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The paper is a continuation of work [15] in which the general sett-
ing for analogs of the Szegö theorem for ergodic operators was given and
several interesting cases were considered. Here we extend the results of [15]
to a wider class of test functions and symbols which determine the Szegö-
type asymptotic formula for the one-dimensional Schrödinger operator with
ergodic random potential. We show that in this case the subleading term of
the formula is given by a Central Limit Theorem in the spectral context,
hence the term is asymptotically proportional to L1/2, where L is the length
of the interval to which the Schrödinger operator is initially restricted. This
has to be compared with the classical Szegö formula, where the subleading
term is bounded in L, L→∞. We prove an analog of standard Central Li-
mit Theorem (the convergence of the probability of the corresponding event
to the Gaussian Law) as well as an analog of the almost sure Central Limit
Theorem (the convergence with probability 1 of the logarithmic means of the
indicator of the corresponding event to the Gaussian Law). We illustrate our
general results by establishing the asymptotic formula for the entanglement
entropy of free disordered fermions for non-zero temperature.
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1. Introduction

The Szegö theorem (also known as the strong Szegö theorem) is an interesting
asymptotic formula for the restrictions of functions of the Toeplitz operators as
the size of the domain of restriction tends to infinity. The theorem has a number
of applications and extensions pertinent to analysis, mathematical physics, oper-
ator theory, probability theory and statistics and (recently) quantum information
theory, see [5, 6, 8, 26, 27]. In this paper we consider an extension of the theorem
viewed as an asymptotic trace formula for a certain class of selfadjoint operators.
We will start with an outline of the continuous version of the Szegö theorem
presenting it in the form which explains our motivation.
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Let k : R→ R be an even and sufficiently smooth function from L1(R),

Λ = [−M,M ], |Λ| = 2M, (1.1)

K and KΛ := K|Λ be a selfadjoint convolution operator in L2(R) and its restric-
tion to L2(Λ) given by

(Ku)(x) =

∫ ∞
−∞

k(x− y)u(y)dy, x ∈ R, (1.2)

(KΛu)(x) =

∫ M

−M
k(x− y)u(y)dy, x ∈ Λ.

Set A = 1L2(R) + K and AΛ = 1L2(Λ) + KΛ and consider ϕ : R → R such that
ϕ(AΛ) is of trace class in L2(Λ). Then we have according to Szegö and subsequent
works

TrΛ ϕ(AΛ) = |Λ|
∫ ∞
−∞

ϕ(a(t))dt+ T + o(1), |Λ| → ∞, (1.3)

where TrΛ is the trace in L2(Λ), a(t) = 1 + k̂(t), t ∈ R, k̂ is the Fourier transform
of k and the subleading term T is a Λ-independent functional of ϕ and a. We
will call ϕ and a the test function and the symbol respectively.

Let P = i ddx be the selfadjoint operator in L2(R). Then the r.h.s. of is
TrΛ ϕ(aΛ(P )), i.e., is determined by the triple (ϕ, a, P ), and since a is even and
smooth enough, we have a(x) = b(x2), hence the triple (ϕ, b, P 2). It was proposed
in [15] to consider instead of P 2 the Schrödinger operator H = P 2 + V , where
the potential V : R → R is an ergodic process. It seems that the replacement is
of interest in itself since the ergodicity of the potential guarantees the sufficient
regular large Λ behavior of TrΛ ϕ(aΛ(H)), hence a well defined asymptotic formu-
las. Besides, the quantity TrΛ ϕ(aΛ(H)) for certain ϕ, a and V arises in quantum
information theory and quantum statistical mechanics, see [10], Remark 2.4 and
references therein.

Similar setting is also possible in the discrete case. In fact, it is this case of
which was initially studied by Szegö for Toeplitz operators, while the continuous
case outlined above was considered later by Akhiezer, Kac and Widom, see,
e.g., [6] for a review. We will also consider in this paper the discrete case.

In [15] simple but rather non-trivial discrete cases were studied. There a(x) =
x and ϕ(x) is (x− x0)−1 or log(x− x0), where x0 is outside the spectrum of the
discrete Schrödinger operator with ergodic potential (random and almost peri-
odic). In particular, it was shown that if the potential in the discrete Schrödinger
equation is a collection of independent identically distributed (i.i.d.) random
variables, then the leading term on the right of the analog of (1.3) is again of the
order |Λ| and is not random, but the subleading term is of the order |Λ|1/2 and
is a Gaussian random variable. In fact, a certain Central Limit Theorem for an
appropriately normalized quantity TrΛ ϕ(aΛ(H)) was established. In this paper
we extend this result for those ϕ and a which, roughly speaking, have the Lipshitz
derivative (see condition (2.17) below). Note that similar conditions were used
Szegö in his pioneering works, although the conditions were seriously weakened
in subsequent works, see [6, 8, 26,27].
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2. Problem and results

Let H be the one-dimensional Schrödinger operator in l2(Z)

H = H0 + V, (2.1)

where
(H0u)j = −uj+1 − uj−1, j ∈ Z, (2.2)

and
(V u)j = Vjuj , |Vj | ≤ V <∞, j ∈ Z, (2.3)

is a potential which we assume to be a sequence of independent and identically
distributed (i.i.d.) random variables bounded for the sake of technical simplicity.

The spectrum σ(H) is a non-random closed set and

σ(H) ⊂ K := [−2− V , 2 + V ], (2.4)

see [19].
an Let also a : σ(H) → R (symbol) and ϕ : a(σ(H)) → R (test function) be

bounded functions. Introduce the integer valued interval (cf. (1.1))

Λ = [−M,M ] ⊂ Z, |Λ| = 2M + 1, (2.5)

and the operator χΛ : l2(Z) → l2(Λ) of restriction, i.e., if x = {xj}j∈Z ∈ l2(Z),
then χΛx = xΛ := {xj}j∈Λ ∈ l2(Λ). For any operator A = {Ajk}j,k∈Z in l2(Z) we
denote (cf. (1.2))

AΛ := χΛAχΛ = {Ajk}j,k∈Λ (2.6)

its restriction to l2(Λ). Note that the spectra of A and AΛ are related as follows

σ(AΛ) ⊂ σ(H). (2.7)

Our goal is to study the asymptotic behavior of

TrΛϕ(aΛ(H)) :=
∑
j∈Λ

(ϕ(aΛ(H)))jj , |Λ| → ∞, (2.8)

where
TrΛ · · · = TrχΛ · · ·χΛ. (2.9)

As was mentioned above, this problem dates back to works of Szegö [12] and has
been extensively studied afterwards for the Toeplitz and convolution operators,
see, e.g., [6, 8, 26] and references therein. Recall that any sequence

{Aj}j∈Z, Aj = A−j ,
∑
j∈Z,
|Aj | <∞ (2.10)

determines a selfadjoint (discrete convolution) operator in l2(Z), cf. (1.2)

A = {Aj−k}j,k∈Z, (Au)j =
∑
k∈Z

Aj−kuk. (2.11)
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Let

a(p) =
∑
j∈Z

Aje
2πipj , p ∈ T = [0, 1),

be the Fourier transform of {Aj}j∈Z. Then, according to Szegö (see, e.g., [12]), if
ϕ and a are sufficiently regular, then we have the two-term asymptotic formula
(cf 1.3)

TrΛ ϕ(AΛ) = |Λ|
∫
T
ϕ(a(t))dt+ T + o(1), |Λ| → ∞, (2.12)

where the subleading term T is again a Λ-independent functional of ϕ and a.
Note that the traditional setting for the Szegö theorem uses the Toeplitz op-
erators defined by the semi-infinite matrix {Aj−k}j,k∈Z+ and acting in l2(Z+).
The restrictions of Toeplitz operators are the upper left blocks {Aj−k}Lj,k=0 of
{Aj−k}∞j,k=0. On the other hand, we will use in this paper the convolution op-

erators (2.11) defined by the double infinite matrix {Aj−k}j,k∈Z, acting in l2(Z)
and having their central L × L, L = 2M + 1 blocks as restrictions. The latter
setting seems more appropriate for the goal of this paper dealing with ergodic
operators where the setting seems more natural. The same setting is widely used
in multidimensional analogs of Szegö theorem [6].

