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1. Motivation and results

Often important operations and transformations in Analysis are nearly char-
acterized by some simple properties like operator functional equations on classical
function spaces X. To give some examples, let us introduce the following function
spaces X.

For an open set I ⊂ R, k ∈ N0 and K ∈ {R,C}, let Ck(I,K) denote the
space of k-times continuously differentiable K-valued functions on f : I → K,
C∞(I,K) := ∩k∈NCk(I,K) and C(I,K) denote the continuous functions f : I →
K. The space of rapidly decreasing functions is given by

S(R,K) := {f ∈ C∞(R,K) | sup
x∈R

(1 + |x|)l|Dkf(x)| =: ck,l <∞ for all k, l ∈ N0}.
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As a first example, let us consider the chain rule equation T (f ◦g) = Tf ◦g ·Tg
for all f, g ∈ Ck(R,R), satisfied by an operator T : Ck(R,R)→ C(R,R) for some
fixed k ∈ N: this nearly characterizes powers of derivatives, cf. Artstein-Avidan,
König, Milman [5]. Here the composition is mapped to some “compound” prod-
uct. Even simpler are product-preserving maps T : X → X, satisfying T (f · g) =
Tf · Tg for all f, g ∈ X. These have been studied for a while: for X = C(I,K)
this was done by Milgram [8], for X = Ck(I,K) by Mrčun, Šemrl [9, 10] and for
X = S(R,C) by Artstein-Avidan, Faifman, Milman [4], see also the earlier joint
paper with Alesker [2, 3]:

Theorem 1.1. Let T : S(R,C)→ S(R,C) be a bijective multiplicative trans-
formation, i.e.,

T (f · g) = Tf · Tg, f, g ∈ S(R,C).

Then there exists a C∞-diffeomorphism u : R → R such that either Tf = f ◦ u
for all f ∈ S(R,C) or Tf = f ◦ u for all f ∈ S(R,C).

This leads directly to a characterization of the Fourier transform F

FF (x) =

∫
R
F (t) exp(−2πixt) dt, F ∈ S(R,C),

which satisfies the “product” formula

F(F ∗G) = F(F ) · F(G), F,G ∈ S(R,C),

mapping convolutions to products (and vice-versa). Recall that F is a bijec-
tive map from S(R,C) to itself, and in this context it is natural to consider
complex-valued functions on R. As a consequence of Theorem 1.1, these prop-
erties characterize the Fourier transform and its complex conjugate up to C∞-
diffeomorphisms, cf. [2–4]:

Theorem 1.2. Let S : S(R,C)→ S(R,C) be a bijective map satisfying

S(F ∗G) = SF · SG, F,G ∈ S(R,C). (1.1)

Then there is a C∞-diffeomorphism u : R → R such that either SF = (FF ) ◦ u
for all F ∈ S(R,C) or SF = (FF ) ◦ u for all F ∈ S(R,C).

In this paper we consider two related operator equations, the extended Leibniz
rule for the derivative in S(R,C)

T (f · g) = Tf ·Ag +Af · Tg, f, g ∈ S(R,C), (1.2)

and its convolution counter-part

R(F ∗G) = RF · SG+ SF ·RG, F,G ∈ S(R,C). (1.3)

Interestingly, equation (1.3) provides a joint characterization of the Fourier trans-
form and the derivative, cf. Theorem 1.12 below, and its solutions are directly
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related to those of equation (1.2) by taking Fourier transforms. In fact, our main
task will be to determine the solutions of the extended Leibniz rule (1.2) and
then receive those of (1.3) as a consequence. Of course, the standard Leibniz rule

B(f · g) = B(f) · g + f ·B(g), f, g ∈ S(R,C), (1.4)

is just equation (1.2) for B = T and A = Id. In König, Milman [7], we determined
the solutions of this equation when B is an operator on the Ck-spaces, B :
Ck(I,R) → C(I,R), I ⊂ R open. They have the form Bf = a0f ln |f | + a1 f

′,
f ∈ Ck(I,R), where a0, a1 ∈ C(I,R) are suitable continuous functions on I. In
general, for f ∈ S(R,R), f ln |f | will not be in S(R,R). Thus a natural question
is whether equation (1.4) admits only the solution Bf = a1f

′ when considered
in S, i.e., when B : S(R,K) → S(R,K). We investigate this question in this
paper. In fact, we will do so in a more general context, motivated by applying
B satisfying the Leibniz rule (1.4) to the Fourier transform functional equation
(1.1). We then find, putting R := BS : S(R,K)→ S(R,K), the above mentioned
Leibniz type equation (1.3) for convolutions

R(F ∗G) = RF · SG+ SF ·RG, F,G ∈ S(R,C).

After taking the inverse Fourier transform, it becomes a multiplicative Leibniz
type equation: Let f := FF and g := FG. Then F ∗G = F−1(f · g) and hence

RF−1(f · g) = (RF−1)f · (SF−1)g + (SF−1)f · (RF−1)g, f, g ∈ S(R,C).

Thus the operators T := RF−1, A := SF−1 : S(R,C) → S(R,C) satisfy the
operator equation

T (f · g) = Tf ·Ag +Af · Tg, f, g ∈ S(R,C),

which is (1.2) and which we call the extended Leibniz rule operator equation
since it extends the ordinary Leibniz rule (1.4) where A = Id. We are interested
in finding all solutions of (1.2) in the space S(R,C) under some non-degeneration
condition and a weak continuity assumption on the operators T and A. As we
have already mentioned, finding all solutions of (1.2) is equivalent to finding all
solutions of (1.3) since taking the Fourier transform of a solution of (1.2) yields
one of (1.3) and vice-versa.

We will show that under some additional assumptions, e.g., initial or surjec-
tivity conditions, that the operators T and A satisfying (1.2) turn out to have
the form Tf = af ′ and Af = f or Tf = af̄ ′ and Af = f̄ or Tf = a Im f and
Af = Re f for some C∞-function a. Then we conclude from the definition of T
and A that SF = FF and RF = a(FF )′ or SF = FF and RF = a(FF )′ or
SF = Re(FF ) and RF = a Im(FF ), jointly characterizing the Fourier transform
and the derivative, up to complex conjugation or taking Re- and Im-parts.

In general, however, more solutions are to be expected for equation (1.2) than
just Tf = af ′, Af = f or Tf = af̄ ′, Af = f̄ or Tf = a Im(f), Af = Re(f), since
the operators T,A are arbitrary, just intertwined by the operator equation (1.2).
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Our method of investigation of the solutions of (1.2) rests on the localization
of the operators, i.e., that Tf(x) and Af(x) depend only on x, f(x) and the
derivative values of f at x. To assure this, we have to assume that T and A
are not homothetic on functions with small support, excluding a “resonance”
situation between T and A. We want to avoid examples like

Tf(x) = f(x)− f(x+ 1), Af(x) =
1

2
(f(x) + f(x+ 1)), f ∈ S(R,C), x ∈ R,

where T and A satisfy (1.2) but are not localized. Here for functions f with
support in (−1

2 ,
1
2), we have that Tf(x) = 2Af(x) = f(x) for all x ∈ (−1

2 ,
1
2). To

avoid examples of this form, we will make an assumption of non-degeneration,
which means that T and A should not be proportional on functions with small
support.

Definition 1.3. Let T,A : S(R,C)→ S(R,C) be operators. The pair (T,A)
is Ck-non-degenerate if, for every open interval J ⊂ R and any x ∈ J , there are
functions g1, g2 ∈ S(R,C) with support in J such that zi := (Tgi(x), Agi(x)) ∈
C2 are linearly independent vectors in C2 for i = 1, 2.

We also consider the following weak continuity condition.

Definition 1.4. An operator T : S(R,C)→ S(R,C) is pointwise continuous
provided that, for any sequence (fn)n∈N of S(R,C)-functions and f ∈ S(R,C)

such that f
(j)
n → f (j) converge uniformly on all compact subsets of R for all j ∈

N0, we have pointwise convergence limn→∞ Tfn(x) = Tf(x) for every x ∈ R.

We now state the main result for the extended Leibniz rule equation on
S(R,C).

Theorem 1.5. Suppose that T,A : S(R,C)→ S(R,C) are operators satisfy-
ing the extended Leibniz rule equation

T (f · g) = Tf ·Ag +Af · Tg, f, g ∈ S(R,C). (1.5)

Assume, in addition, that T and A are pointwise continuous and that the pair
(T,A) is non-degenerate. Then there are non-negative integers m,n,M,N ∈ N0

with m+ n ≥ 1, M +N ≥ 1 and functions a1, . . . , am, b1, . . . bn ∈ C∞(R,C) such
that either

Tf =

 m∑
j=1

aj

(
f ′

f

)(j−1)

+
n∑
j=1

bj

(
f̄ ′

f̄

)(j−1)
 fmf̄n, f ∈ S(R,C),

Af = fmf̄n, f ∈ S(R,C), (1.6)

or

Tf =
a1

2

(
fmf̄n − fM f̄N

)
, f ∈ S(R,C),
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Af =
1

2

(
fmf̄n + fM f̄N

)
, f ∈ S(R,C). (1.7)

Conversely, the operators (T,A) given by formulas (1.6) or (1.7) satisfy equation
(1.5) if the functions aj and bj are bounded on R.

