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We consider a family {Hε}ε>0 of εZn-periodic Schrödinger operators with
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1. Introduction

Spectral analysis of operators with periodic coefficients is a frequent topic
in mathematical physics. Recent advances in investigation of various sorts of
metamaterials motivate the study of operators. One of the central questions con-
cerns the structure of spectral gaps in view of their importance for conductivity
properties of such substances, in particular, the possibility of engineering the gap
structure by choosing an appropriate material. In the present paper, we investi-
gate this problem for a class of such operators; we are going to show that using
a suitable lattice of “traps” arranged periodically in combination with a scaling
transformation that makes these traps smaller and weaker one can approximate
any prescribed finite family of spectral gaps. Let us recall in this connection that
similar ideas can also appear in a different context, for instance, concerning the
gap creation by “decoration” of quantum graphs [2, 5, Sec. 5.1].

The idea to employ δ′ traps was first used in our recent paper [7] where we
demonstrated that it can provide an approximation to the first spectral gap in the
particular case of operators used to model nanowires regarding them as electron
waveguides. In the said paper, we focused our attention at guides with Neumann
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boundary characteristic for metallic nanowires, and we also supposed that the
scaling made the duct thin. Here we extend this result in two directions. First
of all, we suppose that the family of traps is periodic in more than one direction,
and secondly, we manage to get an approximation with any finite number of
prescribed gaps. What is equally important, however, not only the present result
is more general, but also the method we employ differs from that used in [7] where
the argument was based on eigenvalue convergence for the elements of the fiber
decomposition by constructing approximations for the eigenfunctions.

In contrast, in the current paper, we identify the limiting operators using
Simon’s results for a monotonic sequence of forms [13]. The convergence of the
eigenvalues is then proven using a (slightly modified) lemma from [8]. This allows
us not only to prove the said convergence of eigenvalues, but also to estimate its
rate. Location of spectral gaps can be then controlled by a suitable choice of
the interaction ‘strength’ and the trap shapes, that is, surfaces supporting these
interactions, following a result from [10]. In the next section, we describe the
problem properly and state the main result. Section 3 is then devoted to its
proof; in the Appendix we recall the lemma mentioned above.

2. Setting of the problem and main result

Let m ∈ N and let {Ωj}mj=1 be a family of simply connected Lipschitz domains
in Rn, n ∈ N \ {1}. We assume that

Ωj ∩ Ωj′ = ∅ as j 6= j′ and ∪mj=1Ωj ⊂ Y := (0, 1)n.

Also, we set

Ω0 := Y \
m⋃
j=1

Ωj .

In what follows, ε > 0 will be a small parameter. For i ∈ Zn and j ∈ {1, . . . ,m},
we set

Γεij := ε(∂Ωj + i).

Next we describe the family of operators Hε which will be the main object of
our interest in this paper. We denote

Γε =
⋃
i∈Zn

m⋃
j=1

Γεij

and introduce the sesquilinear form hε in the Hilbert space L2(Rn) via

hε[u, v] :=

∫
Rn\Γε

∇u · ∇v̄ dx

+ ε
∑
i∈Z

m∑
j=1

qj

∫
Γεij

(u �ext
Γε
ij

−u �int
Γε
ij

)(v �ext
Γε
ij

−v �int
Γε
ij

) ds, qj > 0, (2.1)
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with the domain of form dom(hε) = H1(Rn \ Γε). Here f �ext
Γε
ij

(respectively,

f �int
Γε
ij

) stands for the trace of the function f taken from the exterior (respectively,

interior) side of Γεij ; ds is the ‘area’ measure on Γεij .

Remark 2.1. From the viewpoint of physical motivation mentioned in the
introduction, the cases n = 2, 3 are important. However, there is no problem
in stating and proving the result for any dimension; what matters is that the
codimension of the interaction support is one. In general, a trap lattice may have
different periods in different dimensions, but using suitable scaling transforma-
tions one can reduce such situations to the case considered here.

The definition of hε[u, v] makes sense: the second sum in (2.1) is finite as one
can check applying the standard trace inequalities within each period cell. Fur-
thermore, it is straightforward to check that the form hε[u, v] is densely defined,
closed, and positive. Then, by the first representation theorem [9, Chapter 6,
Theorem 2.1], there is a unique self-adjoint and positive operator associated with
the form hε, which we denote as Hε,

(Hεu, v)L2(Rn) = hε[u, v], ∀u ∈ dom(Hε), ∀v ∈ dom(hε).

