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The paper presents an elaboration of some results on Lin’s conditions.
A new proof is given to the fact that if densities of independent random
variables ξ1 and ξ2 satisfy Lin’s condition, then the same is true for their
product. Also, it is shown that without the condition of independence, the
statement is no longer valid.
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1. Introduction

Lin’s condition plays a significant role in establishing “checkable” conditions
for the moment (in)determinacy of probability distributions. This condition ex-
presses certain regularity in the behaviour of probability densities. Given a prob-
ability density f , the tool used here is a function Lf which was brought into
consideration by G.D. Lin [3] and called Lin’s function in subsequent researches
starting from [8]. The function is defined as follows.

Definition 1.1. Let f be a probability density continuously differentiable on
(0,∞). The function

Lf (x) := −xf
′(x)

f(x)
(1.1)

is called Lin’s function of f .

Clearly, Lin’s function of f is defined only at the points where f does not
vanish. In this work, we deal only with probability densities of positive random
variables whose Lin’s functions are defined for all x > 0. In particular, it is
assumed that all densities do not vanish for all x > 0, that is, Lin’s function for
them is well-defined and, in addition, only continuously-differentiable densities
are considered. For such densities, the following condition was first considered
by G.D. Lin in [3] with regard to the problem of moments.
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Definition 1.2. Let f ∈ C1(0,∞) be a probability density of a positive
random variable. It is said that f satisfies Lin’s condition on (x0,∞) if Lf (x) is
monotone increasing on (x0,∞) and limx→+∞ Lf (x) = +∞.

As this condition is used widely to study the moment determinacy of abso-
lutely continuous probability distributions (see, [4, 6] and references therein), a
natural question to ask is which operations on random variables preserve Lin’s
condition. In [1], Kopanov and Stoyanov established that if a density f ∈
C1(0,+∞) of a random variable X satisfies Lin’s condition, then the densities of
Xr, r > 0 and lnX also satisfy Lin’s condition. Further, if Lf (x)/x → +∞ as
x→ +∞, then the density of eX also satisfies Lin’s condition. In the same arti-
cle [1], it was stated that if X1 and X2 are independent positive random variables
whose densities satisfy Lin’s condition, then the density of their product also sat-
isfies Lin’s condition. The approach suggested in [1] is based on the application
of the mean value theorem for integrals. In this work, a different approach is
proposed, which may be used in other problems such as estimation of moments.
Furthermore, it is shown that the condition of independence is crucial here. In
general, the statement is not true for the product of dependent random variables
whose densities satisfy Lin’s condition.

2. Statement of the results

The first result of this work was presented in [1], and its proof based on the
application of the mean value theorem was given in [9]. In the present paper, an
alternative proof is provided which uses the technique of [5] and also fills some
gaps in the previously available proof.

Theorem 2.1. If ξ1 and ξ2 are positive independent random variables whose
densities f1 and f2 satisfy Lin’s condition on (0,+∞), then the density g of their
product satisfies Lin’s condition on (0,+∞).

Obviously, the result can be extended by induction on the product of n inde-
pendent random variables.

The next theorem shows that the condition of ξ1 and ξ2 being independent
is crucial for the validity of the statement and, in general, it cannot be left out
whatever the densities of ξ1 and ξ2 are.

Theorem 2.2. Let f1 and f2 be two densities of the positive random variables
satisfying Lin’s condition on (0,+∞). Then there exists a random vector (ξ1, ξ2)
with absolutely continuous distribution such that the coordinates ξ1 and ξ2 have
densities f1 and f2 respectively, the density g of the product ξ1ξ2 is continuously
differentiable on (0,+∞) and the following relations are valid:

lim sup
x→+∞

Lg(x) = +∞, lim inf
x→+∞

Lg(x) = −∞. (2.1)

Obviously, equalities (2.1) imply that g does not satisfy Lin’s condition on
any interval (x0,∞).
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3. Some auxiliary results

To begin with, let us recall that if f(x, y) is a joint probability density of
positive random variables ξ2 and ξ2, then the density g of their product is given
by

g(x) =

∫ +∞

0
f
(
t,
x

t

) dt
t
. (3.1)

See, for example [2, p. 618, formula (18.5-17)]. With the help of (3.1), the next
useful outcome can be derived.

Lemma 3.1 ([9]). Let ξ1 and ξ2 be independent random variables whose
densities f1 and f2 possess Lin’s functions. If g is the (continuous) density of the
product ξ1 · ξ2, then

Lg(x) =
1

g(x)

∫ ∞
0

f1

(x
t

)
f2(t)Lf2(t)

dt

t

=
1

g(x)

∫ ∞
0

f1

(x
t

)
f2(t)Lf1

(x
t

) dt
t
. (3.2)

Lemma 3.2. Let f be a probability density such that Lf (x) is monotone
increasing for all x > 0. Then, for every 0 < a < b, the function

τ(x) :=
f(ax)

f(bx)
(3.3)

is monotone increasing in x.