The real-valued analogue of Theorem 1.5 is:

Theorem 1.6. Suppose that T,A : S(R,R)→ S(R,R) are operators satisfy-
ing

T (f · g) = Tf ·Ag +Af · Tg, f, g ∈ S(R,C).

Assume, in addition, that T and A are pointwise continuous and that the pair
(T,A) is non-degenerate. Then there are integers m,n ∈ N and functions
a1, . . . , am ∈ C∞(R,R) such that either

Tf =

 m∑
j=0

aj(ln |f |)(j)

 fm, Af = fm, f ∈ S(R,R),

or

Tf =
a1

2
(fm − fn) , Af =

1

2
(fm + fn) , f ∈ S(R,R).

Remark 1.7.

(a) In Theorem 1.5, for (m,n) = (1, 0) or (m,n) = (0, 1) in (1.6), we get the
solutions Tf = a1f

′, Af = f or Tf = b1f̄
′, Af = f̄ . Locally, if f 6= 0, ln f is

defined and one has (ln f)′ = f ′

f , so that (ln f)(j) = (f
′

f )(j−1). However, since
there is no continuous branch of ln on all of C with ln(f · g) = ln f + ln g, we
have that the formulas Tf = a0(ln f) · fm, Af = fm, m ∈ N give no valid
solution of (1.5) from S(R,C) to itself. Therefore the sums in (1.6) start at
j = 1 and not at j = 0. However, in the real-valued case of Theorem 1.6, the
sum starts at j = 0.

Note that (f
′

f )(j−1) has a singularity of order j as f → 0, which is cancelled
by the multiplication with fm when j ≤ m.

For (m,n) = (2, 0) or (m,n) = (0, 2), the solutions in (1.6) are given more
explicitly by Tf = a1f

′f + a2(f ′′f − f ′2), Af = f2 or Tf = b1f̄
′f̄ + b2(f̄ ′′f̄ −

f̄ ′2), Af = f̄2.

(b) Choose M = n and N = m in (1.7) and a = 1
i to see that Tf = Im(fmf̄n)

and Af = Re(fmf̄n) are solutions of (1.5). In particular, Tf = Im f and
Af = Re f are solutions.

(c) In the situation that real-valued functions are considered, and that the im-
age is just required to consist of continuous functions, i.e., when T,A :
S(R,R)→ C(R,R) satisfy (1.5), there are additional solutions such as Tf =
sin(

∑k
j=0 aj(ln |f |)(j)) · fn, Af = cos(

∑k
j=0 aj(ln |f |)(j)) · fn for k ∈ N0, n ∈
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N. Note again that (ln |f |)(j) = (f
′

f )(j−1) for j ∈ N. Further, fn in both for-
mulas may be replaced by |f |p or |f |p(sgn f) for any continuous function p :
R→ R>0, and this will still give a solution of (1.5). If f(x) = 0, the formulas
should be interpreted as Tf(x) = 0 and Af(x) = 0. These solutions are not
surprising since (1.5) reminds of the addition theorem of the sine function,
although in a multiplicative setup, so that taking logarithms first is needed.

We now look for additional conditions guaranteeing that — up to complex
conjugation —A is the identity and T a multiple of the derivative in Theorem
1.5. For this, it is not sufficient that A is surjective or even bijective in S(R,C),
as the following example due to E. Shustin shows. In the real-valued case of
S(R,R), a corresponding example was given by M. Sodin.

Example 1.8 (E. Shustin [11]). Equation (1.7) may provide a bijective map
A : S(R,C) → S(R,C) without being linear or antilinear. Choose m = 1, n =
0 and M = l + 1, N = l, l ∈ N in (1.7) so that Af = f(1 + |f |2l). For any
g ∈ S(R,C), Af = g has a unique solution f ∈ S(R,C). Indeed, let G := gḡ.
We first look for F := ff̄ such that F (1 + F l)2 = G. The left-hand side is a
strictly increasing real-analytic function K of F vanishing at zero and having
derivative one at zero, namely K(x) = x(1 + xl)2. Thus K is invertible on the
non-negative ray R≥0, i.e., F = H(G), where the inverse H of K is real-analytic
on R≥0. Therefore,

f =
g

1 + F l
=

g

1 +H(G)l
∈ S(R,C)

uniquely solves Af = g in S(R,C). Hence by (1.7),

Tf =
a1

2
f(1− |f |2l), Af =

1

2
f(1 + |f |2l), f ∈ S(R,C),

is a pointwise continuous, non-degenerate solution of the extended Leibniz rule
(1.5) in S(R,C) with A being non-linear and bijective. However, T does not
locally vanish on functions which are locally constant.

On the other hand, M. Sodin [12] proved that if P is a real polynomial with
P (0) = 0 and non-real critical points and if A : S(R,C) → S(R,C) given by
Af = P (f) is surjective, then P is linear. Note that in the above example Af =
P (f), P is not a polynomial of a real variable, but a polynomial in z and z̄.

Definition 1.9. An operator T : S(R,C) → S(R,C) vanishes locally on
constants if there is a bounded open set I ⊂ R and a point x ∈ I such that for
any c ∈ C there is f ∈ S(R,C) with f |I = c and Tf(x) = 0.

Note that any solution of (1.5) satisfies for every open interval I that f |I =
1 implies Tf |I = 0 and Af |I = 1.

Theorem 1.10. Suppose that T and A satisfy the conditions of Theorem 1.5.
Assume, in addition, that A is surjective and that T vanishes locally on constants.
Then there is a ∈ C∞(R,C) such that either

Tf = af ′, Af = f, f ∈ S(R,C),
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or

Tf = af̄ ′, Af = f̄ , f ∈ S(R,C).

An initial condition on A yields the following characterization of T and A
without assuming that A is surjective.

Theorem 1.11. Suppose that T and A satisfy the conditions of Theorem 1.5.
Assume, in addition, that there are x, c ∈ R with 1 6= c > 0 and that there is g ∈
S(R,C) with g(x) = c and Ag(x) = c. Then there is a ∈ C∞(R,C) such that
either

Tf = af ′, Af = f, f ∈ S(R,C),

or

Tf = af̄ ′, Af = f̄ , f ∈ S(R,C),

or

Tf = a Im f, Af = Re f, f ∈ S(R,C).

Theorem 1.10 yields the following joint characterization of the Fourier trans-
form and the derivative

Theorem 1.12. Suppose that R,S : S(R,C) → S(R,C) are pointwise con-
tinuous and satisfy

R(F ∗G) = RF · SG+ SF ·RG ; F,G ∈ S(R,C) .

Assume, in addition, that S is surjective, that R ◦ F−1 vanishes locally on con-
stants and that the pair (R ◦ F−1, S ◦ F−1) is non-degenerate. Then there is a ∈
C∞(R,C) such that either

RF = a(FF )′, SF = FF, F ∈ S(R,C),

or

RF = a(FF )′, SF = FF , F ∈ S(R,C).

Although the operators R and S are intertwined by the convolution functional
equation, their actions are separated: the Fourier transform shows up in the
“tuning” operator S and the derivative in the operator R.

As a consequence of Theorem 1.11, we get

Theorem 1.13. Suppose that R,S : S(R,C) → S(R,C) are pointwise con-
tinuous and satisfy

R(F ∗G) = RF · SG+ SF ·RG, F,G ∈ S(R,C).
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Assume, in addition, that the pair (R ◦F−1, S ◦F−1) is non-degenerate and that
there exists 0 6= G ∈ S(R,C) such that SG = FG ∈ S(R,R). Then there is a ∈
C∞(R,C) such that either

RF = a(FF )′, SF = FF, F ∈ S(R,C),

or

RF = a(FF )′, SF = FF , F ∈ S(R,C),

or

RF = a Im(FF ), SF = Re(FF ), F ∈ S(R,C).

Remark 1.14. If FG is not real-valued, but properly complex-valued, it may
be used to distinguish between the possible three solutions: In this case, if SG =
FG holds, SF = FF and RF = a(FF )′ holds for all F ∈ S(R,C). Similarly,
SG = FG implies SF = FF and RF = a(FF )′ for all F ∈ S(R,C), and
SG = Re(FG) yields SF = Re(FF ) and RF = a Im(FF ) for all F ∈ S(R,C).
Therefore the image of one function determines the images of all functions.