Let u ∈ dom(Hε) ∩ C2(Rn \ Γε). Integrating by parts, one can easily show
that

(Hεu)(x) = −∆u(x) at x ∈ Rn \ Γε,

while on Γεij one has the following interface matching conditions:

(∂nu) �ext
Γε
ij

= (∂nu) �int
Γε
ij

= εqj(u �
ext
Γε
ij

−u �int
Γε
ij

),

where ∂n is the derivative along the outward-pointing unit normal to Γεij . This
supports our interpretation of Hε as the Hamiltonians describing a lattice of
periodically spaced obstacles, or “traps” in the form of given by δ′ interaction
supported by Γεij ; the interaction becomes “weak” as ε→ 0. For more details on
Schrödinger operators in Rn with δ′ interactions supported by hypersurfaces we
refer to [3, 4].

We denote by σ(Hε) the spectrum of Hε. Due to the Floquet–Bloch theory,
σ(Hε) is a locally finite union of compact intervals called bands. In general,
the bands may touch each other or even overlap. The non-empty bounded open
interval (A,B) ⊂ R is called a gap in the spectrum of Hε if

(A,B) ∩ σ(Hε) = ∅, A,B ∈ σ(Hε).

First we give a simple estimate from above to the number of gaps.

Proposition 2.2. The spectrum σ(Hε) has at most m gaps within the interval
[0,Λε−2] with some constant Λ > 0 depending on the set Ω0 only.
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The proof of this proposition is simple, but we postpone it to Section 3, cf.
Corollary 3.2 since we need to do some preliminary work first. The constant Λ is
given by (3.7).

Our main goal is to detect gaps in the spectrum of Hε within the interval
[0,Λε−2] and to describe their asymptotic behavior as ε→ 0. To state the result,
we have to introduce some notations.

In what follows, we denote by C, C1, etc. generic constants independent of ε
and of functions appearing in the estimates and equalities where these constants
occur, however, they may depend on n, Ωj and qj .

For j ∈ {1, . . . ,m}, we set

Aj := qj
|∂Ωj |
|Ωj |

,

where the symbol | · | serves both for the volume of domain in Rn and for the
“area” of (n−1)-dimensional surface in Rn. We assume that the domains Ωj and
the numbers qj are chosen in such a way that

Aj < Aj+1, j ∈ {1, . . . ,m− 1}. (2.2)

Furthermore, we consider the rational function

F (λ) := 1 +
m∑
j=1

Aj |Ωj |
|Ω0|(Aj − λ)

. (2.3)

It is easy to show that F (λ) has exactly m roots, those are real and interlace with
Aj provided (2.2) holds. We denote them Bj , j ∈ {1, . . . ,m} assuming them to
be renumbered in the ascending order,

Aj < Bj < Aj+1, j ∈ {1, . . . ,m− 1}, Am < Bm <∞. (2.4)

Now we are in position to formulate the main results of this work.

Theorem 2.3. The spectrum of Hε has the following form within the interval
[0,Λε−2]:

σ(Hε) ∩ [0,Λε−2] = [0,Λε−2] \

 m⋃
j=1

(Aεj , B
ε
j )

 .

The endpoints of the intervals (Aεj , B
ε
j ) satisfy

Aεj ∈ [Aj − Cε, Aj ], Bε
j ∈ [Bj − Cε, Bj ],

provided ε is small enough.