Note now that the convolution operators in l2(Zd) and L2(Rd), d ≥ 1 admit
a generalization, known as ergodic (or metrically transitive) operators, see [19].
We recall their definition in the (discrete) case of l2(Z).

Let (Ω,F , P ) be a probability space and T is an ergodic automorphism of the
space. A measurable map A = {Ajk}j,k∈Z from Ω to bounded operators in l2(Z)
is called ergodic operator if we have with probability 1 for every t ∈ Z

Aj+t,k+t(ω) = Ajk(T
tω), j, k ∈ Z. (2.13)

Choosing Ω = {0}, we obtain from (2.13) that A is a convolution operator (2.11).
Thus, ergodic operators comprise a generalization of convolution operators, while
the latter can be viewed as non-random ergodic operators.

It is easy to see that the discrete Schrödinger operator with ergodic potential
(2.1)–(2.3) is an ergodic operator. Moreover, if σ(H) is the spectrum of H, then
σ(H) is non-random, for any bounded and measurable f : σ(H)→ R the operator
f(H) is also ergodic and if {fjk}j,k∈Z is its matrix, then {fjj}j∈Z is an ergodic
sequence [19]. Besides, there exists a non-negative and non-random measure NH

on σ(H), N(R) = 1 such that

E{fjj(H)} = E{f00(H)} =

∫
σ(H)

f(λ)NH(dλ). (2.14)

The measure NH is an important spectral characteristic of selfadjoint ergodic
operators known as the Integrated Density of States [19]. In particular, we have
for any bounded f : σ(H)→ R with probability 1

lim
|Λ|→∞Λ

|Λ|−1 TrΛ f(HΛ) =

∫
σ(H)

f(λ)NH(dλ). (2.15)
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This plays the role of the Law of Large Numbers for Tr f(HΛ).
Accordingly, it is shown in [15] (see also formula (2.18) below) that the leading

term in an analog of (2.12) for an ergodic Schrödinger operator is always

|Λ|
∫
σ(H)

ϕ(a(λ))NH(dλ). (2.16)

On the other hand, the order of magnitude and the form of the subleading
term depend on the “amount of randomness” of an ergodic potential and on
the smoothness of ϕ and, especially, a, see, e.g., [6, 8, 11, 15, 22, 27] for recent
problems and results.

In this paper we consider the discrete Schrödinger operator with random i.i.d.
potential, known also as the Anderson model. Thus, our quantity of interest (2.8)
as well as the terms of its asymptotic form are random variables in general (except
the leading term (2.16), which is not random). Correspondingly, we will prove
below two types of asymptotic trace formulas, both having the subleading terms
of the order |Λ|1/2 (cf. (2.12)). The formulas of the first type are valid in the
sense of distributions, i.e., are analogs of the classical Central Limit Theorem
(see Theorems 2.1 and 2.3), while the formulas of the second type are valid with
probability 1, i.e., are analogs of the so called almost sure Central Limit Theorem
(see Theorem 2.5).

Theorem 2.1. Let H be the ergodic Schrödinger operator (2.1)–(2.3) with a
bounded i.i.d. potential and let σ(H) be its spectrum. Consider bounded functions
a : σ(H) → R and ϕ : a(σ(H)) → R and assume that a, ϕ and γ := ϕ ◦ a :
σ(H)→ R admit extensions ã, ϕ̃ and γ̃ on the whole axis such that their Fourier
transforms â, ϕ̂ and γ̂ satisfy the conditions∫ ∞

−∞

(
1 + |t|θ

)
|f̂(t)| dt <∞, θ > 1, f = a, ϕ, γ. (2.17)

Denote

ΣΛ = |Λ|−1/2

(
TrΛ ϕ(aΛ(H))− |Λ|

∫
σ(H)

γ(λ)NH(dλ)

)
(2.18)

and

σ2
Λ = E

{
Σ2

Λ

}
. (2.19)

Then:

(i) there exists the limit

lim
Λ→∞

σ2
Λ = σ2, (2.20)

where

σ2 =
∑
l∈Z

Cl (2.21)

with

Cj = E{◦γ00(H)
◦
γjj(H)}, ◦

γjj(H) = γjj(H)−E{γjj(H)}, (2.22)
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and also

σ2 = E
{

(E {A0|F∞0 } −E {A0|F∞1 })
2
}

= E {Var {E{A0|F∞0 } |F∞1 }} , (2.23)

where

A0 = V0

∫ 1

0
γ′00(H|V0→uV0)du (2.24)

and Fba, −∞ ≤ a ≤ b ≤ ∞ is the σ-algebra generated by {Vj}bj=a;

(ii) if γ is non constant monotone function on the spectrum of H, then

σ2 > 0 (2.25)

and we have

P
{
σ−1Σ[−M,M ] ∈ ∆

}
= Φ(∆) + o(1), M →∞, (2.26)

where ∆ ⊂ R is an interval and Φ is the standard Gaussian law (of zero mean
and unit variance).

Remark 2.2. The theorem is an extension of Theorem 2.1 of [15], where the
cases a(λ) = λ and ϕ(λ) = (λ − x0)−1 or ϕ(λ) = log(λ − x0), x0 /∈ σ(H) were
considered. In these cases a, ϕ and γ = ϕ◦a are real analytic on σ(H) (see (2.4)),
hence admit real analytic and fast decaying at infinity extensions to the whole
line. Besides, γ is monotone on σ(H), hence Theorem 2.1 applies.

It is worth also mentioning that conditions (2.17) are not optimal in general.
Consider, for instance, the case where ϕ(λ) = χ(−∞,E](λ), E ∈ σ(H), a(λ) = λ
with χ(−∞,E] being the indicator of (−∞, E] ⊂ R. Here γ := ϕ◦a = χ(−∞,E] and

TrΛ ϕ(aΛ(H)) = TrΛ χ(−∞,E](H) := NΛ(E) (2.27)

is the number of eigenvalues of HΛ not exceeding E. It is known that if the
potential in H is ergodic, then with probability 1

lim
|Λ|
|Λ|−1NΛ(E) = N(E),

where N(E) is defined in (2.14). This plays the role of the Law of Large Numbers
for NΛ(E) [19]. The Central Limit Theorem for NΛ(E) is also known [25]. Its
proof is based on a careful analysis of a Markov chain arising in the frameworks
of the so called phase formalism, an efficient tool of spectral analysis of the one
dimensional Schrödinger operator [19]. It can be shown that the theorem can
also be proved following the scheme of proof of Theorem 2.1, despite that γ is
discontinuous in this case. However, one has to use more sophisticated facts on
the Schrödinger operator with i.i.d. random potential, in particular the bound

sup
ε>0

E
{∣∣∣(H − E − iε)−1

jk

∣∣∣s} ≤ Ce−c|j−k| (2.28)
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valid for some s ∈ (0, 1), C <∞ and c > 0 [2] if the probability law of potential
possesses certain regularity, e.g., a bounded density. The bound is one of the
basic results of the spectral theory of the random Schrödinger operator, implying
the pure point character of the spectrum of H and a number of its other impor-
tant properties. It is worth noting that the monotonicity of γ on the spectrum
remains true in this case. Thus, the monotonicity of γ seems a pertinent sufficient
condition for the positivity of the limiting variance.