Theorems 1.10 and 1.11 also yield the following two characterizations of the
Fourier transform.

Theorem 1.15. Suppose that S : S(R,C)→ S(R,C) is surjective, pointwise
continuous and satisfies

S(f ∗ g) = Sf · Sg, f, g ∈ S(R,C).

If the pair (D ◦ S ◦ F−1, S ◦ F−1) is non-degenerate and D ◦ S ◦ F−1 locally
vanishes on constants, we have that either Sf = Ff , f ∈ S(R,C) or Sf = Ff ,
f ∈ S(R,C), i.e., S is the Fourier transform or its conjugate.

Theorem 1.16. Suppose that S : S(R,C)→ S(R,C) is pointwise continuous
and satisfies

S(f ∗ g) = Sf · Sg, f, g ∈ S(R,C).

If the pair (D ◦S ◦ F−1, S ◦ F−1) is non-degenerate and there is 0 6= g ∈ S(R,C)
with Sg = Fg ∈ S(R,R), we have that either Sf = Ff , or Sf = Ff , or Sf =
ReFf , f ∈ S(R,C), i.e., S is the Fourier transform, its conjugate or the real
part of the Fourier transform.

A similar remark as the one after Theorem 1.13 applies here as well.
Comparing Theorems 1.15 and 1.16 with Theorem 1.2, we do not assume that

S is bijective, but only that S is surjective or satisfies some initial condition. On
the other hand, we have a non-degeneration condition which implies localization
so that the diffeomorphism u : R→ R in Theorem 1.2 does not occur in Theorems
1.15 and 1.16.

As for the Leibniz rule itself, when A = Id, the only possibility in Theorem
1.5 is m = 1, n = 0 in (1.6) so that we get
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Theorem 1.17. Suppose that T : S(R,C)→ S(R,C) satisfies

T (f · g) = Tf · g + f · Tg, f, g ∈ S(R,C),

that T is pointwise continuous and that (T, Id) is non-degenerate. Then there is
a ∈ C∞(R,C) such that

Tf = af ′, f ∈ S(R,C).

Theorem 1.5 is reminiscent of the addition formula for the sine function if one
were to replace the multiplication f · g by the sum f + g. A corresponding result
may be shown for the analogous cosine-type operator equation

T (f · g) = Tf · Tg −Af ·Ag, f, g ∈ S(R,C).

Theorem 1.18. Suppose that T,A : S(R,C) → S(R,C) are operators satis-
fying the cosine-type operator equation

T (f · g) = Tf · Tg −Af ·Ag, f, g ∈ S(R,C). (1.8)

Assume, in addition, that T and A are pointwise continuous and that the pair
(T,A) is non-degenerate. Then there are non-negative integers m,n,M,N ∈ N0

with m + n ≥ 1, M + N ≥ 1, k /∈ {1,−1} and functions a1, . . . , am, b1, . . . bn ∈
C∞(R,C) such that

Tf =

1−
m∑
j=1

aj

(
f ′

f

)(j−1)

−
n∑
j=1

bj

(
f̄ ′

f̄

)(j−1)
 fmf̄n, f ∈ S(R,C),

Af = ±

 m∑
j=1

aj

(
f ′

f

)(j−1)

+
n∑
j=1

bj

(
f̄ ′

f̄

)(j−1)
 , f ∈ S(R,C), (1.9)

or

Tf =
a1

2

(
(1− k)fmf̄n + (1 + k)fM f̄N

)
, f ∈ S(R,C),

Af =
1

2

√
k2 − 1

(
fmf̄n − fM f̄N

)
, f ∈ S(R,C). (1.10)

Conversely, the operators (T,A) given by formulas (1.9) and (1.10) satisfy equa-
tion (1.8) if the functions aj and bj are bounded on R.

The simplest solutions for (m,n) = (1, 0) or (m,n) = (0, 1) are given by

Tf = (f − a1f
′), Af = a1f

′ and Tf = (f̄ − b1f̄ ′), Af = b1f̄
′.

For M = n, N = m and k = 0, we find the solutions Tf = a1 Re(fnf̄m), Af =
Im(fnf̄m). In particular, the pair of operators Tf = Re f and Af = Im f solves
(1.8).

There are, of course, consequences of Theorem 1.18 similar to those of Theo-
rem 1.5.
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2. Functional equations

We will later show that the operators T and A in equations (1.5) and (1.8) are
localized, i.e., that Tf(x) and Af(x) depend only on x, f(x) and all derivatives
f (j)(x), j ∈ N. The operator equations then turn into functional equations for
two unknown functions in many variables. We start by solving these functional
equations on Cn. They are of the sine and cosine type. To solve them, we first
need the form of the solutions of a standard functional equation for one function.

For c = (cj)
n
j=1, z = (zj)

n
j=1 ∈ Cn, let z̄ := (z̄j)

n
j=1 and < c, z >:=

∑n
j=1 cjzj .

Proposition 2.1. Let n ∈ N and suppose that F : Cn → Cr{0} is continuous
and satisfies

F (z + w) = F (z) · F (w), z, w ∈ Cn. (2.1)

Then there are c, d ∈ Cn such that

F (z) = exp(〈c, z〉+ 〈d, z̄〉), z ∈ Cn.

Conversely, functions of this form satisfy equation (2.1).

For n = 1, this is found in Aczél’s book [1] in Section 5.1.1, Theorem 3. The
generalization to the case n > 1 is straightforward and thus will not be done here.

Proposition 2.2. Let n ∈ N and F,B : Cn → C be continuous functions
satisfying

F (z + w) = F (z) ·B(w) + F (w) ·B(z), z, w ∈ Cn. (2.2)

Suppose that F is not identically zero. Then there are vectors c1, c2, d1, d2 ∈ Cn
and there are k ∈ C \ {0} and ε1, ε2 ∈ {0, 1}, with ε1, ε2 not both zero, such that
F and B have one of the following two forms:

(a) F (z) = (〈c1, z〉+ 〈c2, z̄〉) exp(〈d1, z〉+ 〈d2, z̄〉),
B(z) = exp(〈d1, z〉+ 〈d2, z̄〉);

(b) F (z) =
1

2k

(
ε1 exp(〈c1, z〉+ 〈c2, z̄〉)− ε2 exp(〈d1, z〉+ 〈d2, z̄〉)

)
,

B(z) =
1

2

(
ε1 exp(〈c1, z〉+ 〈c2, z̄〉) + ε2 exp(〈d1, z〉+ 〈d2, z̄〉)

)
, z ∈ Cn .

Conversely, these functions satisfy equation (2.2).

For n = 1, this is in Aczél [1], Section 4.2.5, Theorem 2 and Corollary.

Proposition 2.3. Let n ∈ N and F,B : Cn → C be continuous functions
satisfying

F (z + w) = F (z) · F (w)−B(w) ·B(z), z, w ∈ Cn. (2.3)

Suppose that F is not identically zero. Then there are vectors c1, c2, d1, d2 ∈ Cn
and there is k ∈ C such that F and B have one of the following three forms:

(a) F (z) =
1

1− k2
exp(〈d1, z〉+ 〈d2, z̄〉),

B(z) =
k

1− k2
exp(〈d1, z〉+ 〈d2, z̄〉), k 6= 1;
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(b) F (z) =
(
1 + 〈c1, z〉+ 〈c2, z̄〉

)
exp(〈d1, z〉+ 〈d2, z̄〉),

B(z) = ±
(
〈c1, z〉+ 〈c2, z̄〉

)
exp(〈d1, z〉+ 〈d2, z̄〉);

(c) F (z) =
1

2

(
(1− k) exp(〈c1, z〉+ 〈c2, z̄〉) + (1 + k) exp(〈d1, z〉+ 〈d2, z̄〉)

)
,

B(z) =
1

2

√
k2 − 1

(
exp(〈c1, z〉+ 〈c2, z̄〉)− exp(〈d1, z〉+ 〈d2, z̄〉)

)
, z ∈ Cn .

Conversely, these functions satisfy equation (2.3).

Proof of Proposition 2.2. (i) Suppose that F and B satisfy equation (2.2).
Fix t ∈ Cn \ {0}. We claim that F , B and B(· + t) are linearly dependent
functions. For all x, y ∈ Cn,

F (x+t)B(y)+B(x+t)F (y) = F (x+y+t) = F (x)B(y+t)+B(x)F (y+t). (2.4)

Since F is not identically zero, by (2.2), also B is not identically zero. Hence
there is y1 ∈ Cn such that B(y1) 6= 0. Choosing y = y1, equation (2.4) shows that
F (·+ t) is a linear combination of F , B and B(·+ t) with coefficients depending
on the values B(y1), F (y1), B(y1 + t) and F (y1 + t). Inserting this back into (2.4)
yields for all x, y ∈ Cn,

F (x)
(
B(y)B(y1 + t)−B(y1)B(y + t)

)
+B(x)

(
B(y)F (y1 + t)−B(y1)F (y + t)

)
+B(x+ t)

(
B(y1)F (y)−B(y)F (y1)

)
= 0. (2.5)

Suppose B(y1)F (y) − B(y)F (y1) = 0 holds for all y ∈ Cn. Then F = F (y1)
B(y1)B,

and already F and B are linearly dependent. Also there is y2 ∈ Cn such that
B(y1)F (y2)−B(y2)F (y1) 6= 0, and equation (2.5) shows that F , B and B(·+ t)
are linearly dependent.

