k=1

dkpdk−1,k 6= 0

hold simultaneously. Then the function F̃ is non-differentiable on [0, 1].

Example 2.6 ([32]). Let Q̃ = ‖qi,n‖ be a fixed matrix, where i = 0,mn, mn ∈
N0
∞ = N∪{0,∞}, n = 1, 2, . . . , and the following system of properties is true for

elements qi,n of the last-mentioned matrix:

1◦. qi,n > 0;

2◦. ∀n ∈ N
∑mn

i=0 qi,n = 1;

3◦. ∀(in), in ∈ N ∪ {0}
∏∞
n=1 qin,n = 0.

The expansion of x ∈ [0, 1),

x =

i1−1∑
i=0

qi,1 +

∞∑
n=2

(−1)n−1δ̃in,n

n−1∏
j=1

q̃ij ,j

+

∞∑
n=1

2n−1∏
j=1

q̃ij ,j

, (2.1)

is called the nega-Q̃-expansion of x. By x = ∆−Q̃i1i1...in... denote the nega-Q̃-expan-

sion of x. The last-mentioned notation is called the nega-Q̃-representation of x.
Here

δ̃in,n =


1 if n is even and in = mn∑mn

i=mn−in qi,n if n is even and in 6= mn

0 if n is odd and in = 0∑in−1
i=0 qi,n if n is odd and in 6= 0

,

and the first sum in expression (2.1) is equal to 0 if i1 = 0.
Suppose that mn <∞ for all positive integers n.
Numbers from some countable subset of [0, 1] have two different nega-Q̃-

representations, i.e.,

∆−Q̃i1i2...in−1inmn+10mn+30mn+5...
= ∆−Q̃i1i2...in−1[in−1]0mn+20mn+4...

, in 6= 0.

These numbers are called nega-Q̃-rationals, and the rest of the numbers from
[0, 1] are called nega-Q̃-irrationals.

Suppose we have matrixes of the same dimension Q̃ = ‖qi,n‖ (the properties
of the last-mentioned matrix were considered earlier) and P = ‖pi,n‖, where i =
0,mn, mn ∈ N∪{0}, n = 1, 2, . . . , and for elements pi,n of P the following system
of conditions is true:

1◦. pi,n ∈ (−1, 1);

2◦. ∀n ∈ N
∑mn

i=0 pi,n = 1;

3◦. ∀(in), in ∈ N ∪ {0}
∏∞
n=1 |pin,n| = 0;
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4◦. ∀in ∈ N 0 = β0,n < βin,n =
∑in−1

i=0 pi,n < 1.

Theorem 2.7. If the following properties of the matrix P hold:

• for all n ∈ N, in ∈ N1
mn

= {1, 2, . . . ,mn},

pin,npin−1,n < 0;

• the conditions

lim
n→∞

n∏
k=1

p0,k
q0,k
6= 0, lim

n→∞

n∏
k=1

pmk,k

qmk,k
6= 0

hold simultaneously, then the function

F (x) = βi1(x),1 +

∞∑
k=2

β̃ik(x),k k−1∏
j=1

p̃ij(x),j


does not have a finite or infinite derivative at any nega-Q̃-rational point from the
segment [0, 1].

Here

p̃in,n =

{
pin,n if n is odd

pmn−in,n if n is even
,

β̃in,n =

{
βin,n if n is odd

βmn−in,n if n is even
,

βin,n =

{∑in−1
i=0 pi,n > 0 if in 6= 0

0 if in = 0
.

The last-mentioned examples of non-differentiable functions are difficult.
However, there exist elementary examples of these functions.

3. The simplest example of non-differentiable function and its
analogues

In 2012, the main results of this subsection were represented by the author of
the present paper in [18–20,34]

We will not consider numbers whose ternary representation has the period
(2) (without the number 1). Let us consider a certain function f defined on [0, 1]
in the following way:

x = ∆3
α1α2...αn...

f→ ∆3
ϕ(α1)ϕ(α2)...ϕ(αn)...

= f(x) = y,

where ϕ(i) = −3i2+7i
2 , i ∈ N0

2 = {0, 1, 2}, and ∆3
α1α2...αn... is the ternary repre-

sentation of x ∈ [0, 1]. That is, the values of this function are obtained from the
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ternary representation of the argument by the following change of digits: 0 by 0,
1 by 2, and 2 by 1. This function preserves the ternary digit 0.

