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The main point of the research is to study a new approach for defin-
ing the tubular surfaces with the Galilean Darboux frame in 3-dimensional
Galilean space. Also, we obtain the Gaussian and mean curvatures and de-
rive some parametrizations for a special curve to lie on tubular surfaces with
the Galilean Darboux frame.
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1. Introduction

A tubular surface is described as the envelope of the set of spheres with radius
r and with centers lying on a spine curve. The tubular surface can be charac-
terized using the Frenet frame, and is a helpful structure in many application
areas such as medicine and computer aided geometric design. Therefore, there
have been many studies in detecting and characterizing the tubular surfaces and
special surfaces in several spaces [3,6,7,9,10,14,21]. Lately, several authors have
been studied in Galilean space [2, 4, 15,22].

On the other hand, Dogan et al. [5] introduced a new method to parametrize
and characterize a tubular surface with Darboux frame in Euclidean 3-space, and
Kiziltug et al. [8] developed this method for Minkowski space.

The aim of this paper is to improve this new approach and to define the tubu-
lar surfaces with the Galilean Darboux frame in the Galilean 3-space. We further
compute the Gaussian and mean curvatures and derive some characterizations
for given curves as lying on a tubular surface in terms of the Galilean Darboux
frame.

2. Preliminaries

The Galilean 3-space G3 is a Cayley–Klein space equipped with the projective
metric of signature (0, 0,+,+), given in [11]. The absolute figure of the Galilean
space consists of an ordered triple {ω, f, I} in which ω is the ideal (absolute)
plane, f is the line (absolute line) in ω and I is the fixed elliptic involution of
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f . We introduce homogeneous coordinates in G3 in such a way that the absolute
plane ω is given by x0 = 0, the absolute line f , by x0 = x1 = 0, and the elliptic
involution, by

(0 : 0 : x2 : x3)→ (0 : 0 : x3 : −x2). (2.1)

A plane is called Euclidean if it contains f , otherwise it is called isotropic, i.e.,
planes x = const are Euclidean, and so is the plane ω. Other planes are isotropic.
In other words, an isotropic plane does not involve any isotropic direction.

Definition 2.1 ([17]). Let λ = (λ1, λ2, λ3) and ξ = (ξ1, ξ2, ξ3) be any two
vectors in G3. A vector λ is called isotropic if λ1 = 0, otherwise it is called
non-isotropic. Then the Galilean scalar product of these vectors is given by

〈λ, ξ〉 =

{
λ1ξ1 if λ1 6= 0 or ξ1 6= 0

λ2ξ2 + λ3ξ3 if λ1 = 0 and ξ1 = 0
.

Definition 2.2 ([1, 20]). Let λ = (λ1, λ2, λ3) and ξ = (ξ1, ξ2, ξ3) be any two
vectors in G3. The Galilean cross product is given as

λ ∧ ξ =



∣∣∣∣∣∣∣
0 e2 e3

λ1 λ2 λ3

ξ1 ξ2 ξ3

∣∣∣∣∣∣∣ if λ1 6= 0 or ξ1 6= 0

∣∣∣∣∣∣∣
e1 e2 e3

λ1 λ2 λ3

ξ1 ξ2 ξ3

∣∣∣∣∣∣∣ if λ1 6= 0 and ξ1 6= 0

,

where e1 = (1, 0, 0), e2 = (0, 1, 0), e3 = (0, 0, 1).

Let α be an admissible curve of the class C∞ in G3, and parametrized by the
invariant parameter s, defined by

α (s) = (s, f (s) , g (s)) .

Then the curvatures κ (s) and τ (s) of α(s) can be written as

κ (s) =

√
f ′′ (s)2 + g′′ (s)2,

τ (s) =
det (α′ (s) , α′′ (s) , α′′′ (s))

κ2 (s)
,

respectively, and the Frenet formula of the curve is written as

T ′ = κN,

N ′ = τB,

B′ = −τN,

where T, N and B are said to be the tangent, the principal normal and the
binormal vectors of α(s) [13].
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Let the equation of a surface Ψ = Ψ(s, ϑ) in G3 be given by

Ψ(s, ϑ) = (x(s, ϑ), y(s, ϑ), z(s, ϑ)) .

Then the unit isotropic normal vector field η on Ψ(s, ϑ) is given by

η =
Ψ,1∧Ψ,2

‖Ψ,1∧Ψ,2‖
,

where the partial differentiations with respect to s and ϑ will be denoted by

suffixes 1 and 2 respectively, that is, Ψ,1 =
∂Ψ(s, ϑ)

∂s
and Ψ,2 =

∂Ψ(s, ϑ)

∂ϑ
.