(ii) Assume that B = kF for some k ∈ C. Then F (x + y) = 2kF (x)F (y),
with k 6= 0 since F is not identically zero. Hence F̃ := 2kF satisfies F̃ (x+ y) =
F̃ (x)F̃ (y). Thus, by Proposition 2.1, there are d1, d2 ∈ Cn such that F (z) =
1
2k exp(〈d1, z〉+ 〈d2, z̄〉), B(z) = 1

2 exp(〈d1, z〉+ 〈d2, z̄〉). This is a solution of type
(b) with ε1 = 1, ε2 = 0.

(iii) We may now assume that B and F are linearly independent. Then, by
(i), there are functions a1, a2 : Cn → C such that

B(x+ t) = a1(t)F (x) + a2(t)B(x), x, t ∈ Cn. (2.6)

The left-hand side is symmetric in x and t. Applying it to x+ y + t, we get the
equation

a1(x)F (y+t)+a2(x)B(y+t) = B(x+y+t) = a1(y+t)F (x)+a2(y+t)B(x) (2.7)

which is similar to (2.4). Choosing y2 ∈ Cn with F (y2 + t) 6= 0, we may express
a1 as a linear combination of F , B and a2, with coefficients depending on a1(y2 +
t), a2(y2 + t), F (y2 + t) and B(y2 + t). Inserting this back into (2.7) yields for all
x, y ∈ Cn,
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(
a1(y + t)F (y2 + t)− a1(y2 + t)F (y + t)

)
F (x)

+
(
a2(y + t)F (y2 + t)− a2(y2 + t)F (y + t)

)
B(x)

+
(
B(y2 + t)F (y + t)−B(y + t)F (y2 + t)

)
a2(x) = 0,

which means that a2, B and F are linearly dependent functions. Therefore there
are b1, b2 ∈ C such that

a2(x) = b1B(x) + b2F (x).

Inserting this back into (2.6) and using the symmetry in (x, t), we find

B(x+ t) = a1(t)F (x) +
(
b1B(t) + b2F (t)

)
B(x)

= a1(x)F (t) +
(
b1B(x) + b2F (x)

)
B(t),

a1(x)− b2B(x) =
a1(t)− b2B(t)

F (t)
F (x) =: b3F (x)

for any fixed t with F (t) 6= 0. Hence a1(x) = b2B(x) + b3F (x), and again by
(2.6),

B(x+ t) =
(
b2B(t) + b3F (t)

)
F (x) +

(
b1B(t) + b2F (t)

)
B(x).

Insert this and formula (2.2) for F (x+t) into (2.4) to find, after some calculation,(
(1− b1)B(t)− b2F (t)

)(
F (x)B(y)− F (y)B(x)

)
= 0

for all x, y, t ∈ Cn. Since B and F are linearly independent, we first conclude
that (1 − b1)B(t) = b2F (t) for all t, and then that b1 = 1, b2 = 0. Therefore,
a1 = b3F , a2 = B and (2.6) yields

B(x+ t) = b3F (t)F (x) +B(t)B(x), x, t ∈ Cn.

Take k ∈ C with k2 = b3. Using this and (2.2) again, we find(
B(x+ y)± kF (x+ y)

)
=
(
B(x)± kF (x)

)(
B(y)± kF (y)

)
,

so that f := B ± kF solves the equation f(x + y) = f(x)f(y). Since f 6≡ 0, by
Proposition 2.1, there are c1, c2, d1, d2 ∈ Cn such that

B(z) + kF (z) = exp(〈c1, z〉+ 〈c2, z̄〉),
B(z)− kF (z) = exp(〈d1, z〉+ 〈d2, z̄〉),

which gives solution (b) with ε1 = ε2 = 1 if k 6= 0.
(iv) If k = 0, again by Proposition 2.1, B(z) = exp(〈d1, z〉 + 〈d2, z̄〉) for

suitable d1, d2 ∈ C. Define G(z) := F (z)
B(z) . Since B(z + w) = B(z)B(w), equation

(2.2) yields
G(z + w) = G(z) +G(w), z, w ∈ Cn.

Hence G satisfies the Cauchy equation, i.e., it is additive and continuous on
Cn. This implies by Aczél [1] that there are c1, c2 ∈ Cn such that G(z) =
〈c1, z〉 + 〈c2, z̄〉, which yields F (z) = G(z)B(z), i.e., the form of F and B given
in part (a).
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Proof of Proposition 2.3. (i) Suppose that F and B satisfy equation (2.3).
Fix t ∈ Cn \ {0}. We again claim that F ,B and B(· + t) are linearly dependent
functions. Since F 6≡ 0, there is y1 ∈ Cn with F (y1) 6= 0. For all x, y ∈ Cn,

F (x+t)F (y)−B(x+t)B(y) = F (x+y+t) = F (x)F (y+t)−B(x)B(y+t). (2.8)

Choosing y = y1, equation (2.8) shows that F (·+ t) is a linear combination of F ,
B and B(· + t), with coefficients depending on the values B(y1), F (y1), B(y1 +
t) and F (y1 + t). Inserting this back into (2.8) yields for all x, y ∈ Cn,(

B(y1)F (y)−B(y)F (y1)
)
B(x+ t)

+
(
F (y1 + t)F (y)− F (y + t)F (y1)

)
F (x)

+
(
B(y + t)F (y1)−B(y1 + t)F (y)

)
B(x) = 0 . (2.9)

If for all y ∈ Cn, B(y1)F (y) − B(y)F (y1) = 0, already F and B are linearly
dependent. Otherwise, equation (2.9) shows that F , B and B(·+ t) are linearly
dependent.

(ii) Assume that B = kF for some k ∈ C. Then F (z+w) = (1−k2)F (z)F (w)
for all z, w ∈ Cn by (2.3). For k = 1, F ≡ 0, which was excluded. Hence, k 6= 1.
Let F̃ = (1 − k2)F . Then F̃ (z + w) = F̃ (z)F̃ (w). By Proposition 2.1, there are
d1, d2 ∈ Cn such that F̃ (z) = exp(〈d1, z〉+ 〈d2, z̄〉), implying

F (z) =
1

1− k2
exp(〈d1, z〉+ 〈d2, z̄〉), B(z) =

k

1− k2
exp(〈d1, z〉+ 〈d2, z̄〉),

which is a solution of the first type (a).
(iii) By part (i), there are functions a1, a2 : Cn → C such that

B(x+ t) = a1(t)F (x) + a2(t)B(x), x, t ∈ Cn. (2.10)

Exactly as in part (i) of the previous proof, this implies that a2, B and F are
linearly dependent. In view of (ii), we may assume that B and F are linearly
independent. Then there are b1, b2 ∈ C such that

a2(x) = b1B(x) + b2F (x), x ∈ Cn.

Insert this into (2.10) to find, using the symmetry in x and t,

B(x+ t) = a1(t)F (x) +
(
b1B(t) + b2F (t)

)
B(x)

= a1(x)F (t) +
(
b1B(x) + b2F (x)

)
B(t),

a1(x)− b2B(x) =
a1(t)− b2B(t)

F (t)
F (x) =: b3F (x)

for any fixed t with F (t) 6= 0. Hence a1(x) = b2B(x) + b3F (x) and again by
(2.10),

B(x+ t) =
(
b2B(t) + b3F (t)

)
F (x) +

(
b1B(t) + b2F (t)

)
B(x).
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Insert this formula for B(x+ t) and formula (2.3) for F (x+ t) into (2.8) to find,
after some calculation,(

(1− b2)B(t)− b3F (t)
)(
F (x)B(y)− F (y)B(x)

)
= 0

for all x, y, t ∈ Cn. Since B and F are linearly independent, this yields b2 = 1
and b3 = 0. Therefore,

F (x+t) = F (x)F (t)−B(x)B(t), B(x+t) = B(x)F (t)+F (x)B(t)+b1B(x)B(t).

Let α ∈ C satisfy α2 = αb1 − 1. Then

F (x+ t) + αB(x+ t) = F (x)F (t) + α(B(x)F (t) + F (x)B(t))

+ (αb1 − 1)B(x)B(t)

= (F (x) + αB(x))(F (t) + αB(t)), (2.11)

where α = b1
2 ±

√
b21
4 − 1.