Remark 2.4. In the above theorem, “provided ε is small enough” means ε <
ε0 for some ε0 which depends in general on qj and Ωj . It will be apparent from
the proof, cf. Lemma 3.4, that ε0 can be given explicitly, but the formula looks
rather cumbersome, in particular, it depends on the constants appearing in the
Poincaré and trace inequalities for Ωj .
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Using a lemma from [10], one can choose the domains Ωj and the numbers
qj in such a way that the limiting intervals (Aj , Bj) coincide with predefined
segments. Indeed, let us define the map

L : dom(L) ⊂ R2m → R2m, (a1, . . . , am, b1, . . . , bm)
L7→ (A1, . . . , Am, B1, . . . , Bm)

with the domain

dom(L) =

{
(a1, . . . , am, b1, . . . , bm) ∈ R2m : aj > 0, bj > 0,

m∑
j=1

bj < 1,
aj
bj
<
aj+1

bj+1

}

acting as follows: Aj =
aj
bj

, Bj are the roots of the function

1 +
m∑
j=1

Ajbj
b0(Aj − λ)

, where b0 := 1−
m∑
j=1

bj ,

renumbered according to (2.4). The indicated result [10, Lemma 2.1] then reads
as follows:

Lemma 2.5. L maps dom(L) onto the set of (A1, . . . , Am, B1, . . . Bm) ∈ R2m

satisfying (2.4). Moreover, L is a one-to-one map, and the inverse map L−1 is
given by the formulæ

aj = Aj
ρj

1 +
m∑
i=1

ρi

, bj =
ρj

1 +
m∑
i=1

ρi

, (2.5)

where

ρj =
Bj −Aj
Aj

∏
i=1,...,m|i 6=j

(
Bi −Aj
Ai −Aj

)
.

Now it is clear how to choose the sought Ωj and qj , cf. the statement following
Remark 2.4. Specifically, assume that the intervals (Aj , Bj) satisfying (2.4) are
given. We define for them the numbers aj , bj by formulæ (2.5) and then we
choose the domains Ωj , j ∈ {1, . . . ,m}, in such a way that |Ωj | = bj . Obviously,
this can be always done since bj > 0 and

∑m
j=1 bj < 1; recall that the closures of

Ωj must be pairwise disjoint by assumption and belong to the unit cube. Needless
to say, such a choice is not unique. Finally, with these Ωj we define the numbers

qj by qj = Aj
|Ωj |
|∂Ωj | .

3. Proof of the results

3.1. Preliminaries. We introduce the sets
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• Γj = ∂Ωj , where j ∈ {1, . . . ,m},

• Γij = ∂Ωj + i, where i ∈ Zn, j ∈ {1, . . . ,m},

• Γ = ∪i∈Zn ∪j∈{1,...,m} Γij .

The operator Hε is by construction Zn-periodic with the period cell εY . It is
convenient to perform a change of coordinates x = εy (from the old coordinates x
to the new coordinates y) that would allow us to work with an ε-independent
period cell. More precisely, we introduce the sesquilinear form ĥε in the Hilbert
space L2(Rn) via

ĥε[u, v] :=
1

ε2

∫
Rn\Γ

∇u · ∇v̄ dx

+
∑
i∈Z

m∑
j=1

qj

∫
Γij

(u �ext
Γij
−u �int

Γij
)(v �ext

Γij
−v �int

Γij
) ds, qj > 0,

with the form domain dom(ĥε) = H1(Rn\Γ). Finally, by Ĥε we denote the unique
self-adjoint and positive operator associated with the form ĥε. It is easy to see
that

σ(Ĥε) = σ(Hε).
Moreover, the operator Ĥε is periodic with respect to the ε-independent period
cell Y .

The Floquet–Bloch theory — see, e.g., [6,11,12] — establishes a relationship
between σ(Ĥε) and the spectra of certain operators on Y . Let φ = (φ1, . . . , φn) ∈
[0, 2π)n, the dual cell to Y . We introduce the space H1

φ(Y \ ∪mj=1Γj), which

consists of functions from H1(Y \∪mj=1Γj) satisfying the following conditions at the
opposite faces of ∂Y , usually referred to as quasi-periodic boundary conditions,

∀k ∈ {1, . . . , n} u(x+ ek) = exp(iφk)u(x)

for x = (x1, x2, . . . , 0, . . . , xn)
↑

kth place

, (3.1)

where ek = (0, 0, . . . , 1, . . . , 0).
In the space L2(Y ), we introduce the sesquilinear form ĥεφ defined by