Proof. Indeed,

τ ′(x) =
f(ax)

xf(bx)
[Lf (bx)− Lf (ax)] > 0 x > 0.

4. Proofs of the theorems

Proof of Theorem 2.1. 1. First, we are going to prove that Lg(x) is monotone
increasing on (0,+∞). Chose 0 < x < y and consider Lg(y) − Lg(x). By virtue
of (3.1) and (3.2), one has

Lg(y)− Lg(x)

=

∫ +∞

0
f1(y/v)f2(v)Lf2(v)

dv

v

/∫ +∞

0
f1(y/v)f2(v)

dv

v

−
∫ +∞

0
f1(x/u)f2(u)Lf2(u)

du

u

/∫ +∞

0
f1(x/u)f2(u)

du

u

=
1

g(x)g(y)

∫ +∞

0

∫ +∞

0
f1(y/v)f2(v)f1(x/u)f2(u) [Lf2(v)− Lf2(u)]

dudv

uv

=
1

g(x)g(y)

[∫∫
A1

+

∫∫
A2

]
,
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where A1 = {(u, v) : u > v} and A2 = {(u, v) : u < v}. Now, interchanging u
and v in

∫∫
A2

, one derives∫∫
A2

= −
∫∫

A1

f1(y/u)f1(x/v)f2(u)f2(v) [Lf2(v)− Lf2(u)]
dudv

uv
.

Therefore,

Lg(y)− Lg(x) =

∫∫
A1

f2(u)f2(v)

uv
[Lf2(v)− Lf2(u)]

× [f1(y/v)f1(x/u)− f1(y/u)f1(x/v)] dudv. (4.1)

Now, consider the expressions in the both brackets. Since u > v in A1 and Lf2 is
strictly increasing, it follows that the first one is negative everywhere in A1. The
second one can be rewritten as follows:

f1(y/v)f1(x/u)− f1(y/u)f1(x/v) = f1(y/v)f1(x/u)

[
1− τ(y)

τ(x)

]
,

where τ(x) is defined by (3.3) with a = 1/u < 1/v = b. Lemma 3.2 implies that
τ(y) > τ(x) and, as a result, f1(y/v)f1(x/u) − f1(y/u)f1(x/v) < 0 in A1. To
summarize, the integrand in (4.1) is positive, whence Lg(y) > Lg(x) whenever
y > x, as stated.

2. At this stage, we are going to prove that Lg(x) → +∞ as x → +∞. By
virtue of Lemma 3.1, formula (3.2), one has

g(x)Lg(x) =

∫ ∞
0

f1

(x
t

)
f2(t)Lf2(t)

dt

t
=

∫ ∞
0

f1

(x
t

)
f2(t)Lf1

(x
t

) dt
t

which, after substitution t 7→
√
xt, leads to

2g(x)Lg(x) =

∫ ∞
0

f1

(√
x

t

)
f2(
√
xt)

[
Lf1

(√
x

t

)
+ Lf2

(√
xt
)] dt

t
.

Now, since both Lf1 and Lf2 are increasing in their arguments, it follows that for
every t > 0,

Lf1

(√
x

t

)
+ Lf2

(√
xt
)
≥ min

{
Lf1

(√
x
)
, Lf2

(√
x
)}

=: L̃
(√
x
)
.

Therefore,

2g(x)Lg(x) ≥ L̃
(√
x
) ∫ ∞

0
f1

(√
x

t

)
f2

(√
xt
) dt
t

= L̃
(√
x
)
g(x),

implying

Lg(x) ≥ 1

2
L̃
(√
x
)
.

The statement now follows.
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Corollary 4.1. If f1 = f2, then

Lg(x) ≥ 1

2
Lf (
√
x).

Proof of Theorem 2.2. Let us denote by C(a, b; r) := {(x, y) ∈ R2 : (x −
a)2 + (y − b)2 = r2}, D(a, b; r) := {(x, y) ∈ R2 : (x − a)2 + (y − b)2 ≤ r2} the
circumference and the disc with the center (a, b) and radius r, respectively. For
any 0 < a < v, consider the square

K = {(x, y) : v − a ≤ x, y ≤ v + a} ⊂ R2.

Fix 0 < r < a/4 and consider a function ρ(x, y) ∈ C∞(R2) such that:

(i) ρ(x, y) = 1 when (x, y) ∈ D(0, 0; r/2);

(ii) ρ(x, y) = 0 when (x, y) /∈ D(0, 0; r);

(iii) 0 ≤ ρ(x, y) ≤ 1 for all (x, y) ∈ R2.