(iv) Let G(x) := F (x) + b1
2 B(x) , H(x) :=

√
b21
4 − 1 B(x). Then by (2.11)

G(x+ t)±H(x+ t) = (G(x)±H(x))(G(t)±H(t)). (2.12)

Suppose first that b1 /∈ {2,−2}. Then H 6≡ 0 and, by Proposition 2.1, there are
vectors c1, c2, d1, d2 ∈ Cn such that for all z ∈ Cn,

G(z) +H(z) = exp(〈c1, z〉+ 〈c2, z̄〉),
G(z)−H(z) = exp(〈d1, z〉+ 〈d2, z̄〉).

Hence,

G(z) =
1

2

(
exp(〈c1, z〉+ 〈c2, z̄〉) + exp(〈d1, z〉+ 〈d2, z̄〉)

)
,

H(z) =
1

2

(
exp(〈c1, z〉+ 〈c2, z̄〉)− exp(〈d1, z〉+ 〈d2, z̄〉)

)
=

√
b21
4
− 1 B(z).

Let k := b1/2√
(b1/2)2−1

∈ C . Then
√
k2 − 1 = 1√

(b1/2)2−1
and, using b1

2

√
k2 − 1 = k,

B(z) =

√
k2 − 1

2

(
exp(〈c1, z〉+ 〈c2, z̄〉)− exp(〈d1, z〉+ 〈d2, z̄〉)

)
,

F (z) = G(z)− b1
2
B(z)

=
1

2

(
(1− k) exp(〈c1, z〉+ 〈c2, z̄〉) + (1 + k) exp(〈d1, z〉+ 〈d2, z̄〉)

)
,

which is the third solution (c).

(v) Now suppose that b = 2ε, ε ∈ {+1,−1}. By (2.12), G(x) = F (x) + εB(x)
satisfies G(x + t) = G(x)G(t). Hence, by Proposition 2.1, there are d1, d2 ∈ Cn
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such that G(z) = exp(〈d1, z〉+ 〈d2, z̄〉) . Therefore F (z) = exp(〈d1, z〉+ 〈d2, z̄〉)−
εB(z). Inserting this into the functional equation for F , we find

F (x+ t) = exp(〈d1, x+ t〉+ 〈d2, x̄+ t̄〉)− εB(x+ t)

= F (x)F (t)−B(x)B(t)

=
(

exp(〈d1, x〉+ 〈d2, x̄〉)− εB(x)
)(

exp(〈d1, t〉+ 〈d2, t̄〉)− εB(t)
)

−B(x)B(t)

= exp(〈d1, x+ t〉+ 〈d2, x̄+ t̄〉)
− εB(x) exp(〈d1, t〉+ 〈d2, t̄〉)− εB(t) exp(〈d1, x〉+ 〈d2, x̄〉).

Let H(x) := B(x)
exp(〈d1,x〉+〈d2,x̄〉) . Then, by the last chain of equations, H satisfies

the Cauchy equation H(x+ t) = H(x) +H(t). Since H is also continuous, there
are vectors c1, c2 ∈ Cn such that H(z) = (〈c1, z〉+ 〈c2, z̄〉), i.e.,

B(z) = (〈c1, z〉+ 〈c2, z̄〉) exp(〈d1, z〉+ 〈d2, z̄〉),
F (z) = G(z)− εB(z)

=
(
1− ε(〈c1, z〉+ 〈c2, z̄〉)

)
exp(〈d1, z〉+ 〈d2, z̄〉),

which gives the second solution (b).
Calculation shows that, conversely, the formulas (a), (b) and (c) actually yield

solutions of the functional equation (2.3).

If F,B : Rn → R are continuous functions satisfying the same functional
equations (2.2) or (2.3) on Rn, respectively, their extensions F,B : Cn → R ⊂ C
given by F̃ (z) := F (Re z), B̃(z) := B(Re z) satisfy the same equations on Cn.
Checking when the solutions given in Proposition 2.2 and 2.3, respectively, are
real-valued, we get the following corollaries

Corollary 2.4. Let F,B : Rn → R be continuous functions satisfying

F (x+ y) = F (x)B(y) + F (y)B(x), x, y ∈ Rn.

Suppose F is not identically zero. Then there are vectors c, d ∈ Rn and there is
a ∈ R such that F and B have one of the following four forms:

(a) F (x) = 〈c, x〉 exp(〈d, x〉), B(x) = exp(〈d, x〉);

(b) F (x) = a exp(〈c, x〉) sin(〈d, x〉), B(x) = exp(〈c, x〉) cos(〈d, x〉);

(c) F (x) = a exp(〈c, x〉) sinh(〈d, x〉), B(x) = exp(〈c, x〉) cosh(〈d, x〉);

(d) F (x) = a exp(〈d, x〉), B(x) =
1

2
exp(〈d, x〉), x ∈ Rn.

Conversely, these functions satisfy the above functional equation.

Corollary 2.5. Let F,B : Rn → R be continuous functions satisfying

F (x+ y) = F (x)F (y)−B(y)B(x), x, y ∈ Rn.

Suppose F is not identically zero. Then there are vectors c, d ∈ Rn and there is
k ∈ R such that F and B have one of the following four forms:
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(a) F (x) = 1
1−k2 exp(〈d, x〉), B(x) = k

1−k2 exp(〈d, x〉) with |k| 6= 1;

(b) F (x) = (1 + 〈c, x〉) exp(〈d, x〉), B(x) = 〈c, x〉 exp(〈d, x〉);

(c) F (x) = exp(〈c, x〉)
(

cos(〈d, x〉) + k sin(〈d, x〉)
)
,

B(x) =
√
k2 + 1 exp(〈c, x〉) sin(〈d, x〉);

(d) F (x) = exp(〈c, x〉)
(

cosh(〈d, x〉) + k sinh(〈d, x〉)
)
,

B(x) =
√
k2 − 1 exp(〈c, x〉) sinh(〈d, x〉) with |k| ≥ 1

for all x ∈ Rn.

Conversely, these functions satisfy the above functional equation.

3. Proofs of the theorems and corollaries

We first prove that the operators T and A satisfying the functional equations
(1.5) and (1.8) are localized.

Proposition 3.1. Suppose that T,A : S(R,C)→ S(R,C) satisfy

T (f · g) = Tf ·Ag +Af · Tg, f, g ∈ S(R,C),

and that the pair (T,A) is non-degenerate. Then T and A are localized, i.e., there
are functions F,B : R× C∞ → C such that for all f ∈ S(R,C) and all x ∈ R,

Tf(x) = F (x, f(x), . . . , f (j)(x), . . . ),

and

Af(x) = B(x, f(x), . . . , f (j)(x), . . . ),

i.e., Tf(x) and Af(x) depend only on x and the jet of f at x. We also have
T (1) = 0 and A(1) = 1.

Proof. (i) Choose f = 1 in (1.5) to find for all g ∈ S(R,C) and all x ∈ R,

(1−A(1)(x)) · Tg(x) = T (1)(x) ·Ag(x).

By non-degeneracy of (T,A), there are functions g1, g2 ∈ S(R,C) such that
(Tgi(x), Agi(x)) ∈ C2 are linearly independent for i = 1, 2. Thus, choosing
g = g1 and g = g2 in the previous equation yields A(1) = 1, T (1) = 0.

(ii) Let J ⊂ R be open and f1, f2 ∈ S(R,C) with f1|J = f2|J . Take any g ∈
S(R,C) with support in J . Then f1 · g = f2 · g. By (1.5),

Tf1 ·Ag +Af1 · Tg = T (f1 · g) = T (f2 · g)

= Tf2 ·Ag +Af2 · Tg,(
Tf1(x)− Tf2(x)

)
·Ag(x) =

(
Af2(x)−Af1(x)

)
· Tg(x), x ∈ R .

For a given x ∈ J , choose g1, g2 ∈ S(R,C) with supports in J such that
(Tgi(x), Agi(x)) ∈ C2 are linearly independent for i ∈ {1, 2}. The previous
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equation then yields for g = g1 and g = g2 that Tf1(x) = Tf2(x), Af1(x) =
Af2(x), i.e. Tf1|J = Tf2|J , Af1|J = Af2|J .

(iii) We now claim that for any f ∈ S(R,C) and x ∈ R, Tf(x) depends only
on x, f(x) and all derivative values at x, f (j)(x), j ∈ N. Suppose g ∈ S(R,C) is
another function with the same jet at x, i.e., f (j)(x) = g(j)(x) for all j ∈ N0. Let
J− := (−∞, x) and J+ := (x,∞) and define a function h : R→ C by

h(x) :=

{
f(x), x ∈ J−,
g(x), x ∈ J+.