In this subsection, differential, integral, fractal, and other properties of the
function f are described; equivalent representations of this function by addition-
ally defined auxiliary functions are considered.

We begin with the definitions of some auxiliary functions.
Let i, j, k be pairwise distinct digits of the ternary numeral system. First, let

us introduce a function ϕij(α) defined on the alphabet of the ternary numeral
system by the following:

i j k

ϕij(α) 0 0 1

That is, fij is a function given on [0, 1] in the form

x = ∆3
α1α2...αn...

fij→ ∆3
ϕij(α1)ϕij(α2)...ϕij(αn)...

= fij(x) = y.

Remark 3.1. From the definition of fij it follows that f01 = f10, f02 = f20,
and f12 = f21. Since it is true, we will use only the notations f01, f02, f12.

Lemma 3.2. The function f can be represented by:

1. f(x) = 2x− 3f01(x), where ∆3
α1α2...αn...

f01→ ∆3
ϕ01(α1)ϕ01(α2)...ϕ01(αn)...

, ϕ01(i) =
i2−i
2 , i ∈ N0

2 ;

2. f(x) = 3
2 − x − 3f12(x), where ∆3

α1α2...αn...
f12→ ∆3

ϕ12(α1)ϕ12(α2)...ϕ12(αn)...
,

ϕ12(i) = i2−3i+2
2 , i ∈ N0

2 .

3. f(x) = x
2 + 3

2f02(x), where ∆3
α1α2...αn...

f02→ ∆3
ϕ02(α1)ϕ02(α2)...ϕ02(αn)...

, ϕ02(i) =

−i2 + 2i, i ∈ N0
2 .

Lemma 3.3. The functions f, f01, f02, f12 have the properties:

1. [0, 1]
f→
(
[0, 1] \ {∆3

α1α2...αn111...}
)
∪
{

1

2

}
;

2. the point x0 = 0 is the unique invariant point of the function f ;

3. the function f is not bijective on a certain countable subset of [0, 1];

4. the following relationships hold for all x ∈ [0, 1]:

f(x)− f(1− x) = f01(x)− f12(x),

f(x) + f(1− x) =
1

2
+ 3f02(x),

f01(x) + f02(x) + f12(x) =
1

2
,

2f01(x) + f02(x) = x,

f01(x)− f12(x) = x− 1

2
;
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5. the function f is not monotonic on the domain of definition; in particular,
the function f is a decreasing function on the set

{x : x1 < x2 ⇒ (x1 = ∆3
c1...cn01αn0+2αn0+3... ∧ x2 = ∆3

c1...cn02βn0+2βn0+3...)},

where n0 ∈ Z0 = N∪{0}, c1, c2, . . . , cn0 is an ordered set of the ternary digits,
αn0+i ∈ N0

2 , βn0+i ∈ N0
2 , i ∈ N; and the function f is an increasing function

on the set

{x : x1 < x2 ⇒ (x1 = ∆3
c1...cn00αn0+2αn0+3... ∧ x2 = ∆3

c1...cn0rβn0+2βn0+3...)},

where r ∈ {1, 2}.

Let us consider the fractal properties of all level sets of the functions
f01, f02, f12.

The set
f−1(y0) = {x : g(x) = y0},

where y0 is a fixed element of the range of values E(g) of the function g, is called
a level set of g.

Theorem 3.4. The following statements are true:

• if there exists at least one digit 2 in the ternary representation of y0, then
f−1ij (y0) = ∅;

• if y0 = 0 or y0 is a ternary-rational number from the set C[3, {0, 1}] = {y :
y = ∆3

α1α2...αn..., αn ∈ {0, 1}}, then

α0(f
−1
ij (y0)) = log3 2;

• if y0 is a ternary-irrational number from the set C[3, {0, 1}], then

0 ≤ α0(f
−1
ij (y0)) ≤ log3 2,

where α0(f
−1
ij (y0)) is the Hausdorff–Besicovitch dimension of f−1ij (y0).

Let us describe the main properties of the function f .