ĥεφ[u, v] :=
1

ε2

∫
Y \∪mj=1Γj

∇u · ∇v̄ dx

+
m∑
j=1

qj

∫
Γj

(u �ext
Γj
−u �int

Γj
)(v �ext

Γj
−v �int

Γj
) ds (3.2)

with the domain H1
φ(Y \ ∪mj=1Γj). We denote by Ĥεφ the associated self-adjoint

and positive operator. Its domain consists of the functions u ∈ H2(Y \ ∪mj=1Γj)∩
H1
φ(Y \ ∪mj=1Γj) satisfying also

∀k ∈ {1, . . . , n} ∂u

∂xk
(x+ ek) = exp(iφk)

∂u

∂xk
(x)
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for x = (x1, x2, . . . , 0, . . . , xn)
↑

kth place

(3.3)

and the following δ′ interface matching conditions on Γj :

(∂nu) �ext
Γj

= (∂nu) �int
Γj

= ε2qj(u �
ext
Γj
−u �int

Γj
),

where ∂n is the derivative along the outward-pointing unit normal to Γj . The

operator Ĥεφ acts as

(Ĥεφu) �Ωj= −
1

ε2
(∆u) �Ωj , j ∈ {0, . . . ,m}.

The spectrum of Ĥεφ is purely discrete. We denote by
{
λεk,φ

}
k∈N the sequence of

its eigenvalues arranged in the ascending order and repeated according to their
multiplicity.

By the Floquet–Bloch theory, we have

σ(Ĥε) =

∞⋃
k=1

⋃
φ∈[0,2π)n

{
λεk,φ

}
, (3.4)

and moreover, for any fixed k ∈ N the set ∪φ∈[0,2π)n
{
λεk,φ

}
is a compact interval,

conventionally referred to as the kth spectral band.
Along with the operators Ĥεφ we also introduce the operators ĤεN and ĤεD,

which differ from Ĥεφ only by the boundary conditions at ∂Y : instead of the
quasi-periodic conditions one imposes here the Neumann and the Dirichlet ones,
respectively. More precisely, we introduce in L2(Y ) the sesquilinear forms ĥεN and

ĥεD with the domains

dom(ĥεN ) = H1(Y \∪mj=1Γj) and dom(ĥεD) =
{
u ∈ H1(Y \ ∪mj=1Γj) : u �Y = 0

}
and the action specified by (3.2); then ĤεN and ĤεD are the operators associated
with these forms. The spectra of these operators are purely discrete. We de-
note by

{
λεk,N

}
k∈N (respectively,

{
λεk,D

}
k∈N) the sequence of eigenvalues of ĤεN

(respectively, of ĤεD) arranged in the ascending order and repeated according to
their multiplicity. Since

∀φ ∈ [0, 2π)n : dom(ĥεN ) ⊃ dom(ĥεφ) ⊃ dom(ĥεD),

using the min-max principle [12, Sec. XIII.1], we obtain

∀k ∈ N, ∀φ ∈ [0, 2π)n : λεk,N ≤ λεk,φ ≤ λεk,D. (3.5)

For a fixed φ ∈ [0, 2π)n, we denote by ∆N,φ(Ω0) the Laplace operator on Ω0

subject to the Neumann conditions on ∪mj=1∂Ωj and conditions (3.1), (3.3) on
∂Y .
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Lemma 3.1. For each φ ∈ [0, 2π)n, one has

1

ε2
Λφ ≤ λεm+1,φ,

where Λφ is the smallest eigenvalue of the operator −∆N,φ(Ω0).

Proof. We consider the decoupled operator

Ĥεφ,dec =

(
− 1

ε2
∆N,φ(Ω0)

)
⊕
(
⊕mj=1

(
− 1

ε2
∆N (Ωj)

))
,

where ∆N (Ωj) is the Neumann Laplacian on Ωj , j = 1, . . . ,m. Since qj > 0, we
get

ĥεφ,dec ≤ ĥεφ, (3.6)

where ĥεφ,dec is the form associated with Ĥεφ,dec. Using the min-max principle, we

conclude from (3.6) that the kth eigenvalue of Ĥεφ,dec is smaller than or equal to

the kth eigenvalue of Ĥεφ for any k ∈ N. It is clear that the first m eigenvalues of

Ĥεφ,dec are equal to zero, while the (m+1)th one equals ε−2Λφ, whence we obtain
the desired result.