Then h ∈ S(R,C) and f |J− = h|J− , h|J+ = g|J+ . By part (ii), Tf |J− = Th|J−
and Th|J+ = Tg|J+ . Since Tf , Th and Tg are continuous functions and {x} =
J− ∩ J+, we find that Tf(x) = Th(x) = Tg(x). Hence Tf(x) only depends on x
and all values f (j)(x), j ∈ N0, i.e., there is a function F : I ×C∞ → C such that

Tf(x) = F
(
x, f(x), . . . , f (j)(x), . . .

)
,

for all f ∈ S(R,C), x ∈ R. The proof for A is identical.

Proposition 3.2. Suppose that T,A : S(R,C)→ S(R,C) satisfy

T (f · g) = Tf · Tg −Af ·Ag, f, g ∈ S(R,C),

and that the pair (T,A) is non-degenerate. Then there are functions F,B : R ×
C∞ → C such that for all f ∈ S(R,C) and all x ∈ R,

Tf(x) = F (x, f(x), . . . , f (j)(x), . . . ),

and
Af(x) = B(x, f(x), . . . , f (j)(x), . . . ).

We also have T (1) = 1 and A(1) = 0.

Proof. Basically the same proof as for the previous Proposition applies. Just
replace the central equations in parts (i) and (ii) of that proof by

(1− T (1)(x)) · Tg(x) = −A(1)(x) ·Ag(x)

and
(Tf1(x)− Tf2(x)) · Tg(x) = (Af1(x)−Af2(x)) ·Ag(x).

The non-degeneracy of (T,A) then yields T (1) = 1 and A(1) = 0, and that f1|J =
f2|J implies Tf1|J = Tf2|J , Af1|J = Af2|J . Part (iii) then applies directly.

Proof of Theorem 1.5. (i) By Proposition 3.1, there are functions F̃ , B̃ : R×
C∞ → C such that for any f ∈ S(R,C) and any x ∈ R,

Tf(x) = F̃ (x, f(x), . . . , f (j)(x), . . . ),

and
Af(x) = B̃(x, f(x), . . . , f (j)(x), . . . ).
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Since T (1) = 0 and A(1) = 1, we have F̃ (x, 0, · · · ) = 0 and B̃(x, 1, 0, . . . ) = 1.
Let I ⊂ R be a bounded open interval. Take any function h ∈ C∞(Ī ,C),

i.e., h should be a C∞-function on I which together with all derivatives may be
extended by continuity to Ī. Then also exp(h) ∈ C∞(Ī ,C). Functions in S(R,C),
when restricted to Ī, are just C∞(Ī ,C)-functions, and exp(h) may be extended
to a function f ∈ S(R,C) on R such that f |Ī = exp(h)|Ī , just making sure that f
and its derivatives decay rapidly as |x| → ∞. Define operators S,R : C∞(Ī ,C)→
C∞(I,C) by

Sh(x) := T (exp(h))(x), Rh(x) := A(exp(h))(x)

for any h ∈ C∞(Ī ,C) and x ∈ I. More precisely, Sh(x) = T (f)(x), x ∈ I, where
f ∈ S(R,C) is such that f |Ī = exp(h)|Ī . Note that, by localization, this is well-
defined for any x ∈ I, independently of the particular extension of exp(h) to a
function in S(R,C). Moreover, since Tf ∈ S(R,C), we know that Sh = Tf |I is
a C∞-function on I.

Since the derivatives of exp(h) of order j can be written as the functions of
h and its derivatives of order ≤ j, the operators S and R are localized as well.
Thus there exist functions F,B : I × C∞ → C such that for any h ∈ C∞(Ī ,C)
and any x ∈ I,

Sh(x) = F (x, h(x), . . . , h(j)(x), . . . ), Rh(x) = B(x, h(x), . . . , h(j)(x), . . . ),

with F (x, 0) = 0 and B(x, 0) = 1. The extended Leibniz rule equation (1.5)
yields for any h1, h2 ∈ C∞(Ī ,C) and any x ∈ I,

S(h1 + h2)(x) = T (exp(h1) exp(h2))(x)

= T (exp(h1))(x) ·A(exp(h2))(x) +A(exp(h1))(x) · T (exp(h2))(x)

= S(h1)(x) ·R(h2)(x) +R(h1)(x) · S(h2)(x). (3.1)

Let α = (αj)j∈N0 , β = (βj)j∈N0 ∈ C∞ and x ∈ I be arbitrary. Then there

exist h1, h2 ∈ C∞(Ī ,C) with h
(j)
1 = αj and h

(j)
2 (x) = βj for all j ∈ N0, cf.

Hörmander [6], page 16. This may be shown by adding infinitely many small
bump functions. Therefore equation (3.1) is equivalent to the functional equation
for F and B,

F (x, α+ β) = F (x, α) ·B(x, β) +B(x, α) · F (x, β) (3.2)

for all x ∈ I and α, β ∈ C∞.
(ii) For k ∈ N0, define Fk, Bk : I × Ck+1 → C by

Fk(x, α0, . . . , αk) := F (x, α0, . . . , αk, 0, 0, . . . ),

Bk(x, α0, . . . , αk) := B(x, α0, . . . , αk, 0, 0, . . . ),

x ∈ I, α ∈ Ck+1. We claim that for fixed x ∈ I, Fk(x, ·) and Bk(x, ·) are
continuous functions from Ck+1 to C. To verify this, take any sequence αn =
(αn,j)

k
j=0 ∈ Ck+1 and α ∈ Ck+1 such that αn → α in Ck+1. Consider the
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functions hn(t) :=
∑k

j=0
αn,j

j! (t− x)j , h(t) :=
∑k

j=0
αj

j! (t− x)j . Then h
(j)
n → h(j)

converges uniformly on Ī for any j ∈ N0, and similarly exp(hn)(j) → exp(h)(j).
A corresponding statement holds for suitable extensions of exp(hn) and exp(h)
to functions in S(R,C). Therefore the assumption of pointwise continuity of T
and A implies that

Fk(x, αn,0, . . . , αn,k) = T (exp(hn))(x)→ T (exp(h))(x) = Fk(x, α0, . . . , αk),

Bk(x, αn,0, . . . , αn,k) = A(exp(hn))(x)→ A(exp(h))(x) = Bk(x, α0, . . . , αk).

Hence, for any k ∈ N0 and x ∈ I, Fk(x, ·) and Bk(x, ·) are continuous functions
from Ck+1 to C. Clearly, by the definition of Fk and Bk,

Fk+1(x, α0, . . . , αk, 0) = Fk(x, α0, . . . , αk),

Bk+1(x, α0, . . . , αk, 0) = Bk(x, α0, . . . , αk).

(iii) Let Pk denote the complex valued polynomials on R of degree ≤ k. Then
for any h ∈ Pk, any extension f of exp(h)|Ī to a function in S(R,C) and any x ∈
I, by definition of F and B,

Tf(x) = S(h)(x) = F (x, h(x), . . . , h(k)(x), 0, 0, . . . ) = Fk(x, h(x), . . . , h(k)(x)),

Af(x) = Bk(x, h(x), . . . , h(k)(x)). (3.3)

Since by (3.2) for any k ∈ N0,

Fk(x, α+ β) = Fk(x, α)Bk(x, β) +Bk(x, α)Fk(x, β), x ∈ I, α, β ∈ Ck+1. (3.4)

Proposition 2.2 implies that there are functions c1, c2, d1, d2 : I → Ck+1 and γ :
I → C \ {0} and ε1, ε2 ∈ {0, 1} not both zero such that either

Fk(x, α) = (〈c1(x), α〉+ 〈c2(x), ᾱ〉) exp(〈d1(x), α〉+ 〈d2(x), ᾱ〉),
Bk(x, α) = exp(〈d1(x), α〉+ 〈d2(x), ᾱ〉) (3.5)

or

Fk(x, α) =
γ(x)

2

(
ε1 exp(〈c1(x), α〉

+ 〈c2(x), ᾱ〉)− ε2 exp(〈d1(x), α〉+ 〈d2(x), ᾱ〉)
)
,

Bk(x, α) =
1

2

(
ε1 exp(〈c1(x), α〉

+ 〈c2(x), ᾱ〉) + ε2 exp(〈d1(x), α〉+ 〈d2(x), ᾱ〉)
)

(3.6)

for all x ∈ I and α ∈ Ck+1. Due to the definition of Fk and Bk, the functions
c1, c2, d1, d2 : I → Ck+1 depend on k ∈ N in a very simple “imbedded” way: Let,
e.g.,

d1,k = d1 = (a0, . . . , ak−1, ak), d2,k = d2 = (b0, . . . , bk−1, bk)
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with coordinate functions a0, . . . , ak, b0, . . . , bk : I → C. Then d1,k−1 =
(a0, . . . , ak−1), d2,k−1 = (b0, . . . , bk−1): the transfer from d1,k−1 to d1,k is just
by adding the coordinate function ak. Moreover, γ : I → C is independent of k.