Theorem 3.5. The function f is continuous at ternary-irrational points, and
ternary-rational points are points of discontinuity of the function. Furthermore,
a ternary-rational point x0 = ∆3

α1α2...αn000... is a point of discontinuity 1
2·3n−1

whenever αn = 1, and is a point of discontinuity
(
− 1

2·3n−1

)
whenever αn = 2.

Theorem 3.6. The function f is non-differentiable.

Let us consider one fractal property of the graph of f . Suppose that

X = [0, 1]× [0, 1] =

{
(x, y) : x =

∞∑
m=1

αm
3m

, αm ∈ N0
2 , y =

∞∑
m=1

βm
3m

, βm ∈ N0
2

}
.
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Then the set

u(α1β1)(α2β2)...(αmβm) = ∆3
α1α2...αm

×∆3
β1β2...βm

is a square with a side length of 3−m. This square is called a square of rank m
with base (α1β1)(α2β2) . . . (αmβm).

If E ⊂ X, then the number

αK(E) = inf{α : Ĥα(E) = 0} = sup{α : Ĥα(E) =∞},

where

Ĥα(E) = lim
ε→0

[
inf
d≤ε

K(E, d)dα
]
,

and K(E, d) is the minimum number of squares of the diameter d required to
cover the set E, is called the fractal cell entropy dimension of the set E. It is
easy to see that αK(E) ≥ α0(E).

The notion of the fractal cell entropy dimension is used for the calculation of
the Hausdorff–Besicovitch dimension of the graph of f , because, in the case of
the function f , we obtain that αK(E) = α0(E) (it follows from the self-similarity
of the graph of f).

Theorem 3.7. The Hausdorff–Besicovitch dimension of the graph of f is
equal to 1.

The integral properties of f are described in the theorem below.

Theorem 3.8. The Lebesgue integral of the function f is equal to 1
2 .

There exist several analogues of the function f which have the same properties
and are defined by analogy. Let us consider these functions.

One can define 3! = 6 functions determined on [0, 1] in terms of the ternary
numeral system in the following way:

∆3
α1α2...αn...

fm→ ∆3
ϕm(α1)ϕm(α2)...ϕm(αn)...

,

where the function ϕm(αn) is determined on an alphabet of the ternary numeral
system, and fm(x) is defined by using the table for each m = 1, 6.

0 1 2

ϕ1(αn) 0 1 2

ϕ2(αn) 0 2 1

ϕ3(αn) 1 0 2

ϕ4(αn) 1 2 0

ϕ5(αn) 2 0 1

ϕ6(αn) 2 1 0
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Thus one can model a class of functions whose values are obtained from the
ternary representation of the argument by a certain change of ternary digits.

It is easy to see that the function f1(x) is the function y = x and the function
f6(x) is the function y = 1− x, i.e.,

y = f1(x) = f1
(
∆3
α1α2...αn...

)
= ∆3

α1α2...αn... = x,

y = f6(x) = f6
(
∆3
α1α2...αn...

)
= ∆3

[2−α1][2−α2]...[2−αn]...
= 1− x.

We will describe some application of the function of the last-mentioned form
in the next subsection.

Lemma 3.9. Any function fm can be represented by the functions fij in the
form

fm = a(ij)m x+ b(ij)m + c(ij)m fij(x), where a(ij)m , b(ij)m , c(ij)m ∈ Q.

One can formulate the following corollary.

Theorem 3.10. The function fm such that fm(x) 6= x and fm(x) 6= 1−x is:

• continuous almost everywhere;

• non-differentiable on [0, 1];

• a function whose Hausdorff–Besicovitch dimension of the graph is equal to 1;

• a function whose Lebesgue integral is equal to 1
2 .

Generalizations of the results described in this subsection will be considered
in the following subsection.

4. Generalizations of the simplest example of non-differenti-
able function

In 2013, the investigations of the last subsection were generalized by the
author in several papers [21,22,33]. Consider these results.

We begin with the definitions.