On the other hand, we get the isotropic unit vector δ in the tangent plane of
the surface as

δ =
x,2Ψ,1 − x,1Ψ,2

w
, (2.2)

where x,1 =
∂x(s, ϑ)

∂s
, x,2 =

∂x(s, ϑ)

∂ϑ
and w = ‖Ψ,1∧Ψ,2‖.

Let us define

g1 = x,1, g2 = x,2, gij = gigj ,

g1 =
x,2
w
, g2 = −x,1

w
, gij = gigj (i, j = 1, 2),

h11 =
〈
Ψ̃,1, Ψ̃,1

〉
, h12 =

〈
Ψ̃,1, Ψ̃,2

〉
, h22 =

〈
Ψ̃,2, Ψ̃,2

〉
,

where Ψ̃,1 and Ψ̃,2 are the projections of the vectors Ψ,1 and Ψ,2 onto the yz-
plane, respectively. Then the corresponding matrix of the first fundamental form
ds2 of the surface Ψ(s, ϑ) is given by (cf. [18])

ds2 =

(
ds21 0
0 ds22

)
, (2.3)

where ds21 = (g1ds+g2dϑ)2 and ds22 = h11ds
2 +2h12 ds dϑ+h22dϑ

2. In such case,
we denote the coefficients of ds2 by g∗ij . On the other hand, the function w can
be represented in terms of gi and hij as follows:

w2 = g21h22 − 2g1g2h12 + g22h11.

The Gaussian curvature and the mean curvature of a surface are defined
by means of the coefficients of the second fundamental form Lij , which are the
normal components of Ψ,i,j (i, j = 1, 2). That is,

Ψ,i,j =

2∑
k=1

ΓkijΨ,k + Lijη,

where Γkij is the Christoffel symbols of the surface and Lij are given by

Lij =
1

g1

〈
g1Ψ̃,i,j − gi,jΨ̃,1, η

〉
=

1

g2

〈
g2Ψ̃,i,j − gi,jΨ̃,2, η

〉
. (2.4)
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From this, the Gaussian curvature K and the mean curvature H of the surface
are expressed as [16]

K =
L11L22 − L2

12

w2
,

H =
g22L11 − 2g1g2L12 + g21L22

2w2
.

Definition 2.3 ([19]). Let T be the unit tangent vector of a curve α on a
surface in G3, and n be the unit normal vector to the surface at the point α(s)
of α, respectively. Let Q = n∧T be the tangential-normal. Then {T,Q, n} is an
orthonormal frame at α(s) in G3. The frame is called a Galilean Darboux frame
or a tangent-normal frame and expressed as

T ′ = kgQ+ knn,

Q′ = τgn,

n′ = −τgQ,

where kg, kn and τg are the geodesic curvature, the normal curvature and the
geodesic torsion, respectively.

For the curvature κ of α(s), κ2 = k2g + k2n holds. Also, a curve α(s) is a
geodesic or an asymptotic curve or a line of curvature if and only if kg or kn or
τg vanishes, respectively.

3. Tubular surfaces with Darboux frame in Galilean space G3

The starting point of this section is to express a simple method for
parametrization of tubular surfaces with the Galilean Darboux frame in G3. Let
us denote by σ the vector connecting the point from α(s) with the point from the
surface with the Galilean Darboux frame {T,Q, n} along α(s). Then, we have
the position vector P of a point on the surface as follows:

P = α(s) + σ. (3.1)

Thus, we can write
σ = r(cosϑQ(s) + sinϑn(s)), (3.2)

where r is a constant radius of a Euclidean circle of the Galilean Darboux frame
and ϑ is the Euclidean angle between the isotropic vectors Q and σ.

Combining (3.1) and (3.2), we can define a tubular surface with the constant
radius r in terms of the Galilean Darboux frame as

Ψ(s, ϑ) = α(s) + r(cosϑQ(s) + sinϑn(s)), (3.3)

where n is the unit isotropic normal vector of the surface along a curve α(s)
parametrized by arc-length s. Then we get partial derivatives of Ψ(s, ϑ) with
respect to s and ϑ as follows:

Ψs = T − rτg sinϑQ+ rτg cosϑn (3.4)
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and
Ψϑ = −r sinϑQ+ r cosϑn. (3.5)

It follows that the vector cross product of these vectors is obtained by

Ψs∧Ψϑ = −r(cosϑQ+ sinϑn), (3.6)

from above equation, for small r > 0, we have

‖Ψs∧Ψϑ‖ = r. (3.7)

Therefore, by using (3.6) and (3.7), the unit isotropic normal vector η of Ψ(s, ϑ)
is found as

η = − cosϑQ− sinϑn. (3.8)

On the other hand, from (3.8) and (2.2), it is easy to show that

δ = sinϑQ− cosϑn.