Now we set

Λ := max
φ∈[0,2π)n

Λφ. (3.7)

It is easy to see that Λ < ∞. Indeed, due to the min-max principle, Λ ≤ ΛD,
where ΛD is the smallest eigenvalue of the Laplace operator in Ω0 subject to the
Neumann conditions at ∪mj=1∂Ωj and the Dirichlet conditions at ∂Y . Note that
Λ 6= ΛD in general.

From the above lemma and (3.4), we immediately obtain the following corol-
lary justifying the claim of Proposition 2.2:

Corollary 3.2. σ(Ĥε) (hence also σ(Hε)) has at most m gaps on the interval
[0,Λε2].

Now we are able to proceed to the proof of our main result. First we sketch
our strategy.

3.2. Sketch of the proof. We distinguish two points of the dual lattice
cell, usually referred to as Brillouin zone, denoting

φ0 = (0, 0, . . . , 0), φπ = (π, π, . . . , π).

In view of (3.4)–(3.5), the left edge of the kth spectral band of Ĥε is located
between λεk,N and λk,φ0 , while the right one is located between λεk,φπ and λk,D.
Clearly, λε1,N = λε1,φ0

= 0 holds. Our goal is to prove that

limε→0 λ
ε
k,N = limε→0 λ

ε
k,φ0

= Bk−1, k = 2, . . . ,m+ 1,

limε→0 λ
ε
k,D = limε→0 λ

ε
k,φπ

= Ak, k = 1, . . . ,m,
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and, moreover, that the rate of this convergence is of order Cε. These results
taken together give the claim of Theorem 2.3.

Let us start from the Neumann eigenvalues. The idea is to find a limit operator
ĤN the eigenvalues of which will approach λεk,N as ε → 0. It is not difficult to
guess — using, e.g., Simon’s results [13] about monotonic sequences of forms —
how the “limit” operator should look like: it is associated with the form

dom(ĥN ) =

{
u ∈ ∩ε>0 dom(ĥεN ) : sup

ε>0
ĥεN [u, u] <∞

}
,

ĥN [u, v] = lim
ε→0

ĥεN [u, v]. (3.8)

Evidently, dom(ĥN ) consists of the functions constant on each Ωj , and the

value of the form on functions is given by
m∑
j=1

qj |Γj ||uj − u0|2, with the abuse of

notation written as u = (u0, . . . , um) ∈ Cm+1. Moreover, it turns out that the
eigenvalues of ĤN are 0, B1, . . . , Bm, with reference to the result obtained in [2].

The limit operator for Ĥεφ0
is again ĤN since a function constant on Ω satisfies

φ0-periodic boundary conditions and hence (3.8) leads to the same operator.
The limit operator for ĤεD is associated with the form ĥD defined by (3.8)

except that ĥεN is replaced by ĥεD. Since the only constant satisfying the Dirichlet

boundary conditions is zero, we conclude that dom(ĥD) = Cm and the action of

this form on u = (u1, . . . , um) ∈ Cm is
m∑
j=1

qj |Γj ||uj |2. The eigenvalues of ĤD are

thus A1, . . . , Am.
Finally, the limit operator for Ĥεφπ is ĤD since the functions constant on Ω

can satisfy φπ-periodic boundary conditions iff the functions are zero.
In the subsequent sections we will implement this strategy. Our asymptotic

analysis will be based on a (slightly modified) result from [8] which for the reader’s
convenience is presented in Appendix.

3.3. Asymptotic behavior of λεk,N and λεk,φ0
. In the following, we will

work with the space Cm+1 denoting its elements by bold letters, u, v, . . . . Their
entries will be enumerated starting from zero,

u ∈ Cm+1 ⇒ u = (u0, . . . , um) with uj ∈ C.

Let Cm+1
Ω be the same space Cm+1, but equipped with the weighted scalar prod-

uct,

(u,v)Cm+1
Ω

=

m∑
j=0

ujvj |Ωj |. (3.9)

In this space we introduce the sesquilinear form ĥN

ĥN [u,v] =
m∑
j=1

qj |Γj |(uj − u0)(vj − v0)
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with dom(ĥN ) = Cm+1
Ω . Let ĤN be an operator in Cm+1

Ω associated with this

form. It is obvious that ĤN can be represented by the (n+ 1)× (n+ 1) matrix,
symmetric with respect to the scalar product (3.9),

ĤN =



m∑
j=1

qj |Γj ||Ω0|−1 −q1|Γ1||Ω0|−1 −q2|Γ2||Ω0|−1 . . . −qm|Γm||Ω0|−1

−q1|Γ1||Ω1|−1 q1|Γ1||Ω1|−1 0 . . . 0
−q2|Γ2||Ω2|−1 0 q2|Γ2||Ω2|−1 . . . 0

...
...