Such a function can be constructed, for a example, in the following way. Starting
with q(t) ∈ C∞[0,∞) satisfying the conditions q(t) = 1 for t ∈ [0, r2/4], q(t) = 0
for t > r2, and q(t) being monotone decreasing on (r2/4, r2), we set

ρ(x, y) := q(x2 + y2) (4.2)

which is a desired function. Now, using the function ρ, put

ϕ(x, y) = β sin(νxy)ρ(x− v − a/2, y − v − a/2), (4.3)

where β is a fixed number such that

0 < β < min{f1(x)f2(y) : (x, y) ∈ K}

and ν > 0 is a parameter whose value will be determined later. Obviously,
ϕ(x, y) ∈ C∞

(
R2
)
, ϕ(x, y) ≥ 0,

ϕ(x, y) =

{
β sin(νxy), for (x, y) ∈ D(v + a/2, v + a/2; r/2),

0, for (x, y) /∈ D(v + a/2, v + a/2; r).

Now, define

f(x, y) := f1(x)f2(y)− ϕ(x, y) + ϕ(x, y + a)− ϕ(x+ a, y + a) + ϕ(x+ a, y) .

Obviously, f(x, y) ≥ 0 for all (x, y) ∈ R2 and f(x, y) = 0 outside of the first
quadrant. What is more, f(x, y) is a joint probability density of some positive
random variables, say, ξ1 and ξ2, whose marginal distributions have given densi-
ties f1 and f2 and, as such, the densities of ξ1 and ξ2 satisfy Lin’s condition on
(0,+∞). What about the density g of their product ξ1ξ2?

To derive the conclusion of this Theorem, notice that for each

z ∈
(
(v + a/2)2 − r2/10, (v + a/2)2 + r2/10

)
,
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hyperbola Γz := {(x, y) ∈ R+×R+ : xy = z} intersects both of the circumferences
S(v+ a/2, v+ a/2; r) and S(v+ a/2, v+ a/2; r/2) at two distinct points. Denote
the abscissas of these points by x1 < x2 < x3 < x4. By formula (3.1), the density

g(z) =

∫ ∞
0

f
(
x,
z

x

) dx
x
−
∫ x2

x1

ϕ
(
x,
z

x

) dx
x

−
∫ x3

x2

ϕ
(
x,
z

x

) dx
x
−
∫ x4

x3

ϕ
(
x,
z

x

) dx
x

=: p(z)− I1(z)− I2(z)− I3(z) =: p(z)− I(z).

Here, p(z) is the (continuous) density of the product of independent random
variables with densities f1 and f2. By (4.3), one has

I2(z) =

∫ x3

x2

β sin(νz)
dx

x
= β sin(νz) log

x3

x2
.

We notice that log(x3/x2) ≥ c = cv,a,r. As for I1(z) and I2(z), it can
be observed that they have the same sign as sin(νz) whenever sin(νz) 6= 0.
Let z1, z2, and z3 be successive extreme points of sin(νz) falling into interval(
(v + a/2)2 − r2/10, (v + a/2)2 + r2/10

)
. To be specific, opt for

sin(νz1) = 1, sin(νz2) = −1, and sin(νz3) = 1.

This can be achieved by taking ν large enough for the extreme points to become
very close. Since for all these values of z, one has log(x3/x2) ≥ c > 0, it follows
that

I(z1) > I2(z1) ≥ β sin(νz1)c = cβ,

I(z2) < I2(z2) ≤ β sin(νz2)c = −cβ,

implying I(z1) − I(z2) > 2cβ. Correspondingly, there exists z∗ ∈ (z1, z2) such
that

I ′(z∗) < −
2cβ

π/ν
= −2cβν

π
,

which can achieve arbitrarily large negative values for sufficiently large ν. Like-
wise, adding z3, one obtains: I(z3) ≥ cβ, whence

I(z3)− I(z2) ≥ 2cβ

and, consequently,

I ′(z∗∗) >
2cβν

π
for some z∗∗ ∈ (z2, z3).

Since g′(z) = p′(z) − I ′(z) and p′(z) is bounded on
[
(v − a)2, (v + a)2

]
by a

constant independent from ν, it follows that for ν large enough, there exist points

z∗, z∗∗ ∈
(
(v + a/2)2 − r2/10, (v + a/2)2 + r2/10

)
such that g′(z∗) ≥ A and g′(z∗∗) ≤ −B for any prescribed A,B > 0.

Applying the same procedure to an infinite sequence of disjoint squares

Kn = {(x, y) : vn − an ≤ x, y ≤ vn + an, }, n ∈ N

one derives the statement of Theorem 2.2.
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Щодо умови Лiна для добутку випадкових
величин

Alexander Il’inskii and Sofiya Ostrovska

Робота мiстить уточнення наявних результатiв стосовно умови Лiна.
Представлено нове доведення того факту, що якщо щiльностi розподi-
лiв випадкових величин ξ1 та ξ2 задовольняють умову Лiна, те ж саме
виконується для їхнього добутку. Також показано, що, коли умову не-
залежностi вiдкинуто, твердження перестає бути вiрним.

Ключовi слова: випадкова величина, абсолютно неперервний розпо-
дiл, умова Лiна.
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