Since Q and n are the isotropic vectors, using the Galilean Darboux frame, we
can obtain

g1 = 1, g2 = 0. (3.9)

By taking account of the projection of Ψs and Ψϑ onto the Euclidean yz-plane,
we get

h22 = r2. (3.10)

If we substitute (3.9) and (3.10) into (2.3), the coefficients of the first funda-
mental form of the tubular surface with the Galilean Darboux frame in Galilean
space are obtained as

g∗11 = 1, g∗12 = 0, g∗22 = r2.

To compute the second fundamental form of Ψ(s, ϑ), we have to calculate the
following:

Ψss =
(
kg − r sinϑτ ′g − r cosϑτ2g

)
Q+

(
kn + r cosϑτ ′g − r sinϑτ2g

)
n, (3.11)

Ψϑs = −rτg cosϑQ− rτg sinϑn,

Ψϑϑ = −r cosϑQ− r sinϑn.

From (2.4) and (3.11), the coefficients of the second fundamental form are com-
puted as

L11 = −kg cosϑ− kn sinϑ+ rτ2g , L12 = rτg, L22 = r. (3.12)

Thus, the Gaussian curvature K and the mean curvature H are expressed as

K = −kg cosϑ+ kn sinϑ

r
, (3.13)

H =
1

2r
. (3.14)
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4. Some characterizations for given curves as lying on tubular
surfaces

We will give the conditions for parameter curves being a geodesic, an asymp-
totic curve, and a line of curvature on the tubular surface Ψ(s, ϑ).

Theorem 4.1. For a tubular surface of Ψ(s, ϑ) given by (3.3),

1) ϑ-parameter curves are geodesics.

2) A necessary and sufficient condition that s-parameter curves are also
geodesics is that kg, kn and τg hold the system

− kn cosϑ+ kg sinϑ− rτ ′g = 0. (4.1)

Proof. It is well known that a curve lying on a surface is a geodesic if and
only if the acceleration vector α′′ and the surface normal vector η are linearly
dependent, that is, η∧α′′ = 0. Then, for the ϑ- and s-parameter curves, we have

η∧Ψϑϑ = (r sinϑ cosϑ− r cosϑ sinϑ)T = 0,

η∧Ψss =
(
−kn cosϑ+ kg sinϑ− rτ ′g

)
T.

1) Since η∧Ψϑϑ = 0, we can easily say that ϑ-parameter curves are geodesics.
2) s-parameter curves are geodesics iff

η ∧Ψss =
(
−kn cosϑ+ kg sinϑ− rτ ′g

)
T = 0.

Thus, we get (
−kn cosϑ+ kg sinϑ− rτ ′g

)
= 0.

Corollary 4.2. Let α(s) be a geodesic on the tubular surface Ψ(s, ϑ) given
by (3.3). If s-parameter curves are geodesics on Ψ(s, ϑ), then the curvatures κ
and τ of α(s) satisfy the relation

τ ′ = −κ cosϑ

r
. (4.2)

Proof. If the center curve α(s) is a geodesic, then kg = 0. Thus, replacing
kg = 0 in (4.1), we simply get (4.2).

Corollary 4.3. Let α(s) be an asymptotic curve on the tubular surface
Ψ(s, ϑ) given by (3.3). If s-parameter curves are asymptotic curves on Ψ(s, ϑ),
then the curvatures κ and τ of α(s) satisfy the relation

τ ′ =
κ sinϑ

r
. (4.3)

Proof. If the center curve α(s) is an asymptotic curve, then kn = 0. Thus,
replacing kn = 0 in (4.1), we simply get (4.3).
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Theorem 4.4. For a tubular surface of Ψ(s, ϑ) given by (3.3),

1) ϑ-parameter curves cannot be asymptotic curves.

2) A necessary and sufficient condition that s-parameter curves are also asymp-
totic curves is that Ψ(s, ϑ) is produced by a moving sphere with the radius
function

r =
kg cosϑ+ kn sinϑ

τ2g
= c (4.4)

for some constant c.

Proof. A curve α(s) lying on the tubular surface Ψ(s, ϑ) is an asymptotic
curve iff 〈η,α′′〉 = 0. Then, for the ϑ- and s-parameter curves, we have

1) Since 〈η,Ψϑϑ〉 = r 6= 0, ϑ-parameter curves cannot be asymptotic curves.