...
. . .

...
−qm|Γm||Ωm|−1 0 0 . . . qm|Γm||Ωm|−1


.

(3.10)

We denote by λ1,N ≤ λ2,N ≤ · · · ≤ λm+1,N the eigenvalues of ĤN .

Lemma 3.3. For any k ∈ {1, . . . ,m+ 1}, one has

λεk,N ≤ λk,N .

Proof. By the min-max principle, we have

λεk,N = min
V ∈V[k]

max
u∈V \{0}

ĥεN [u, u]

‖u‖2
L2(Y )

, (3.11)

where V[k] is the family of all k-dimensional subspaces in dom(ĥεN ). We introduce
the operator P : Cm+1

Ω → L2(Y ) by

Pu =
m∑
j=0

ujχΩj ,

where χΩj is the indicator function of Ωj . Since the Ωj ’s are disjoint by assump-
tion, we have

‖Pu‖L2(Y ) = ‖u‖Cm+1
Ω

, ĥεN [Pu, Pu] = ĥN [u,u]. (3.12)

Let u0,N , . . . ,um,N be an orthonormal system of eigenvectors of ĤN such that

ĤNuj,N = λj,Nuj,N . We denote Wk := span(u0,N , . . . , um,N ), then it is easy to
check that

∀u ∈Wk
ĥN [u,u]

‖u‖2
Cm+1

Ω

≤ λk,N , (3.13)

the equality in (3.13) being attained for u = uk,N .
Finally, we set Vk := PWk. It is obvious that Vk ∈ V[k], and using (3.11)–

(3.13), we obtain

λεk,N ≤ max
u∈Vk\{0}

ĥεN [u, u]

‖u‖2
L2(Y )

= max
u∈Wk\{0}

ĥN [u,u]

‖u‖2
Cm+1

Ω

= λk,N ,

which concludes the proof.
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Lemma 3.4. For any k ∈ {1, . . . ,m+ 1}, one has

λk,N ≤ λεk,N + Cε, (3.14)

provided ε is small enough.

Proof. For u ∈ dom(ĥεN ), we introduce the norm

‖u‖1,ε :=
(
ĥεN [u, u] + ‖u‖2L2(Y )

)1/2
.

Furthermore, we define the operator Φ : dom(ĥεN )→ dom(ĥN ) by

(Φu)j =
1

|Ωj |

∫
Ωj

u(x) dx, j = 0, . . . ,m.

Our goal is to prove that the following estimates hold for each u ∈ dom(ĥεN ):

‖u‖2L2(Y ) ≤ ‖Φu‖
2
Cm+1

Ω
+ C1ε

2‖u‖21,ε, (3.15)

ĥN [Φu,Φu] ≤ ĥεN [u, u] + C2ε‖u‖21,ε. (3.16)

Then, by means of Lemma 3.9, from Appendix we will get

λεk,N ≤ λk,N +
λεk,N (1 + λεk,N )C1ε

2 + (1 + λεk,N )C2ε

1− (1 + λεk,N )C1ε2
, (3.17)

and since λεk,N ≤ λk,N holds by Lemma 3.3, the sought estimate (3.14) will follow
from (3.17).

Estimate (3.15) is an easy consequence of the Poincaré inequality

∀j ∈ {0, . . . ,m} ‖u− (Φu)j‖L2(Ωj) ≤ C‖∇u‖L2(Ωj).

Indeed, we have

‖u‖2L2(Y ) =

m∑
j=0

‖u‖2L2(Ωj)
= ‖Φu‖2Cm+1

Ω
+

m∑
j=0

‖u− (Φu)j‖2L2(Ωj)

≤ ‖Φu‖2Cm+1
Ω

+ C1

m∑
j=0

‖∇u‖2L2(Ωj)
≤ ‖Φu‖2Cm+1

Ω
+ C1ε

2‖u‖21,ε.