(iv) Let us first analyze the solution for (T,A) which originates from the first
solution (3.5) of the functional equation (3.4). In this case, for any h ∈ Pk, x ∈ I,

A(f) = Bk(x, h(x), . . . , h(k)(x))

= exp

 k∑
j=0

aj(x)h(j)(x) +
k∑
j=0

bj(x)h(j)(x)

 , (3.7)

where f is a suitable extension of exp(h) to S(R,C). Choosing h to be arbitrary
complex constants, the continuity of A(f) implies that a0 and b0 are continuous
functions on I. Next, choosing linear polynomials h, we conclude that also a1

and b1 are continuous on I. Continuing with polynomials of successively higher
degrees, we get that all coordinate functions a0, . . . , ak, b0, . . . , bk are continuous
functions on I. By the way, a continuity argument of this type also shows that
ε1 and ε2 in solution (3.6) do not depend on x ∈ I.

We now claim that ak = bk = 0 on I for all k ∈ N, allowing only a0 or b0
to be non-zero. For simplicity of notation, to prove ak(x) = bk(x) = 0, we will
assume that x = 0 ∈ I and show ak(0) = bk(0) = 0 for k ∈ N. Choose ε0 > 0
with [−ε0, ε0] ⊂ I. The argument uses successively better approximations of the
zero function by functions exp(hε), where the hε are polynomials of fixed degree,
but only on successively smaller intervals around zero.

We first prove that a1(0) = b1(0) = 0. Suppose this were false and that,
e.g., |a1(0)| > 0, |a1(0)| ≥ |b0(0)|. Choose θ ∈ C with θa1(0) = |a1(0)|. For any
0 < ε ≤ ε0, define hε(x) := − 1√

ε
+ θ

εx, x ∈ R. Then hε ∈ P1 and exp(hε)(x) =

exp(− 1√
ε
) exp( θεx). For |x| ≤ ε, this is bounded in modulus by exp(1 − 1√

ε
),

quickly tending to zero for ε→ 0. As for the j-th derivative, we have

exp(hε)
(j)(x) =

θj

εj
exp(− 1√

ε
) exp(

θ

ε
x).

For |x| ≤ ε, this is bounded in modulus by 1
εj

exp(1− 1√
ε
), tending to zero for ε→

0 for all j ∈ N. We may extend each function exp(hε) : [−ε, ε]→ C to a function

fε ∈ S(R,C) such that for any fixed j ∈ N0, also f
(j)
ε → 0 as ε→ 0 uniformly on

any compact set. By the assumption of pointwise continuity of A, we know that
A(fε)(0)→ A(0)(0) converges.

Since the operators A and R are localized, we know that for all |x| ≤ ε, using

h
(j)
ε = 0 for all j ≥ 2,

A(fε)(x) = Bk(x, hε(x), h′ε(x), 0, 0, . . . ) ,

A(fε)(0) = Bk(0,−
1√
ε
,
θ

ε
, 0, . . . )
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= exp(−a0(0)√
ε

+
|a1(0)|
ε
− b0(0)√

ε
+
θb1(0)

ε
)→ A(0)(0) .

Since exp(1
ε ) grows much faster than exp( 1√

ε
) as ε→ 0, A(fε)(0) converges only if

a1(0) = 0 and hence also b1(0) = 0 since |a1(0)| ≥ |b1(0)|. Then also Re a0(0) ≥
0, Re b0(0) ≥ 0 is required and A(0)(0) = 0 follows, i.e., A(0) = 0.

If a1(0) = · · · = ak−1(0) = 0 and b1(0) = · · · = bk−1(0) = 0 were shown and
|ak(0)| > 0, |ak(0)| ≥ |bk(0)| would hold, choose θ ∈ C with θkak(0) = |ak(0)|
and define hε(x) := − 1√

ε
+ θ

k!(
x
ε )k. Then hε ∈ Pk and we have for any |x| ≤ ε and

j ∈ N0 that

| exp(hε)
(j)(x)| ≤ pj

(
1

ε

)
exp

(
− 1√

ε

)
for a suitable real polynomial pj of degree j. Therefore pj(

1
ε ) exp(− 1√

ε
) → 0 as

ε→ 0 for all j ∈ N0. Again for suitable extensions fε of exp(hε)|[−ε,ε] to S(R,C),

for any fixed j ∈ N0, f
(j)
ε → 0 as ε→ 0 uniformly on compacta. We find similarly

as before

A(fε)(0) = Bk

(
0,− 1√

ε
, 0, . . . , 0,

θk

εk

)
= exp

(
−a0(0)√

ε
+
|ak(0)|
εk

− b0(0)√
ε

+
θkbk(0)

εk

)
→ A(0)(0) = 0,

which yields ak(0) = bk(0) = 0.
Formula (3.7) therefore implies that for all complex-valued polynomials h ∈

P := ∪k∈NPk and all extensions f of exp(h)|Ī to S(R,C),

A(f)(x) = exp
(
a0(x)h(x) + b0(x)h(x)

)
, x ∈ I,

i.e.,

A(f)(x) = f(x)a0(x) · f(x)
b0(x)

, x ∈ I , (3.8)

with Re a0(0) ≥ 0, Re b0(0) ≥ 0. Given any fixed function f ∈ S(R,C) which
is never zero on I, we may define ln f as a continuous function on I which then
actually is a C∞-function on I. Approximating this by polynomials on Ī, we
conclude that (3.8) holds for all f ∈ S(R,C) which are nowhere zero on I, and
then by further approximation also for those f ∈ S(R,C) which have zeros in I.

(v) Thus we know that Af = fa0 · f̄ b0 . To assure that Af ∈ C∞ for all f ∈
S(R,C), we need a0 = m ∈ N0 and b0 = n ∈ N0 to be constant functions which
are non-negative integers since otherwise by differentiating sufficiently many times
we would get factors f−δ or f̄−δ of derivative terms for some δ > 0, which would
yield singularities as f → 0. Therefore, by (3.8),

Af = fm · f̄n, m, n ∈ N0, m+ n ≥ 1.

The condition m+ n ≥ 1 is needed since for n = m = 0, Af = 1 /∈ S(R,C). The
formula for Fk in (3.5) now yields for T,

Tf(x) =

 k∑
j=0

cj(x)h(j)(x) +
k∑
j=0

c̃j(x)h̄(j)(x)

 · fm(x) · f̄n(x), (3.9)
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if f |I = exp(h), h ∈ Pk, where cj , c̃j are suitable functions on I which clearly are

continuous since T is pointwise continuous. Locally, h = ln f and h(j) = (f
′

f )(j−1)

has a singularity of order f−j as f → 0 when f ′ 6= 0 and j ∈ N. Therefore in
the first sum k ≤ m and in the second sum k ≤ n are needed. Moreover, since
there are no continuous branches of ln f satisfying ln(fg) = ln f + ln g for all
complex-valued functions f, g ∈ S(R,C), which would be needed for (3.9) to be
a solution of (1.5) if c0 6= 0 or c̃0 6= 0, we also need that c0 = c̃0 = 0. We finally
get in the case of the solution (3.5)

Tf =

 m∑
j=1

cj

(
f ′

f

)(j−1)

+
n∑
j=1

c̃j

(
f̄ ′

f̄

)(j−1)
·fm·f̄n, Af = fm·f̄n, f ∈ S(R,C),

with continuous functions cj , c̃j which actually have to be in C∞ to guarantee
that the image of T consists of C∞-functions.

(vi) The analysis of the solution (3.6) of equation (3.4) is similar. First of
all, we need ε1 = ε2 = 1 since in the cases ε1 = 1, ε2 = 0 or ε1 = 0, ε2 = 1, T and
A would be homothetic, which is excluded by the condition of non-degeneration
of (T,A). Also γ(x) 6= 0 is required. Therefore,

1

γ
Fk(x, α) +Bk(x, α) = exp(〈c1(x), α〉+ 〈c2(x), ᾱ〉).

Then for all x ∈ I and f ∈ S(R,C) extending exp(h) from Ī to R, where h ∈ Pk,
we have that

1

γ
T (f)(x) +A(f)(x) = exp

(
〈c1(x), (h(j)(x))kj=0〉+ 〈c2(x), (h̄(j)(x))kj=0〉

)
.

The same arguments as before then show that 1
γT (f) + A(f) = fm · f̄n with

m,n ∈ N0, m + n ≥ 1. Similarly, − 1
γT (f) + A(f) = fM · f̄N , for some M,N ∈

N0, M +N ≥ 1 so that

Tf =
γ

2
(fmf̄n − fM f̄N ) , Af =

1

2
(fmf̄n + fM f̄N ).