Here, however, is a version of Theorem 2.1, applicable to the case where γ is
a certain convex function on σ(H).

Theorem 2.3. Consider the functions rα : [0, 1]→ [0, 1] and nF : R→ [0, 1]
given by

rα(λ) = (1− α)−1 log2 (λα + (1− λ)α) , λ ∈ [0, 1], α > 0, (2.29)

and

nF (λ) =
(
eβ(λ−EF ) + 1

)−1
, λ ∈ R, β > 0, EF ∈ σ(H). (2.30)

Assume that the random i.i.d. potential in (2.1)–(2.3) has zero mean E{V0} = 0
and that the support of its probability law contains zero. Then the conclusions of
Theorem 2.1 remain valid for ϕ = rα and a = nF , i.e., the random variable ΣΛ

of (2.18) converges in distribution to the Gaussian random variable of zero mean
and a certain variance σ2 > 0.

Remark 2.4. The quantity TrΛ rα((nF (H))Λ) is known in quantum statistical
mechanics and quantum information theory as the Rényi entanglement entropy
of free fermions in the thermal state of the inverse temperature β−1 > 0 and the
Fermi energy EF and having H as the one body Hamiltonian, see, e.g., [1,3,10].
An important particular case where α = 1, hence h1(λ) = −λ log2 λ − (1 −
λ) log2(1−λ), λ ∈ [0, 1], is known as the von Neumann entanglement entropy. One
is interested in the large-|Λ| asympotic form of the entanglement entropy. In the
translation invariant case, i.e., for the case of constant potential in (2.1)–(2.3) one
can use the Szegö theorem (see (2.12) and (2.38)) to find a two-term asymptotic
formula for the entanglement entropy. In this case the term proportional to |Λ|
in (2.12) and (2.38), i.e., to the one dimensional analog of the volume of the
spatial domain occupied by the system, is known as the volume law, while the
second term in (2.12), which is independent of |Λ|, i.e., proportional to the one
dimensional analog {−M,M} of the surface area of the domain, is known as the
area law [10]. In view of the above theorem we conclude that in the disorder
case (random potential in H) the leading term of the entanglement entropy is
non-random and is again the volume law while the subleading term is random,
proportional to |Λ|1/2 and describes random fluctuations of the volume law. The
O(1) in |Λ| term can also be found for some ϕ and a [15]. It is random and is
now the “subsubleading” term of the asymptotic formula. Of particular interest
is the zero-temperature case β =∞, where nF = χ−∞,E and this term is leading.
We refer the reader to recent works [1,11,18,21,22,24,27] for related results and
references.
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The above results can be viewed as stochastic analogs of the Szegö theorem
(see more on the analogy in [15] and below). It is essentially a Central Limit
Theorem in its traditional form, i.e., an assertion on the convergence of distri-
bution of an appropriately normalized sums of random variables to the Gaussian
random variable. In recent decades there has been a considerable interest to the
almost sure versions of classical (distributional) limit theorems. The prototype of
such theorems dates back to P. Levy and P. Erdős and is as follows, see, e.g., [4,9]
for reviews.

Let {Xl}∞l=1 be a sequence of i.i.d. random variables of zero mean and unit
variance. Denote Sm =

∑m
l=1, Zm = m−1/2Sm. Then we have with probability 1

1

logM

M∑
m=1

1

m
1∆(Zm) = Φ(∆) + o(1), M →∞, (2.31)

In other words, the random (“empirical”) distribution of Zm converges with prob-
ability 1 to the (non-random) Gaussian distribution.

On the other hand, the classical Central Limit Theorem implies

1

logM

M∑
m=1

1

m
E{1∆(Zm)} = Φ(∆) + o(1), M →∞, (2.32)

i.e., just the convergence of expectations of the random distributions on the l.h.s.
of (2.31). Thus, replacing the expectation by the logarithmic average, a sequence
of random variables satisfying the CLT can be observed along all its typical
realizations.

The situation with the almost sure CLT (2.31) for independent random vari-
ables is rather well understood, see, e.g., [4, 9] and references therein, while
the case of dependent random variable is more involved and diverse, see, e.g.,
[7, 13, 16, 23]. As in the case of classical CLT (2.32), the existing results con-
cern mostly the weakly dependent stationary sequences, e.g., strongly mixing
sequences. This and the approximation techniques developed [14, Section 18.3],
allow us to prove an almost sure version of Theorem 2.1.

Theorem 2.5. We have with probability 1 under the conditions of Theo-
rem 2.1

1

logM

M∑
m=1

1

m
1∆

(
σ−1Σ[−m,m]

)
= Φ(∆) + o(1), M →∞, (2.33)

where Σ[−m,m] is given by (2.18) with Λ = [−m,m], ∆ ⊂ R is an interval and Φ
is the standard Gaussian law.

Remark 2.6. Given a sequence {ξm}m≥1 of random variables and a random
variable ξ, write

ξM
D
= M1/2ξ + o

(
M1/2

)
, M →∞, (2.34)
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if we have
P{ξM/M1/2 ∈ ∆} = G(∆) + o(1), M →∞, (2.35)

where G is the probability law of ξ, and write

ξM
L
= M1/2ξ + o

(
M1/2

)
, M →∞, (2.36)

if we have with probability 1 (assuming that all {ξm, m ≥ 1} ) are defined on
the same probability space)

1

logM

M∑
m=1

I∆

(
ξm/m

1/2
)

= G(∆) + o(1), M →∞. (2.37)

Then, we can formulate Theorems 2.1 and 2.5 in the form similar to that of the
Szegö theorem (cf. (2.12)), namely as

TrΛ ϕ(aΛ(H))
D
= |Λ|

∫
σ(H)

γ(λ)NH(dλ)

+ |Λ|1/2σ−1ξ + o
(
|Λ|1/2

)
, |Λ| = (2M + 1)→∞, (2.38)

for Theorem 2.1 and with probability 1 as

TrΛ ϕ(aΛ(H))
L
= |Λ|

∫
σ(H)

γ(λ)NH(dλ)

+ |Λ|1/2Φ
(
σ−1∆

)
+ o

(
|Λ|1/2

)
, |Λ| = (2M + 1)→∞, (2.39)

for Theorem 2.5, i.e., as two-term “Szegö-like” asymptotic formulas valid in the
sense of the D- and the L-convergence, the latter valid with probability 1. An
apparent difference between the Szegö formula (2.12) and its stochastic coun-
terparts (2.38) and (2.39) is that the subleading term of the Szegö theorem is
independent of |Λ| while the subleading term of its stochastic counterparts grows
as |Λ|1/2 although with stochastic oscillations (see below).

We will comment now on the errors bounds in the above asymptotic formulas.
We will mostly use known results on the rates of convergence for the both CLT
(2.35) and (2.37) with ξm being the sum of i.i.d. random variable (see (2.32) and
(2.31)), despite that in our (spectral) context the terms of the sum in (2.8) are
always dependent even if the “input” potential is a collection of i.i.d. random
variables. It seems plausible that the error bounds for the i.i.d. case provide
best possible but not too overestimated versions of the error bounds for the case
of sufficiently weakly dependent terms. Known results on the sums of weakly
dependent random variables support this approach, see, e.g., [4, 7, 9, 13,16,23].