Let us next prove (3.16). One has

ĥN [Φu,Φu] ≤ ĥεN [u, u] +
m∑
j=1

qjRj [u, u],

where

Rj [u, u] := ‖(Φu)0 − (Φu)j‖2L2(Γj)
− ‖u �ext

Γj
−u �int

Γj
‖2L2(Γj)

,
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and these expressions can be estimated in the following way:

|Rj [u, u]| ≤
∣∣∣∣‖(Φu)0 − (Φu)j‖L2(Γj)

−
∥∥∥u �ext

Γj
−u �int

Γj

∥∥∥
L2(Γj)

∣∣∣∣
×
(
‖(Φu)0 − (Φu)j‖L2(Γj)

+
∥∥∥u �ext

Γj
−u �int

Γj

∥∥∥
L2(Γj)

)
≤
(∥∥∥(Φu)0 − u �ext

Γj

∥∥∥
L2(Γj)

+
∥∥∥(Φu)j − u �int

Γj

∥∥∥
L2(Γj)

)
×
(
‖(Φu)0‖L2(Γj) + ‖(Φu)j‖L2(Γj) + ‖u �ext

Γj
‖L2(Γj) + ‖u �int

Γj
‖L2(Γj)

)
.

Using the trace and the Poincaré inequalities, we get

j ∈ {1, . . . ,m} :
∥∥∥(Φu)j − u �int

Γj

∥∥∥
L2(Γj)

≤ C
√
‖(Φu)j − u‖2L2(Ωj)

+ ‖∇u‖2L2(Ωj)

≤ C1 ‖∇u‖L2(Ωj)
≤ C1ε‖u‖1,ε, (3.18)

and similarly, ∥∥∥(Φu)0 − u �ext
Γj

∥∥∥
L2(Γj)

≤ C ‖∇u‖L2(Ω0) ≤ Cε‖u‖1,ε. (3.19)

Using further the trace and the Cauchy–Schwarz inequalities, one finds

‖(Φu)0‖L2(Γj) + ‖(Φu)j‖L2(Γj) + ‖u �ext
Γj
‖L2(Γj) + ‖u �int

Γj
‖L2(Γj)

≤ C‖u‖H1(Y \∪mj=1Γj) ≤ C‖u‖1,ε. (3.20)

Combining now (3.18)–(3.20), we obtain the needed estimate

|Rj [u, u]| ≤ Cε‖u‖1,ε,

which implies the validity of (3.16) concluding thus the proof.

We notice that the matrix of the form (3.10) has already been studied in [2]
(using different notations). It is shown there that its eigenvalues are the roots of
the function λF (λ), where F (λ) is defined by (2.3). Taking this into account, we
immediately obtain the following corollary from the last two lemmata.

Corollary 3.5. One has

λε1,N = 0, λεk,N ≤ Bk−1 for k ∈ {2, . . . ,m+ 1}.

Moreover, for small enough ε there is also a lower bound

Bk−1 − Cε ≤ λεk,N for k ∈ {2, . . . ,m+ 1}.

As we have already noticed above, the limit operator in the φ0-periodic situa-
tion has the same eigenvalues as the Neumann one. We have the following claim
the proof of which repeats verbatim the arguments of Lemmata 3.3 and 3.4.

Lemma 3.6. One has

λε1,φ0
= 0, λεk,φ0

≤ Bk−1 for k ∈ {2, . . . ,m+ 1}.

Moreover, for small enough ε, there is also a lower bound

Bk−1 − Cε ≤ λεk,φ0
for k ∈ {2, . . . ,m+ 1}.
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3.4. Asymptotic behavior of λεk,D and λεk,φπ . Keeping the boldface
symbols from the previous section, we denote by CmΩ the space of vectors u =
(0, u1, . . . , um) ∈ Cm+1 equipped with the scalar product

(u,v)CmΩ =

m∑
j=1

ujvj |Ωj |,

and introduce in this space the sesquilinear form ĥD,

ĥD[u,v] :=

m∑
j=1

qj |Γj |ujvj

with dom(ĥD) = CmΩ . Let further ĤD be an operator in CmΩ associated with this

form. It is clear that ĤD acts as

ĤDu =

m∑
j=1

q1|Γ1||Ω1|−1uj

and its eigenvalues are A1, A2, . . . , Am.