2) s-parameter curves are asymptotic curves iff

〈η,Ψss〉 = −kg cosϑ− kn sinϑ+ rτ2g = 0.

From the above equation, we obtain the radius function

r =
kg cosϑ+ kn sinϑ

τ2g
= c

as a constant.

Corollary 4.5. Let s-parameter curves be asymptotic curves on the tubular
surface Ψ(s, ϑ). Then, for the center curve α(s), we have the following conditions:

1) If α(s) is a geodesic on Ψ(s, ϑ), then

r =
κ sinϑ

τ2
= c. (4.5)

2) If α(s) is an asymptotic curve on Ψ(s, ϑ), then

r =
κ cosϑ

τ2
= c. (4.6)

3) α(s) cannot be a line of curvature on Ψ(s, ϑ).

Proof. 1) Since α(s) is a geodesic, kg = 0. So, from the Galilean Darboux
frame, we can write kn = κ and τg = τ . By replacing these in (4.4), we can easily
get (4.5).

2) Since α(s) is asymptotic, kn = 0. So, from the Galilean Darboux frame,
we can write kg = κ and τg = τ . By replacing these in (4.4), we can easily obtain
(4.6).

3) Since s-parameter curves are also asymptotic curves, they satisfy (4.4).
From this, τg cannot be zero.
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Example 4.6. We can give some examples to verify the above Corollary.
For ϑ = π

2 , it follows that r = κ
τ2

is a constant. Thus α(s) becomes
a Mannheim curve (for further information see [12]). For this, as α(s) is a
Mannheim curve, the s-parameter curve at ϑ = π

2 ,

Ψ
(
s,
π

2

)
= α(s) + rn(s),

is a geodesic on Ψ(s, ϑ).
The same processes can be done for ϑ = 0, then we get r = κ

τ2
is a constant.

Thus α(s) becomes a Mannheim curve and the s-parameter curve at ϑ = 0,

Ψ(s, 0) = α(s) + rQ(s)

is an asymptotic curve on Ψ(s, ϑ).

Theorem 4.7. A necessary and sufficient condition that s-parameter curves
are also lines of curvature is that the center curve α(s) is a line of curvature on
the tubular surface Ψ(s, ϑ).

Proof. It is well known that the parameter curves on a surface are lines of
curvature if and only if g∗12 = 0 and L12 = 0. Since g∗12 = 0 and L12 = rτg in the
surface, we can get τg = 0 for a line of curvature, it means that α(s) is a line of
curvature on Ψ(s, ϑ).

Theorem 4.8. For the center curve α(s) on a tubular surface Ψ(s, ϑ),

1) If α(s) is a geodesic on Ψ(s, ϑ), then the Gaussian curvature of the surface
is obtained as

K = −κ sinϑ

r
. (4.7)

2) If α(s) is an asymptotic curve on Ψ(s, ϑ), then the Gaussian curvature is
obtained as

K = −κ cosϑ

r
. (4.8)

Proof. The proof can be done taking kg = 0, kn = κ, τg = τ and kn = 0,
kg = κ, τg = τ into (3.13) and (3.14), respectively.

Remark 4.9. We consider a tubular surface given as

Φ(s, ϑ) = β(s) + r(cosϑN(s) + sinϑB(s)), (4.9)

where {T,N,B} is the Frenet frame of a curve β(s) in G3. In this case, the
Gaussian curvature K and the mean curvature H are given by [3]

K = −κ cosϑ

r
, H =

1

2r
,

where κ is the curvature of the curve β(s).
In the sense, a tubular surface Ψ(s, ϑ) (3.3) generated by an asymptotic curve

α(s) is isometric to a tubular surface Φ(s, ϑ) (4.9) generated by an arbitrary curve
β(s).
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Трубчастi поверхнi з галiлеєвим репером Дарбу в G3

Dae Won Yoon and Zühal Küçükarslan Yüzbaşı

Суть цього дослiдження полягає у вивченнi нового пiдходу до визна-
чення трубчастих поверхонь з галiлеєвим репером Дарбу у тривимiр-
ному просторi Галiлея. Отримано також гаусову та середню кривизни i
виведено параметризацiю для спецiальної кривої, що лежить на трубча-
стих поверхнях з галiлеєвим репером Дарбу.

Ключовi слова: трубчаста поверхня, галiлеєвий репер Дарбу, геоде-
зична лiнiя, асимптотична лiнiя, простiр Галiлея.
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