Recall first that for the classical Szegö (non-random) case (2.12), i.e., for the
Toeplitz and convolution operators, the subleading term is Λ-independent and
the error is just o(1) in general. However, if ϕ and a are infinitely differentiable,
one can construct the whole asymptotic series in the powers of |Λ|−1 [29].
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On the other hand, it follows from the standard CLT for bounded i.i.d. ran-
dom variables (see (2.35)) and the Berry–Esseen bound that we have in (2.35)
the error term O(M−1/2) instead of o(1), and, hopefully, O(|Λ−1/2|) in the D-
convergence stochastic analog (2.26) of the Szegö theorem.

As for the “point-wise” case treated in Theorem 2.5, we note first that this
is a “frequency”-type result, analogous to the Law of Large Numbers or, more
generally, to the ergodic theorem. This is clear from the following observation
on the well known Gaussian random processes [4]. Namely, let W : [0,∞) → R
be the Wiener process and U : R→ R be the Uhlenbeck–Ornstein process. They
are related as U(s) = e−s/2W (es), s ∈ R, thus

1

logM

∫ M

1
1∆

(
W (t)/t1/2

)
dt =

1

logM

∫ logM

0
1∆(U(s)) ds.

Since U is ergodic and its one-point (invariant) distribution is the standard Gaus-
sian, the r.h.s. converges with probability 1 to Φ(∆) as M → ∞ according to
the ergodic theorem. We obtained the almost sure Central Limit Theorem for
the Wiener process, the continuous time analog of the sequence of i.i.d. Gaussian
random variables, see (2.31).

In view of this observation (explaining, in particular, the appearance of the
logarithmic average in the almost sure Central Limit Theorem) and the Law of
Iterated Logarithm we have to have with probability 1 in (2.35) the oscillat-
ing error term O((log log logM/ logM)1/2) instead of o(1), hence the error term
O((log log log |Λ|/ log Λ)1/2) in the L-convergence stochastic analog (2.33) of the
Szegö theorem. More precisely, it follows from the invariance principle that with
probability 1 we have to have the additional terms σ̃W (logM) +O(logM1/2−ε),
M →∞ in (2.37) and, correspondingly, the terms

σ̃W (log |Λ|) +O
(
| log |Λ|1/2−ε

)
, log |Λ| → ∞,

with σ̃ > 0 and some ε > 0 in (2.33).
We prove in this paper asymptotic formulas for traces of certain random

operators related to the restrictions to the expanding intervals Λ = [−M,M ] ⊂
Z, M → ∞ of the one dimensional discrete Schrödinger operator H assuming
that its potential is a collection of random i.i.d. variables. We do not use,
however, a remarkable property of H, the pure point character of its spectrum.
This spectral type holds for any bounded i.i.d. potential [2] and can be contrasted
with the absolute continuous type of the spectrum of H with constant or periodic
potential. Moreover, if the common probability law of the on-site potential is
Lipschitzian, we have the bound (2.28). It can be shown that the use of the
bound makes the conditions of our results somewhat weaker (it suffices to have
θ = 1 in (2.17), certain bounds somewhat stronger (O(1) instead o(|Λ|1/2) in (3.1),
Ce−cp instead C/pθ in (4.16), etc.) and proofs simpler (Lemmas 4.2 and (4.4)
are not necessary). On the other hand, the bound (2.28) holds only under the
condition of some regularity of the common probability law of the i.i.d. potential
(e.g., the Lipschitz continuity of its probability law). This is why we prefer to
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use rather standard spectral tools, somewhat less optimal conditions (2.17) on
a and ϕ and somewhat more involved proofs but to have corresponding results
valid for a larger class of random i.i.d. potentials of Theorems 2.1 and 2.5.

It is worth noting, however, that the bound (2.28) is an important necessary
tool in the analysis of the large-Λ behavior of TrΛϕ(aΛ(H)) with not too smooth
a and ϕ, e.g., a = nF |β=∞ = χ[EF ,∞) with nF of (2.30) and ϕ = rα, α ≤ 1 with
rα of (2.29) corresponding to the entanglement entropy of the ground state of
free disordered fermions at zero temperature, see [11,22] and references therein.

3. Proof of results

Proof of Theorem 2.1. It follows from (2.17) and Lemma 4.5 that we have
uniformly in potential

TrΛ ϕ(aΛ(H)) = TrΛ ϕ(a(H)) + o
(
|Λ|1/2

)
, |Λ| → ∞. (3.1)

Hence, we obtain in view of (2.14) and the definition (2.9) of TrΛ

TrΛ ϕ(aΛ(H) = |Λ|
∫ ∞
−∞

γ(λ)N(dλ) +
◦
γΛ + o

(
|Λ|1/2

)
,

where

◦
γΛ := γΛ −E{γΛ} =

∑
j∈Λ

(γjj(H)−E{γjj(H)}),

E{γΛ(H)}) = |Λ|
∫ ∞
−∞

γ(λ)NH(dλ). (3.2)

The above formulas reduce the proof of the theorem to that of the Central Limit
Theorem for |Λ|−1/2γΛ, i.e., for the sequence {γjj(H)}j∈Z. The sequence is er-
godic according to (2.13) for j = k.

We use in this case a general Central Limit Theorem for stationary weakly
dependent sequences given by Proposition 4.1 with Xj = Vj , j ∈ Z and Y0 =
γ00(H). To verify the approximation condition (4.1) of the proposition it is
convenient to write V = (V<, V>), where V< = {Vj}|j|≤p and V> = {Vj}|j|>p are
independent collections of independent random variables whose probability laws
we denote P< and P> so that the probability law P of V is symbolically P =
P< · P>. Denoting γ00(H) = g(V<, V>), we have

E{|γ00(H)−E{γ00(H)|Fp−p}|}

=

∫ ∣∣∣g(V<, V>)−
∫
g(V<, V

′
>)P (dV ′>)

∣∣∣P (dV>)P (dV<)

≤
∫ (∫ ∣∣∣g(V<, V>)− g(V<, V

′
>)
∣∣∣P (dV ′>)

)
P (dV>)P (dV<).

Applying to the difference in the third line of the above formula Lemma 4.6 with
f = γ00, we find that the expression in the first line of the formula is bounded by
C/pθ. Thus, the series (4.1) is convergent in our case.
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This and Proposition (4.1) imply the validity of (2.20)–(2.22). The formula
for the limiting variance (2.23)–(2.24) is proved in Lemma 4.7.

Let us prove now the positivity of the limiting variance σ2 (2.25). According
to (2.23)–(2.24), the hypothesis σ2 = 0 implies that for an almost every event
from F∞1 the expression

V0

∫ 1

0
ds E{γ′00(H|V0→uV0)|F∞1 } du (3.3)

is independent of V0 ∈ suppF . Assume without loss of generality that zero is in
support of F . Then the above expression is zero. On the other hand, if our i.i.d.
random potential is non-trivial, then there exists a non-zero point V0 6= 0 in the
support. If, in addition, γ′ does not change the sign on the spectrum of H and
is not zero, then (3.3) cannot be zero, and we have a contradiction.

Now it suffices to use a general argument (see, e.g., Theorem 18.6.1 of [14] or
Proposition 3.2.9 of [20]) to finish the proof of Theorem 2.1.

Proof of Theorem 2.3. We will first use Theorem 2.1. Indeed, according to
(2.4) and (2.30), a = nF is real analytic on the finite interval K of (2.4) and
admits a real analytic and fast decaying at infinity extension to the whole axis.
Besides, a(K) = [a−, a+], 0 < a− < a+ < 1 is also finite, hence, ϕ = rα of (2.29)
is real analytic on a(K) and admits a real analytic and fast decaying at infinity
extension to the whole axis. Thus, assertion (i) of Theorem 2.1 is valid in this
case.