Lemma 3.7. One has

λεk,D ≤ Ak for k ∈ {1, . . . ,m}.

Moreover, for small enough ε, there is a lower bound

Ak − Cε ≤ λεk,D for k ∈ {1, . . . ,m}.

The proof of this lemma is again similar to those of Lemmata 3.3 and 3.4.
The only essential difference here is that instead of the Poincaré inequality, in Ω0

we use the Friedrichs inequality

‖u‖L2(Ω0) ≤ ‖∇u‖L2(Ω0),

which is valid because the functions from dom(ĥεD) have zero trace on ∂Y .
The analogous result is valid for eigenvalues in the φπ-periodic situation.

Lemma 3.8. One has

λεk,φπ ≤ Ak for k ∈ {1, . . . ,m}.

Moreover, for small enough ε, there is again a lower bound

Ak − Cε ≤ λεk,φπ for k ∈ {1, . . . ,m}.

This brings us to the conclusion. Combining Corollary 3.5, Lemmata 3.6–3.8,
and equations (3.4), (3.5), we arrive at the claim of Theorem 2.3.
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Appendix

Here we recall a result from [8], which is a simple consequence of the min-max
principle and serves to compare eigenvalues of two operators acting in different
Hilbert spaces.

Let H and H ′ be two separable Hilbert spaces with the norms ‖·‖ and ‖·‖′.
Let H and H′ be non-negative self-adjoint operators in these spaces with purely
discrete spectra, and h and h′ be the corresponding forms. We denote by {λk}k∈N
and {λ′k}k∈N the corresponding sequences of eigenvalues, numbered in the ascend-
ing order and with account of their multiplicity. Finally, we set ‖u‖2n := ‖u‖2 +
‖Hn/2u‖.

Lemma 3.9 ([8]). Suppose that Φ : dom(h)→ dom(h′) is a linear map such
that for all u ∈ dom(Hmax{n1,n2}/2) one has

‖u‖2 ≤ ‖Φu‖′2 + δ1‖u‖2n1
,

h′[Φu,Φu] ≤ h[u, u] + δ2‖u‖2n2

with some constants n1, n2 ≥ 0 and δ1, δ2 ≥ 0. Then for each k ∈ N, we have

λ′k ≤ λk +
λk(1 + λn1

k )δ1 + (1 + λn2
k )δ2

1− (1 + λn1
k )δ1

, (3.21)

provided the denominator 1− (1 + λn1
k )δ1 is positive.

Remark 3.10. The above result was established in [8] under the assumption
that dimH = dimH ′ = ∞, however, it is easy to see from its proof that the
result remains valid for dimH < ∞ as well. In that case (3.21) holds for k ∈
{1, . . . , dimH}. This is the situation in the proof of Lemma 3.4, where we apply
Lemma 3.9 to H = Cn+1

Ω .
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lic,
E-mail: exner@ujf.cas.cz

Andrii Khrabustovskyi,

Institute of Applied Mathematics, Graz Institute of Technology, Steyrergasse 30, Graz,
8010, Austria,
E-mail: khrabustovskyi@math.tugraz.at

Лакунарний контроль сiнгулярними операторами
Шредiнгера в перiодично структурованому матерiалi

Pavel Exner and Andrii Khrabustovskyi

Ми розглядаємо сiм’ю {Hε}ε>0 εZn-перiодичних операторiв Шредiн-
гера з δ′-взаємодiями, якi локалiзованi на сiм’ї замкнених компактних
поверхонь; мiнiмальна комiрка перiодичностi мiстить m ∈ N таких по-
верхонь. Показано, що при ε→ 0 i при певному порядку сили взаємодiї
Hε має на кiнцевих iнтервалах не бiльше m спектральних лакун. Крiм
того, гранична поведiнка перших m лакун повнiстю контролюється за
допомогою належного вибору цих поверхонь i сили взаємодiї.
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Ключовi слова: перiодичний оператор Шредiнгера, δ′-взаємодiя,
спектральна лакуна, асимптотика власних значень.
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