Let s > 1 be a fixed positive integer number, and let the set A = {0, 1, . . . , s−
1} be an alphabet of the s-adic or nega-s-adic numeral system. The notation x =
∆±sα1α2...αn... means that x is represented by the s-adic or nega-s-adic representa-
tion, i.e.,

x =

∞∑
n=1

αn
sn

= ∆s
α1α2...αn...

or

x =
∞∑
n=1

(−1)nαn
sn

= ∆−sα1α2...αn..., αn ∈ A.
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Let Λs be a class of functions of the type

f : x = ∆±sα1α2...αn... → ∆±sβ1β2...βn... = f(x) = y,

where
(
βkm+1, βkm+2, . . . , β(m+1)k

)
= θ

(
αkm+1, αkm+2, . . . , α(m+1)k

)
, the num-

ber k is a fixed positive integer for a specific function f , m = 0, 1, 2, . . . , and
θ(γ1, γ2, . . . , γk) is some function of the k variables (it is the bijective correspon-
dence) such that the set

Ak = A×A× . . .×A︸ ︷︷ ︸
k

is its domain of definition and range of values.
Each combination (γ1, γ2, . . . , γk) of k s-adic or nega-s-adic digits (according

to the number representation of the argument of a function f) is assigned to the
single combination θ(γ1, γ2, . . . , γk) of the k s-adic or nega-s-adic digits (according
to the number representation of the value of a function f). The combination
θ(γ1, γ2, . . . , γk) is assigned to the unique combination (γ

′
1, γ

′
2, . . . , γ

′
k) that may

not match with (γ1, γ2, . . . , γk). The θ is a bijective function on Ak.
It is clear that any function f ∈ Λs is one of the functions:

fsk , f+, f−1+ , f+ ◦ fsk , fsk ◦ f−1+ , f+ ◦ fsk ◦ f−1+ ,

where

fsk
(
∆s
α1α2...αn...

)
= ∆s

β1β2...βn...,(
βkm+1, βkm+2, . . . , β(m+1)k

)
= θ

(
αkm+1, αkm+2, . . . , α(m+1)k

)
for m = 0, 1, 2, . . . , and some fixed positive integer number k, i.e.,

(β1, β2, . . . , βk) = θ (α1, α2, . . . , αk) ,

(βk+1, βk+2, . . . , β2k) = θ (αk+1, αk+2, . . . , α2k) ,

. . . . . . . . . . . . . . . . . . . . .(
βkm+1, βkm+2, . . . , β(m+1)k

)
= θ

(
αkm+1, αkm+2, . . . , α(m+1)k

)
,

. . . . . . . . . . . . . . . . . . . . .

and

f+
(
∆s
α1α2...αn...

)
= ∆−sα1α2...αn...,

f−1+

(
∆−sα1α2...αn...

)
= ∆s

α1α2...αn....

Let us consider several examples.
The function f considered in the last subsection is a function of the f31 type.

In fact,

x = ∆3
α1α2...αn...

f→ ∆3
ϕ(α1)ϕ(α2)...ϕ(αn)...

= f(x) = y,

where ϕ (αn) is a function defined in terms of the s-adic numeral system in the
following way:
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αn 0 1 2

ϕ(αn) 0 2 1
.

Now we give the example of the function f22 . The function

f22 : ∆2
α1α2...αn... → ∆2

β1β2...βn...,

where (β2m+1, β2(m+1)) = θ(α2m+1, α2(m+1)), m = 0, 1, 2, 3, . . . , and

α2m+1α2(m+1) 00 01 10 11

β2m+1β2(m+1) 10 11 00 01
,

is an example of the f22 -type function.
It is obvious that the set of f21 functions consists only of the functions y = x

and y = 1− x in the binary numeral system. But the set of f22 functions has the
order, which is equal to 4!, and includes the functions y = x and y = 1 − x as
well.

Remark 4.1. The class Λs of functions includes the following linear functions:

y = x,

y = f(x) = f
(
∆s
α1α2...αn...

)
= ∆s

[s−1−α1][s−1−α2]...[s−1−αn]...
= 1− x,

y = f(x) = f
(
∆−sα1α2...αn...

)
= ∆−s[s−1−α1][s−1−α2]...[s−1−αn]...

= −s− 1

s+ 1
− x.

These functions are called Λs-linear functions.

Remark 4.2. The last-mentioned two functions in the last remark are inter-
esting for applications in certain investigations. For example, in the case of a
positive Cantor series, the function may have the form

f(x) = f
(
∆D
ε1ε2...εn...