We cannot, however, use assertion (ii) of Theorem 2.1, since γ = rα ◦ nF is
not monotone but convex on K. Here is another argument proving the positivity
(2.25) of the limiting variance (2.23)–(2.24).

Assuming that the variance is zero and using the fact that zero is in support
of the probability law F of the potential, we obtain from (2.23)–(2.24), as in the
proof of Theorem 2.1, that for almost every event from F∞1 we have

V0

∫ 1

0
E
{
γ′00(H0(u))|F∞1

}
du = 0, V0 ∈ suppF,

where H0(u) := H|V0→uV0 . Integrating here by parts with respect to u, we get

V0E{γ′00(H0(0))|F∞1 }

+ V0

∫ 1

0
E

{
∂

∂u
γ′00(H0(u))|F∞1

}
(1− u) du = 0, V0 ∈ suppF,

and since E{V0} = 0 and γ′00(H0(0)) is independent of V0, the expectation with
respect to V0 yields for almost every event from F∞1∫ 1

0
(1− u)du

∫
V0E

{
∂

∂u
γ′00(H(u))|F∞1

}
F (dV0) = 0. (3.4)

We will now use the formula

∂

∂u
γ′00(H(u) = V0

∫∫
γ′(λ1)− γ′(λ2)

λ1 − λ2
µ

H(u)
(dλ1)µ

H(u)
(dλ2),
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where µ
H(u)

(dλ) = (EH(u)(dλ))00, and EH(u) is the resolution of identity of H(u).
Thus, µ0 ≥ 0 and µ0(R) = 1. The formula can be obtained by iterating twice the
Duhamel formula (4.3).

Plugging the r.h.s. of the formula in (3.4) and recalling that γ is strictly
convex on the spectrum, hence (γ(λ1)− γ(λ2))(λ1 − λ)−1 < 0, we conclude that
the r.h.s. of (3.4) is not zero. This implies the positivity of the variance.

Proof of Theorem 2.5. As in the proof of Theorem 2.1 we will start with
passing from TrΛ ϕ(aΛ(H)) to TrΛ ϕ(a(H)) = TrΛ γ(H) with the error o(|Λ|1/2)
by using (2.17) and Lemma 4.5 (see (3.1)), thereby reducing the proof of the
theorem to the proof of the almost sure CLT for |Λ|−1/2γΛ (see 3.2) i.e., for the
same ergodic sequence {γjj(H)}j∈Z as in Theorem 2.1.

Our further proof is essentially based on that in [23] of the almost sure CLT
for ergodic strongly mixing sequences (see (3.12)) and on the procedure of ap-
proximation of general ergodic sequences by strongly mixing sequences (see (4.1))
given in [14], Section 18.3. In particular, according to Proposition 4.8 (see The-
orem 1 in [23]), it suffices to prove the bound

Var

{
1

logM

M∑
m=1

1

m
f (Zm)

}
= O(1/(logM)ε), M →∞, (3.5)

for any bounded Lipschitzian f (see (4.39)),

Zm = µ−1/2
m Σ[−m,m], µm = 2m+ 1, (3.6)

and some ε > 0.

To this end we denote

◦
γjj(H) := γjj(H)−E{γjj(H)} = Yj , j ∈ Z, (3.7)

and introduce for every positive integer s the ergodic sequences {ξ(s)
j }j∈Z and

{η(s)
j }j∈Z with

ξ
(s)
j = E

{
Yj |F j+sj−s

}
, η

(s)
j = Yj − ξ(s)

j . (3.8)

Denote also

FM =
1

logM

M∑
m=1

1

m
f (Zm)

and

F
(s)
M =

1

logM

M∑
m=1

1

m
f
(
Z(s)
m

)
, Z(s)

m = Zm|Yj→ξ(s)j

. (3.9)

We have then from the elementary inequality Var{ξ} ≤ 2Var{η}+ 2Var{ξ− η}
and (4.39):

Var{FM} ≤ 2Var
{
F

(s)
M

}
+ 2Var

{
FM − F (s)

M

}
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≤ 2Var
{
F

(s)
M

}
+

2C2
1

logM

M∑
m=1

1

m
Var

{
R(s)
m

}
, (3.10)

where C1 is defined in (4.39) and

R(s)
m := Zm − Z(s)

m = µ−1/2
m

∑
|j|≤m

η
(s)
j . (3.11)

Recall now that an ergodic sequence is said to be strongly mixing if

αk := sup
A∈Fn

−∞
B∈F∞k+n

|P (AB)− P (A)P (B)| → 0, (3.12)

as k →∞ through positive values and αk is called the mixing coefficient.

Since the random potential is a sequence of i.i.d. random variables, the se-

quence {ξ(s)
j }j∈Z of (3.8) is strongly mixing and its mixing coefficient is (see

(3.12))

α
(s)
k =

{
≤ 1, k ≤ 2s,

0, k > 2s.
(3.13)

We are going to bound the first term on the right of (3.10) by using Lemma
1 of [23] on the almost sure CLT for strongly mixing sequences and we will
deal with the second term on the right of (3.10) by using the sufficiently good

approximation of {Yj}j∈Z of (3.7) by {ξ(s)
j }j∈Z of (3.8) as s→∞ following from

Lemma 4.6. Note that similar argument has been already used in the proof of
Theorem 2.1, see (4.1) in Proposition 4.1 and Theorem 18.6.3 in [14]. This is
obtained in Lemmas 4.9 and 4.10 below for M →∞ and s→∞. They allow us
to continue (3.10) as

Var{FM} = O
(

log s/ logM) +O(1/sθ−1
)
,

where θ > 1 (see (2.17)). Choosing here s = (logM)1−ε, ε ∈ (0, 1), we obtain
(3.5), hence, the theorem.

4. Auxiliary results

We start with a general Central Limit Theorem for ergodic sequences of ran-
dom variables, see [14], Theorems 18.6.1–18.6.3, more precisely. with its version
involving i.i.d. random variables.

Proposition 4.1. Let {Xj}j∈Z be i.i.d. random variables, Fba be the σ-algebra
generated by {Xj}bj=a, Y0 be a function measurable with respect to F = F∞−∞.
Denote T the standard shift automorphism (Xj+1(ω) = Xj(Tω)) and set Yj(ω) =
Y0(T jω). Assume that

(i) Y0 is bounded;
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(ii)
∞∑
p=1

E
{∣∣Y0 −E

{
Y0 | Fp−p

}∣∣} <∞. (4.1)

Then

(a) σ2 :=
∞∑
k=0

Cov{Y0, Yk} <∞;

(b) if σ2 > 0, then

|Λ|−1/2
∑
|j|≤M

Yj (4.2)

converges in distribution to the Gaussian random variable of zero mean and
variance σ2.

The proof of the proposition is based on the proof of the CLT for strongly
mixing ergodic sequences (see (3.12)) and on the approximation of more general
ergodic sequences by strongly mixing sequences provided by condition (4.1).

We will also need several facts on the one-dimensional discrete Schrödinger
operator with bounded potential.