This ends the proof of Theorem 1.5.

The Proof of Theorem 1.6 follows by similar arguments, just using Corollary
2.4 instead of Proposition 2.2.

Proof of Theorem 1.10. Suppose that T and A satisfy the conditions of The-
orem 1.5 and that A is surjective. Consider the first solution (1.6) of (1.5), when
Af = fmf̄n, m,n ∈ N0 with m+n ≥ 1 for any f ∈ S(R,C). Take any real-valued
function g ∈ S(R,C) which has a zero of order 1 at 0, g(x) = x · k(x), k(0) 6=
0. Since A is surjective, there is f0 ∈ S(R,C) such that Af0 = fm0 f̄0

n
= g.

Obviously, this requires that f0 also have a zero of order 1 at 0 so that f0(x) =
x · h(x) with h(x) 6= 0. But then for x ∈ R, xm+n · h(x)m · h(x)n = x · k(x) so
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that m+ n = 1, which means that either m = 1, n = 0 or m = 0, n = 1, yielding
Af = f and Tf = a1f

′ or Af = f̄ and Tf = b1f̄
′ for all f ∈ S(R,C).

In the case of the second solution (1.7) of (1.5), we use the additional as-
sumption that T vanishes locally on constants. Thus, for any c ∈ C and f ∈
S(R,C) with f |I = c and Tf(x) = 0, where I is open and x ∈ I, we get that
0 = 2

a1(x)Tf(x) = cmc̄n − cM c̄N , which implies that m = M and n = N so that

Af = fmf̄n. This again is surjective only if either m = 1, n = 0 or m = 0, n = 1.
But then T = 0 and the pair (T,A) is not non-degenerate so that only the first
solution is relevant.

Proof of Theorem 1.11. In the case of the first solution (1.6) of (1.5), we have
c = Ag(x) = g(x)mg(x)

n
= cm+n so that either (m,n) = (1, 0) or (m,n) = (0, 1)

which means that either Af = f , Tf = a1f
′ or that Af = f̄ , Tf = b1f̄

′. In the
case of the second solution (1.7) of (1.5), we have c = 1

2(cm+n + cM+N ) which
in view of c > 0, c 6= 1 implies that m + n = 1 and M + N = 1. For (m,n) =
(M,N) = (1, 0) or = (0, 1) we have T = 0 which is a degenerate case. Only for
(m,n) = (1, 0) and (M,N) = (0, 1) we get a non-degenerate solution, namely
Af = Re f and Tf = a1 Im f .

Theorems 1.12 and 1.15 follow immediately from Theorem 1.10 and the re-
marks following formulas (1.2) and (1.3).

Proof of Theorems 1.13 and 1.16. In the case of Theorem 1.13, T := RF−1

andA := SF−1 satisfy (1.5) and the assumptions of Theorem 1.5. By assumption,
there is 0 6= G ∈ S(R,C) with SG = FG. Let g := FG ∈ S(R,C), g 6= 0. Since
by Theorem 1.5, in the case of solution (1.6) Ag = gmḡn and in case of solution
(1.7) Ag = 1

2(gmḡn + gM ḡN ). Now Ag = g means that this holds for a smooth
continuum of values of g(x), which in the case of a real-valued g = FG implies
that m+n = 1 and in the case of (1.7) also M +N = 1. This yields the solutions
stated in Theorem 1.13. If g is properly complex-valued, Ag = g implies that
m = 1, n = 0 and M = 1, N = 0, so Af = f for all f ∈ S(R,C), SF = FF for
all F ∈ S(R,C). Similarly, in that situation Ag = ḡ gives m = 0, n = 1 and M =
0, N = 1, hence SF = FF . Thirdly, Ag = Re(g) yields the solution (1.7) with
m = 1, n = 0 and M = 0, N = 1, i.e., SF = Re(FF ) for all F , which proves
the Remark after Theorem 1.13. The proof of Theorem 1.16 is similar, with R =
DS.

Proof of Theorem 1.18. The proof is very similar to that of Theorem 1.5,
just using Proposition 2.3 instead of 2.2. We just give a sketch of the changes
which are required. If I is again a bounded open interval and f an extension of
exp(h) from Ī to a function on R in S(R,C), where h ∈ Pk is a complex-valued
polynomial of degree ≤ k, then

Tf(x) = Fk(x, h(x), . . . , h(k)(x)), Af(x) = Bk(x, h(x), . . . , h(k)(x)),

where Fk and Bk satisfy the functional equation

Fk(x, α+ β) = Fk(x, α) · Fk(x, β)−Bk(x, α) ·Bk(x, β). (3.10)
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By Proposition 2.3, equation (3.10) has three types of solutions. The first one
is not applicable in our situation since it leads to T and A being proportional,
which is excluded by the condition of non-degeneration of (T,A). We are left
with the two possibilities:

F (x, α) =
(
1 + 〈c1(x), α〉+ 〈c2(x), ᾱ〉

)
exp(〈d1(x), α〉+ 〈d2(x), ᾱ〉),

B(x, α) = ±
(
〈c1(x), α〉+ 〈c2(x), ᾱ〉

)
exp(〈d1(x), α〉+ 〈d2(x), ᾱ〉), (3.11)

or for k /∈ {1,−1}

F (x, α) =
1

2

(
(1− k) exp(〈c1(x), α〉

+ 〈c2(x), ᾱ〉) + (1 + k) exp(〈d1(x), α〉+ 〈d2(x), ᾱ〉)
)
,

B(x, α) =
1

2

√
k2 − 1

(
exp(〈c1(x), α〉

+ 〈c2(x), ᾱ〉)− exp(〈d1(x), α〉+ 〈d2(x), ᾱ〉)
)
. (3.12)

For extensions f of exp(h), h ∈ Pk, from C∞(I,C) to S(R,C) in the case of
(3.11),

Tf(x)∓Af(x) = exp
(
〈d1(x), (h(j)(x))kj=0〉+ 〈d2(x), (h(j)(x))kj=0〉

)
,

and in the second case,

Tf(x) +

√
k − 1

k + 1
Af(x) = exp

(
〈d1(x), (h(j)(x))kj=0〉+ 〈d2(x), (h(j)(x))kj=0〉

)
.

Since Tf,Af ∈ C∞, these sums or differences also have C∞-regularity. The
arguments in the proof of Theorem 1.5 then show that the functions d1, d2 : I →
Ck+1 are continuous and that d1 = (a0, 0, . . . , 0) and d2 = (b0, 0, . . . , 0) only allow
for (possibly) non-zero coordinate functions a0 and/or b0 with Re a0 ≥ 0 and
Re b0 ≥ 0. To guarantee that the image is in C∞, we again need that a0 = m
and b0 = n are constant functions with non-negative integer values. Then in the

first case Tf ∓ Af = fmf̄n and in the second case Tf +
√

k−1
k+1Af = fmf̄n. In

the second case we also have

Tf(x) +

√
k + 1

k − 1
Af(x) = exp

(
〈c1(x), (h(j)(x))kj=0〉+ 〈c2(x), (h(j)(x))kj=0〉

)
,

implying Tf+
√

k+1
k−1Af = fM f̄N , M,N ∈ N0 with M+N ≥ 1, yielding together

with Tf +
√

k−1
k+1Af = fmf̄n the formulas for Tf and Af given in Theorem 1.18

in the second case. In the first case, we use the same arguments as in part (v)
of the proof of Theorem 1.5 to finish the proof.
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Узагальнене правило Лейбниця та пов’язанi з ним
рiвняння у просторi швидко спадних функцiй

Hermann König and Vitali Milman

Ми розв’язуємо узагальнене правило Лейбниця

T (f · g) = Tf ·Ag +Af · Tg

для операторiв T та A у просторi швидко спадних функцiй, як у випад-
ку комплекснозначних функцiй, так i у випадку дiйснозначних функцiй.
Ми встановлюємо, що T може бути лiнiйною комбiнацiєю логарифмiч-
них похiдних f та її комплексного спряження f до порядкiв m i n вiд-
повiдно з гладкими коефiцiєнтами та Af = fm · fn. В iнших випадках
Tf та Af можуть мiстити окремо дiйсну та уявну частину f . У деякому
сенсi з цього рiвняння випливає сукупна характерiзацiя похiдних та пе-
ретворення Фур’є f . Ми обговорюємо умови, за яких T є похiдною, а A
є тотожнiстю. Ми також розглядаємо диференцiйовнi розв’язки функ-
цiональних рiвнянь, якi нагадують рiвняння для синуса та косинуса.

Key words: швидко спаднi функцiї, узагальнене правило Лейбниця,
перетворення Фур’є.
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