)
= f

( ∞∑
n=1

εn
d1d2 . . . dn

)

= ∆D
[d1−1−ε1][d2−1−ε2]...[dn−1−εn]... =

∞∑
n=1

dn − 1− εn
d1d2 . . . dn

.

It is easy to see that this function is a transformation preserving the Hausdorff–
Besicovitch dimension.

Consider the following representations by the alternating Cantor series:

∆−Dε1ε2...εn... =
∞∑
n=1

(−1)nεn
d1d2 . . . dn

,

∆−(dn)ε1ε2...εn... =
∞∑
n=1

1 + εn
d1d2 . . . dn

(−1)n+1.

In 2013, the study of the relations between positive and alternating Cantor
series, as well as other investigations of alternating Cantor series, were presented
in [23,24]. These results were later published in [36].

Consider the following results that follow from the relations between positive
and alternating Cantor series.
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Lemma 4.3. The following functions are identity transformations:

x = ∆D
ε1ε2...εn...

f→ ∆
−(dn)
ε1[d2−1−ε2]...ε2n−1[d2n−1−ε2n]... = f(x) = y,

x = ∆−(dn)ε1ε2...εn...
g→ ∆D

ε1[d2−1−ε2]...ε2n−1[d2n−1−ε2n]... = g(x) = y.

Therefore the functions below are the DP-functions (the functions preserving
the fractal Hausdorff–Besicovitch dimension):

x = ∆D
ε1ε2...εn...

f→ ∆
−(dn)
[d1−1−ε1]ε2...[d2n−1−1−ε2n−1]ε2n...

= f(x) = y,

x = ∆−(dn)ε1ε2...εn...
g→ ∆D

[d1−1−ε1]ε2...[d2n−1−1−ε2n−1]ε2n...
= g(x) = y.

A new method for the construction of the metric, probabilistic and dimen-
sional theories for the families of representations of real numbers via studies of
special mappings (G-isomorphisms of representations), under which the symbols
of a given representation are mapped onto the same symbols of the other rep-
resentation from the same family, when these mappings preserve the Lebesgue
measure and the Hausdorff–Besicovitch dimension, follows from Remark 4.2 and
investigations of the functions f+, f

−1
+ .

Let us describe the main properties of the functions f ∈ Λs.

Lemma 4.4. For any function f from Λs, except for Λs-linear functions,
the values of the function f for different representations of s-adic rational num-
bers from [0, 1] (nega-s-adic rational numbers from [− s

s+1 ,
1
s+1 ], respectively) are

different.

Remark 4.5. From the unique representation for each s-adic irrational number
from [0, 1], it follows that the function fsk is well-defined at s-adic irrational points.

To reach that any function f ∈ Λs such that f(x) 6= x and f(x) 6= 1 − x is
well-defined on the set of s-adic rational numbers from [0, 1], we will not consider
the s-adic representation with period (s− 1).

Analogously, we will not consider the nega-s-adic representation with period
(0[s− 1]).

Lemma 4.6. The set of functions f sk with the defined operation “composition
of functions” is a finite group of order

(
sk
)
!.

Lemma 4.7. The function f ∈ Λs such that f(x) 6= x, f(x) 6= − s−1
s+1 − x,

and f(x) 6= 1− x has the following properties:

1) f reflects [0, 1] or [− s
s+1 ,

1
s+1 ] (according to the number representation of the

argument of a function f) into one of the segments [0, 1] or [− s
s+1 ,

1
s+1 ] with-

out enumerable subset of points (according to the number representation of
the value of a function f);

2) the function f is not monotonic on the domain of definition;

3) the function f is not a bijective mapping on the domain of definition.
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Lemma 4.8. The following properties of the set of invariant points of the
function fsk are true:

• the set of invariant points of fsk is a continuum set, and its Hausdorff–Besi-
covitch dimension is equal to 1

k logs j, when there exists a set {σ1, σ2, . . . , σj}
(j ≥ 2) of k-digit combinations σ1, . . . , σj of s-adic digits such that

θ(a
(i)
1 , a

(i)
2 , . . . , a

(i)
k ) = (a

(i)
1 , a

(i)
2 , . . . , a

(i)
k ),

where σi = (a
(i)
1 a

(i)
2 . . . a

(i)
k ), i = 1, j;

• the set of invariant points of fsk is a finite set, when there exists a unique
k-digit combination σ of s-adic digits such that

θ(a1, a2, . . . , ak) = (a1, a2, . . . , ak), σ = (a1a2 . . . ak);

• the set of invariant points of fsk is an empty set, when there does not exist
any k-digit combination σ of s-adic digits such that

θ(a1, a2, . . . , ak) = (a1, a2, . . . , ak), σ = (a1a2 . . . ak).