We recall first the Duhamel formula for the difference of two one-parametric
groups U1(t) = eitA1 and U1(t) = eitA1 corresponding to two bounded operators
A1 and A2 :

U2(t)− U1(t) = i

∫ |t|
0

U2(t− s)(A2 −A1)U1(s) ds, t ∈ R. (4.3)

Lemma 4.2. Let H = H0 + V be the one-dimensional discrete Schrödinger
operator with real-valued bounded potential, U(t) = eitH be the corresponding
unitary group and {Ujk(t)}j,k∈Z be the matrix of U(t). Then we have for any t ∈
R and δ > 0

|Ujk(t)| ≤ e−δ|j−k|+s(δ)|t|, s(δ) = 2 sinh δ. (4.4)

Proof. Introduce the diagonal operator D = {Djk}j,k∈Z, with Djk = eρjδjk,
ρ ∈ R and consider

DU(t)D−1 = eitDHD
−1

= eitH+itQ,

where

Q = DHD−1 −H = DH0D
−1 −H0.

Since H0 is the operator of second finite difference with the symbol −2 cos p, p
∈ T, the symbol of Q is

−2 cos(p+ iρ) + 2 cos p = −2 cos p(cosh ρ− 1) + 2i sin p sinh ρ.

Hence Q = Q1 + iQ2, where Q1 and Q2 are selfadjoint operators and

‖Q2‖ ≤ 2 sinh |ρ|.



Szegö-Type Theorems for One-Dimensional Schrödinger Operator . . . 377

Now, denoting A2 = H + Q1 + iQ2 and A1 = H + Q1, iterating the Duhamel
formula (4.3) and using ‖eitA1‖ = 1, we obtain

‖eitH1−tQ2‖ ≤ e|t|‖Q2‖ = e|t|2 sinh |ρ|.

This and the relation (
DU(t)D−1

)
jk

= eρjUjk(t)e
−ρk

imply (4.4).

Remark 4.3. Bound (4.4) is an analog of the Combes–Thomas bound for the
resolvent {((H − z)−1)jk}j,k∈Z of H and the above proof uses an essentially same
argument as that in the proof of the bound, see, e.g., [2].

Lemma 4.4. Let H = H0 + V be the one-dimensional discrete Schrödinger
operator with real-valued potential and a : R → R admits the Fourier transform
â and ∫ ∞

−∞

(
1 + |t|θ

)
|â(t)| dt <∞, θ > 0. (4.5)

If A = a(H) = {Fjk}j,k∈Z, then we have

|Ajk| ≤ C/|j − k|θ, C <∞, j 6= k. (4.6)

Proof. It follows from the spectral theorem

A = a(H) =

∫ ∞
−∞

â(t)U(t) dt, (4.7)

hence, we have for any T > 0

Ajk =

∫ ∞
−∞

â(t)Ujk(t) dt

=

∫
|t|≤T

â(t)U(t)dt+

∫
|t|≥T

â(t)U(t) dt = I1 + I2.

We have further

|I1| ≤ e−δ|j−k|+s(δ)T
∫ ∞
−∞
|â(t)| dt

by using Lemma 4.2 and

|I2| ≤
1

T θ

∫ ∞
−∞

(
1 + |t|θ

)
|â(t)| dt

by condition (4.5) of the lemma.

Now, choosing T = δ
s |j − k| − θ log |j − k|, we obtain (4.6).
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Lemma 4.5. Let A = {Ajk}j,k∈Z be bounded selfadjoint operator in l2(Z)
such that

|Ajk| ≤ C/|j − k|θ, C <∞, θ > 1, (4.8)

and AΛ = χΛAχΛ = {Ajk}j,k∈Λ be its restriction to Λ. Then for any f : R→ C
admitting the Fourier transform f̂ such that∫ ∞

−∞
(1 + |t|)|f̂(t)| dt <∞ (4.9)

we have uniformly in V satisfying (2.3)∣∣TrχΛf(AΛ)χΛ − TrχΛf(A)χΛ

∣∣ = o(L1/2), L→∞. (4.10)

Proof. Consider AΛ ⊕AΛ, Λ = Z \ Λ and

A−AΛ ⊕AΛ =

(
0 χΛAχΛ

χΛAχΛ 0

)
.

Thus, writing an analog of (4.7) for A instead of H and using the Duhamel
formula (4.3), we obtain

f(A)− f(AΛ ⊕AZ\Λ)

=

∫ ∞
−∞

f̂(t)dt

∫ |t|
0

U(t− s)(χΛAχΛ + χΛAχΛ)UΛ(s)⊕ UΛ(s) ds, (4.11)

and

Tr χΛf(A)χΛ − Tr χΛf(AΛ)χΛ

=

∫ ∞
−∞

f̂(t)dt

∫ t

0
TrχΛUΛ(s)χΛU(t− s)χΛAχΛ ds. (4.12)

Denoting

B = χΛUΛ(s)χΛU(t− s) : l2(Z)→ l2(Λ) (4.13)

we can write the integrand J in (4.12) as

J =
∑
j∈Λ
k∈Λ

AkjBjk, (4.14)

hence

|J | ≤
∑
j∈Λ

∑
k∈Λ

|Akj |2
∑
k∈Λ

|Bjk|2
1/2

≤
∑
j∈Λ

∑
k∈Λ

|Akj |2
∑
k∈Z
|Bjk|2

1/2

.

We have in view of (4.13)
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∑
k∈Z
|Bjk|2 = (BB∗)jj

= (UΛ(s)χΛU(t− s)U∗(t− s)χΛU
∗(s))jj = (χΛUΛ(s)U∗Λ(s))jj = 1

since U(t− s) is unitary in l2(Z) and UΛ(s) is unitary in l2(Λ). Thus, we have in
view of (4.8)

|J | ≤
∑
j∈Λ

∑
k∈Λ

|Akj |2
1/2

≤ C
∑
j∈Λ

∑
k∈Λ

|k − j|−2θ|

1/2

= o(L1/2)

and (4.11) follows. Note that for θ > 3/2 the r.h.s. of the above bound is
O(1).

Similar result was obtained in [17] by another method.

Lemma 4.6. Let H1 and H2 be the one dimensional discrete Schrödinger
operators with bounded potentials V1 and V2 coinciding within the integer valued
interval [−p, p]. Consider f : R→ C whose Fourier transform f̂ is such that∫ ∞

−∞

(
1 + |t|θ

)
|f̂(t)| dt <∞, θ > 1. (4.15)

Then we have

|f00(H1)− f00(H2)| ≤ C/pθ, (4.16)

where C is independent of V1 and V2.

Proof. We denote

V1 = {V ′}|j|>s ∪ {Vj}|j|≤s, V2 = {V ′′j }|j|>s ∪ {Vj}|j|≤s,

U (1)(t) = eitH1 and U (2)(t) = eitH2 and use (4.7) and the spectral theorem to
write for any T > 0

|f00(H2)− f00(H1)| ≤
∫
|t|≤T

|f̂(t)‖U (2)
00 (t)− U (1)

00 (t)|dt

+

∫
|t|≥T

|f̂(t)‖U (2)
00 (t)− U (1)

00 (t)| =: I1 + I2. (4.17)

We have then by the Duhamel formula (4.3) and (2.3)

I1 ≤
∫
|t|≤T

|f̂(t)|dt
∫ |t|

0

∑
|j|>s

|U (2)
0j (t− t′)(V ′′j − V ′j )U

(1)
j0 (t′)|dt′

≤ 2V

∫
|t|≤T

|f̂(t)|dt
∫ |t|

0

∑
|j|>s

|U (2)
0j (t− t′)‖U (1)

j0 (t′)|dt′.
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We will use now Lemma 4.2 implying

I1 ≤ 2V e−2δp+s(δ)T

∫ ∞
−∞

(1 + |t|)f̂(t)| dt. (4.18)

To estimate I2 of (4.17), we write

I2 ≤ 2

∫
|t|≥T

|f̂(t)|dt ≤ 2

T θ

∫ ∞
−∞

(
1 + |t|θ

)
|f̂(t)| dt. (4.19)

Choosing now in (4.18) and (4.19) T = 2δp/s(δ)− θ log p, we obtain (4.16).