In addition, the functions f+ and f−1+ have the following properties.

Lemma 4.9. For each x ∈ [0, 1], the function f+ satisfies the equation

f(x) + f(1− x) = −s− 1

s+ 1
.

Lemma 4.10. For each y ∈ [− s
s+1 ,

1
s+1 ], the function f−1+ satisfies the equa-

tion

f−1(y) + f−1
(
−s− 1

s+ 1
− y
)

= 1.

Lemma 4.11. The set of invariant points of the function f+, as well as f−1+ ,
is a self-similar fractal, and its Hausdorff–Besicovitch dimension is equal to 1

2 .

The following theorems are the main theorems about the properties of the
functions f ∈ Λs.

Theorem 4.12. A function f ∈ Λs such that f(x) 6= x, f(x) 6= − s−1
s+1 − x,

and f(x) 6= 1− x is:

• continuous at s-adic irrational or nega-s-adic irrational points, and s-adic ra-
tional or nega-s-adic rational points are points of discontinuity of this function
(according to the number representation of the argument of the function f);

• a non-differentiable function.

Theorem 4.13. Let f ∈ Λs. Then the following are true:

• the Hausdorff–Besicovitch dimension of the graph of any function from the
class Λs is equal to 1;
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•
∫

D(f)

f(x) dx =
1

2
, where D(f) is the domain of f .

So, in the present paper, we considered historical moments of the development
of the theory of non-differentiable functions, difficult and simplest examples of
such functions. Integral, fractal, and other properties of the simplest example
of a nowhere differentiable function and its analogues and generalizations are
described. Equivalent representations of the considered simplest example by ad-
ditionally defined auxiliary functions were reviewed.

References

[1] V.F. Brzhechka, On the Bolzano function, Uspekhi Mat. Nauk 4 (1949), 15–21
(Russian).

[2] E. Kel’man, Bernard Bolzano, Izd-vo AN SSSR, Moscow, 1955 (Russian).

[3] G.H. Hardy, Weierstrass’s non-differentiable function, Trans. Amer. Math. Soc. 17
(1916), 301–325.

[4] J. Gerver, More on the differentiability of the Rieman function, Amer. J. Math. 93
(1971), 33–41.

[5] P. Du Bois-Reymond, Versuch einer Classification der willkürlichen Functionen
reeller Argumente nach ihren Aenderungen in den kleinsten Intervallen, J. Reine
Angew. Math. 79 (1875), 21–37 (German).
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Недиференцiйовнi функцiї, визначенi в термiнах
класичних представлень дiйсних чисел

S.O. Serbenyuk

Цю роботу присвячено деякому пiдкласу недиференцiйовних фун-
кцiй. Аргументи i значення функцiй, що розглядаються, подано через
s-ве або нега-s-ве зображення дiйсних чисел. Технiка моделювання та-
ких функцiй є простiшою в порiвняннi з добре вiдомими технiками мо-
делювання недиференцiйовних функцiй. Iншими словами, значення цих
функцiй отримано з s-го або нега-s-го зображення аргументу за допо-
моги певної замiни цифр чи комбiнацiй цифр.

Описано iнтегральнi, фрактальнi та iншi властивостi розглянутих
функцiй.

Ключовi слова: нiде недиференцiйовнi функцiї, s-адичнi представ-
лення, нега-s-адичнi представлення, немонотоннi функцiї, розмiрнiсть
Гаусдорфа–Безiковича.

https://www.researchgate.net/publication/311738798
https://www.researchgate.net/publication/308273000
https://arxiv.org/abs/1602.00493
https://arxiv.org/abs/1703.02820
https://arxiv.org/abs/1703.02820
mailto:simon6@ukr.net

	Introduction
	Certain examples of non-differentiable functions
	The simplest example of non-differentiable function and its analogues
	Generalizations of the simplest example of non-differentiable function