Lemma 4.7. Consider a bounded γ : R→ R admitting the Fourier transform
γ̂ such that ∫ ∞

−∞
(1 + |t|)|γ̂(t)| dt <∞, (4.20)

and set γ(H) = {γjk(H)}j,k∈Z, where H is the one-dimensional Schrödinger
operator (2.1)–(2.3) with random i.i.d. potential. Let γΛ be defined in (3.2) and

σ2
Λ = |Λ|−1Var{γΛ}. (4.21)

Then there exists the limit

σ2 := lim
Λ→∞

σ2
Λ = E

{(
M(0)

)
2
}
, (4.22)

where

M(0) = E {A0(V0, {Vj}j 6=0) | F∞0 }

−
∫ ∞
−∞

E{A0(V ′0 , {Vj}j 6=0) | F∞0 }F (dV ′0) (4.23)

and

A0(V0, {Vj}j 6=0) = V0

∫ 1

0
(γ′(H)|V0→uV0)00 du. (4.24)

Proof. It is convenient to consider

τΛ := TrΛγ(HΛ) (4.25)

instead of γΛ of (3.2). It follows from Lemma 4.5 that

σ2
Λ = |Λ|−1Var{τΛ}+ o(1), |Λ| → ∞. (4.26)

To deal with Var{τΛ} we will use a simple version of the martingale tech-
niques (see, e.g., [20], Proposition 18.1.1), according to which if {Xj}Mj=−M
are the i.i.d. random variables, Φ : R2M+1 → R is bounded and Φ =
Φ(X−M , X−M+1, . . . , XM ), then

Var{Φ} :=
{
|Φ−E{Φ}|2

}
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=
∑
|m|≤M

E
{
|Φ(m) − Φ(m+1)|2

}
, (4.27)

where

Φ(m) = E
{

Φ|FMm
}
, Φ(−M) = Φ, Φ(M+1) = E{Φ}. (4.28)

We choose in (4.27), (4.28) Xj = Vj , |j| ≤M and Φ = τΛ (see (4.25)) and we
obtain

|Λ|−1Var{τΛ} = |Λ|−1
M∑

m=−M
E
{∣∣M(m)

Λ

∣∣2}, (4.29)

M(m)
Λ = τ

(m)
Λ − τ (m+1)

Λ ,

where (see (4.28))

τ
(m)
Λ = E

{
τΛ|FMm

}
, τ

(−M)
Λ = τΛ, τ

(M+1)
Λ = E{τΛ}. (4.30)

By using the formula

τΛ − τΛ|Vm=0 =

∫ 1

0
du

∂

∂u
TrΛ γ(HΛ|Vm→uVm)

= Vm

∫ 1

0
du(γ′(HΛ|Vm→uVm))mm =: AΛ(Vm, {V }j 6=m), (4.31)

we can write

M(m)
Λ = E

{
AΛ(Vm, {V }j 6=m)|FMm

}
−
∫ ∞
−∞

AΛ(V ′m, {V }j 6=m)|FMm }F (dV ′m). (4.32)

Let us show now that

lim
Λ→∞

|Λ|−1
∑
m∈Λ

E
{
|M(m)

Λ |2
}

= E
{
|M(0)|2

}
, (4.33)

where for any m ∈ Z

M(m) = E{A(Vm, {V }j 6=m)|F∞m }

−
∫ ∞
−∞

E{A(V ′m, {V }j 6=m)|F∞m }F (dV ′m). (4.34)

Note first that since AΛ(Vm, {V }j 6=m) does not depend on {Vj}|j|>M , we can

replace FMm by F∞m Next, it is easy to see that M(m)
Λ is bounded in Λ and V ,

thus the proof of (4.33) reduces to the proof of validity with probability 1 of the
relation

lim
Λ→∞,

dist(m,{M,−M})→∞

M(m)
Λ =M(m). (4.35)



382 L. Pastur and M. Shcherbina

Note that M(m) of (4.34) differs from its prelimit form M(m)
Λ of (4.32) by the

replacement of HΛ by H in the r.h.s. of (4.31).

Indeed, if (4.35) is valid, then we can replace M(m)
Λ by M(m) in the l.h.s. of

(4.33) and then take into account that V is a collection of i.i.d. random variables,
hence E{|M(m)|2} = E{|M(0)|2} for any m ∈ Z.

To prove (4.35) we will use a version of formula (4.11) with f = γ′ implying
for m ∈ Λ

(γ′(H)− γ′(HΛ))mm = i

∫ ∞
−∞

tγ̂(t)dt

∫ |t|
0

(UΛ(t− s)χΛHχΛU(s))mm ds. (4.36)

Taking into account that the non-zero entries of χΛHχΛ are −δj,Mδk,M+1 and
−δj,−Mδk,−(M+1), |j| ≤M, |k| > M , we obtain

|(UΛ(t− s)χΛHχΛU(s))mm| ≤ |UM+1,m(s)|+ |U−(M+1),m(s)|. (4.37)

We write now the integral over t in (4.36) as the sum of the integral I1 over |t| ≤
T and that I2 over |t| ≥ T for some T , cf. the proofs of Lemmas 4.4 and 4.6. We
have by Lemma 4.2 and (4.37)

|I1| ≤2e−δd+sT

∫
|t|≤T

|t|2|γ̂(t)| dt

≤2e−δd+sTT

∫
|t|≤T

|t‖γ̂(t)| dt, d = dist(m, {M,−M})

and by (4.37) and the unitarity of U(s)

|I2| ≤ 2

∫
|t|≥T

|t‖γ̂(t)| dt.

Now, choosing sT = δd/2 and taking into account (4.20), we obtain (4.35), hence,
the assertion of the lemma.

Proposition 4.8. Let {Xj}j∈Z be a sequence of random variables on the
same probability space with E{Xl} = 0, E{X2

l } <∞. Put (cf. (2.18), (2.19))

Sm =
∑
|j|≤m

Xl, Zm = µ−1/2
m Sm, µm = 2m+ 1, σ2

m = E
{
Z2
m

}
, (4.38)

and assume:

(i) Zm
D→ ξσ, m → ∞, where ξ is the Gaussian random variable of zero mean

and variance σ2 > 0;

(ii) for every bounded Lipschitz f :

|f(x)| ≤ C, |f(x)− f(y)| ≤ C1|x− y| (4.39)

there exists ε > 0, such that

Var

{
1

logM

M∑
m=1

1

m
f (Zm)

}
= O(1/(logM)ε), M →∞.
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Then {Xj}j∈Z satisfies the almost sure Central Limit Theorem, i.e., we have with
probability 1

lim
M→∞

1

logM

M∑
m=1

1

m
1∆(Zm) = Φ

(
σ−1∆

)
,

where ∆ is an interval and Φ is the standard Gaussian law.

The proposition is a version of Theorem 1 of [23], where the case of semi-
infinite stationary sequences {Xl}∞l=1 was considered. For another criterion of
the validity of the almost sure CLT see [13].

Lemma 4.9. Let
{
ξ

(s)
j

}
j∈Z

be defined in (3.8), Z
(s)
m be defined in (3.6) and

(3.9) and

(σ(s)
m )2 = E

{
(Z(s)

m )2
}
.

Then we have:

(i) for every m = 1, 2, . . .

|σ(s)
m − σm| ≤ C/s(θ−1),

where σm > 0 is given in (4.38), C is independent of m and s and θ > 1 is
given in (2.17);

(ii) for any δ > 0 there exists m0 > 0 and s0 > 0 such that

|σ(s)
m − σ| ≤ σδ

if m > m0 and s > s0 and σ > 0 is given in Theorem 2.1;

(iii) for every m = 1, 2, . . .

E
{(
R(s)
m

)
2
}
≤ C/sθ−1,

where C is independent of m and s and θ > 1 is given in (2.17).

Proof. The lemma is a version of the obvious fact lims→∞ ξ
(s)
m = Ym valid

with probability 1 for every m and following from (3.8).

(i) Since {Yj}j∈Z and {ξ(s)
j }j∈Z are ergodic sequences, we can write

σ2
m − (σ(s)

m )2 =
∑
|l|≤2s

(1− |l|/µm)
(
Cl − C

(s)
l

)
+

∑
2s<|l|≤2m

(1− |l|/µm)Cl, (4.40)

where Cl = E{Y0Yl} and C
(s)
l = E{ξ(s)

0 ξ
(s)
l } are the correlation functions of the

corresponding sequences (see (2.22)) and we took into account (3.13) implying
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that C
(s)
l = 0, |l| > 2s (and that the second term on the right is present only if

m > 2s). Since Yj = ξ
(s)
l + η

(s)
l , we have

Cl − C
(s)
l = E

{
ξ

(s)
0 η

(s)
l

}
+ E

{
ξ

(s)
j η

(s)
0

}
+ E

{
η

(s)
0 η

(s)
l

}
.

Since γ is bounded, it follows from (3.7), (3.8) that∣∣∣E{ξ(s)
0 η

(s)
l

}∣∣∣ ≤ Cψs, ∣∣∣E{ξ(s)
j η

(s)
0

}∣∣∣ ≤ Cψs, ∣∣∣E{η(s)
0 η

(s)
l

}∣∣∣ ≤ Cψs, (4.41)

where
ψs = E

{∣∣η(s)
0

∣∣} (4.42)

and by (3.8) and Lemma 4.6

ψs = O
(
1/sθ

)
, θ > 1. (4.43)

This and (4.40) imply uniformly in m∣∣∣σ2
m − (σ(s)

m )2
∣∣∣ ≤ ∑

|l|≤2s

∣∣∣Cl − C(s)
l

∣∣∣+
∑

2s<|l|≤2m

|Cl|

= O
(
sψs
)

+O
(
1/s(θ−1)

)
= O

(
1/s(θ−1)

)
, s→∞. (4.44)

(ii) σm of (4.38) is strictly positive for every m and according to Theorem 2.1
and Lemma 4.7

lim
m→∞

σ2
m = σ2 > 0.

This and (4.44) imply the assertion.

(iii) The ergodicity of {η(s)
j }j∈Z implies (cf. (4.40))

Var
{
R(s)
m

}
=
∑
|l|≤2m

(1− |l|/µm)E
{
η

(s)
0 η

(s)
l

}
=
∑
|l|≤6s

+
∑

6s<|l|≤2m

. (4.45)

It follows then from the proof of Proposition 4.1 (see [14], Theorem 18.6.3) and
(3.13 ) that

E
{
η

(s)
0 η

(s)
l

}
≤ Cψ[l/3], |l| > 6s. (4.46)

We will use now (4.41)–(4.43) in the first sum on the r.h.s. of (4.45) and (4.43)
and (4.46) in the second sum (cf. (4.44)) to get the bound

Var
{
R(s)
m

}
≤ C

sψs +
∑
|l|>6s

ψ[l/3]

 ≤ C/sθ−1,

proving the assertion.

Lemma 4.10. Let
{
ξ

(s)
j

}
j∈Z

and F
(s)
M be defined in (3.8) and (3.9) respec-

tively. Then we have:

Var
{
F (s)
m

}
= O(log s/ logM), s→∞, M →∞.
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Proof. Repeating almost literally the proof of Lemma 1 in [23] (where the case
of semi-infinite strongly mixing sequences {Xl}∞l=1 was considered), we obtain

Var
{
F (s)
m

}
≤ C ′

logM2
+

C ′′

logM

M∑
m=1

α
(s)
m

m

+
C ′′′

(logM)2

M−1∑
m=1

(
2m−1/2σ

(s)
2m + E

{
m−1

∣∣∣ξ(s)
0

∣∣∣}) M∑
l=m+1

1

l3/2
, (4.47)

where C ′, C ′′, C ′′′ depend only on C in (4.39) and α
(s)
m is the mixing coefficient

(3.12) of
{
ξ

(s)
l

}
l∈Z

given by (3.13). In view of (3.13) the second term is bounded

by

C ′′

logM

2s∑
m=1

1

m
= O

(
log s

logM

)
(4.48)

as M →∞ and s→∞.
Consider now the third term of the r.h.s. of (4.47). It follows from (3.8) and

our assumption on the boundedness of Y0 that the contribution of E{|ξ(s)
0 |} is

O(1/(logM)2). Next, given an M -independent M0 of Lemma 4.9 (ii), we write

M−1∑
m=1

2σ
(s)
2m

M∑
l=m+1

1

l3/2
=

M0∑
m=1

M∑
l=m+1

+

M−1∑
m=M0+1

M∑
l=m+1

.

The first double sum on the right is bounded in M in view of Lemma 4.9 (i) and
the fact that σm, m = 1, 2, . . . ,M0 are bounded (e.g., σm ≤ E1/2{Y 2

0 }). The
second double sum is in view of Lemma 4.9 (ii)

O

 M−1∑
m=M0+1

1

m1/2

M∑
l=m+1

1

l3/2

 = O (logM) .

Hence, the third term on the right of (4.47) is O (1/ logM). This and (4.48)
imply that the r.h.s. of (4.47) is O(log s/(logM)).
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Теореми типу Сеге для одновимiрного оператора
Шредiнгера з випадковим потенцiалом

(гладкий випадок)
L. Pastur and M. Shcherbina

Ця стаття є продовженням роботи [15], де було поставлено задачу
про аналог теореми Сеге для ергодичних операторiв загального вигляду
та розглянуто декiлька цiкавих випадкiв. У данiй статтi ми розповсю-
джуємо результати [15] на ширший клас тестових функцiй та символiв,
що задають формули типу Сеге для одновимiрного оператора Шредiн-
гера з випадковим потенцiалом. Ми доводимо, що в цьому випадку член,
що по порядку є наступним пiсля головного у формулi Сеге, вiдповiдає
центральнiй граничнiй теоремi у спектральному контекстi, тобто є про-
порцiйним L1/2, де L є довжиною iнтервалу, на якому ми розглядаємо
оператор Шредiнгера. Цей результат слiд порiвняти з класичною фор-
мулою Сеге, де вiдповiдний член є обмеженим за L, коли L → ∞. Ми
доводимо аналог стандартної центральної граничної теореми (тобто збi-
жнiсть ймовiрностi вiдповiдних подiй до гауссiвського закону), а також
аналог майже напевно центральної граничної теореми (тобто збiжнiсть
з ймовiрнiстю 1 логарифмiчного середнього iндикатора вiдповiдної по-
дiї до гауссiвського закону). Як iлюстрацiю нашого загального методу
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ми надаємо асимптотичну формулу для “заплутаної” ентропiї вiльних
фермiонiв при ненульовiй температурi.

Ключовi слова: випадковi оператори, асимптотичнi формули слiду,
граничнi теореми.
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