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Small oscillations of an elastic system of point masses (particles) with a
nonlocal interaction are considered. The asymptotic behavior of the system
is studied when a number of particles tend to infinity and the distances
between them and the forces of interaction tend to zero. The first term of
the asymptotic is described by the homogenized system of equations, which
is a nonlocal model of oscillations of elastic medium.
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1. Introduction

The progress in development of new materials and the modelling of nano-
structures caused the emergence of nonlinear elasticity theories (see, for example,
[7, 10, 15]). Classical local theory is based on the concept of contact interaction
and it can not explain some observed experimental phenomena. Therefore, it is
necessary to take into account the long-range interaction between the particles
of the material that leads to the nonlocal elasticity theory.

The nonlocal elasticity theory can be traced back to the works of Kröner, who
formulated the continuum theory of elastic materials with long-range interaction
forces [11, 12]. At present, there are two different approaches considering the
nonlocal mechanics of the elastic continuum: the gradient elasticity theory (weak
nonlocality) and the integral nonlocal theory (strong nonlocality).

The first approach related to the study of the gradients of strain tensors leads
to the models with spatial derivatives of order more than 2 [1,8,9]. The main dif-
ficulty in using these models is setting boundary conditions for the corresponding
boundary value problems (see [21]).

The second approach was developed almost independently. The nonlocal in-
teraction here is represented in the form of a convolution integral of the strain
tensor with a kernel that depends on the distance between the particles of the elas-
tic material. This approach leads to the models described by integro-differential
equations [4, 5, 13,14].
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The correctness of these continuum models of nonlocal elasticity theory de-
pends on the effectiveness of long-range molecular forces (cohesive forces) in the
material. Therefore, a natural approach to their justification is the so-called mi-
crostructural approach, which studies discrete elastic systems (lattice models).
This approach was used mainly in physical works [3, 18, 23–25]. Apparently, [2]
was one of the first mathematical works, in which the system of equations of the
local elasticity theory was derived using the microstructural approach. The short-
range interactions between the particles were considered when only the nearest
particles interacted in the system. The asymptotic behavior of the oscillations of
this system was studied when the distances between the nearest neighbors and
the forces of interaction between them tended to zero. A homogenized system
of differential equations describing the leading term of asymptotic was obtained.
This system is a continuum model of the local theory of elasticity.

In this work, the method based on the studying of the asymptotic behavior
of the system, when the scale of the microstructure tends to zero, is applied. The
method used is the basis for the homogenization of partial differential equations
[17,20,22].

We apply the homogenization to study the asymptotic behavior of the oscilla-
tions of an elastic system of point masses (particles) with a nonlocal interaction.
It is assumed that the system depends on a small parameter ε. More precisely,
the distance between the nearest neighbors is of order O(ε), and the long-range
cohesive forces are of order O(ε6). It is proved that the main term of asymptotic is
described by a homogenized system of integro-differential equations. The integral
term is a convolution of the difference of the displacements of the elastic medium
at various space points with some kernel. A similar system of integro-differential
equations was considered in [21] as a continuum model of nonlocal elasticity the-
ory and used to calculate steel plates. Note that this system formally differs from
the well-known Eringen model, where the convolution of the strain tensor with a
kernel is taken. The Eringen model was proposed without justifications and any
assumptions about cohesive forces [4, 11–14, 18]. In this paper, we assume that
cohesive forces are of special form which provides a continuum nonlocal model
reducible to the model of Eringen’s type.

2. Statement of the problem

We consider a system Mε of interacting point masses (we will call them par-
ticles) in a fixed bounded domain Ω ⊂ R3 with a smooth boundary ∂Ω. It is
assumed that the system depends on a small parameter ε > 0. The total num-
ber of particles in the system is O(ε−3) and the distances between the nearest
particles are of order O(ε). We denote by xiε (i = 1, . . . , Nε) the positions of the
particles in the equilibrium state of the system Mε, and we denote by uiε = uiε(t)
the displacements of the particles relative to their equilibrium positions xiε.

The potential energy for a small deviation of the system Mε from the equi-
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librium position is determined by the equality

Hε(uε) = H0 +
1

2

Nε∑
i,j=1

〈Eijε (uiε − ujε), (uiε − ujε)〉, H0 = const, (2.1)

where uε = {u1
ε, . . . , u

Nε
ε }, the parentheses 〈, 〉 denote the scalar product in R3,

and Eijε are symmetric nonnegative matrices of the pair interaction between the
i-th and the j-th particles. If the particles interact through the central elastic
forces (for example, they are connected by elastic springs), then the matrices Eijε
satisfy the equalities

Eijε u = Kij
ε 〈u, eijε 〉eijε , ∀u ∈ R3, (2.2)

where eijε = (xiε−x
j
ε)|xiε−x

j
ε|−1 is the unit vector of direction between the i-th and

the j-th particles and the coefficient Kij
ε characterizes the intensity of interaction

(the stiffness of springs).
The coefficient Kij

ε depends on the distances |xiε − x
j
ε| between the particles.

Generally speaking, it can be zero if in the corresponding pair the particles do
not interact with each other. In this paper, we assume that the coefficient Kij

ε is
defined by the formula

Kij
ε = ε6

[
K(|xiε − xjε|) +

Kij

|xiε − x
j
ε|5
ϕ

(
|xiε − x

j
ε|

ε

)]
Aijε , (2.3)

where K(r), ϕ(r) ∈ C([0, L]), K(r) ≥ 0, ϕ(r) = 1 as r ≤ α and ϕ(r) = 0 as r ≥
β (0 < α < β < L = diam Ω); Aijε = 1 (for interacting pairs of particles) and
Aijε = 0 (for noninteracting pairs of particles), a0 ≤ Kij ≤ A0.

The formula above simulates a weak interaction (of order O(ε6)) between not
very close particles (|xiε−x

j
ε| > βε) and a stronger interaction O(ε) between close

ones (|xiε − x
j
ε| < αε) (see Fig. 2.1). This type of interaction is typical for some

intermolecular forces (for example, van der Waals forces). The interaction energy

Fig. 2.1

of the system Mε (2.1)–(2.3) is invariant under rotations and shifts. Therefore,
the equilibrium state (x1

ε, . . . , x
Nε
ε ) of the system is not isolated: rotations and
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shifts are admitted. To exclude this, we fix a part of the particles M0
ε ⊂ Mε on

the boundary ∂Ω (at the corresponding points xiε ∈ ∂Ω, uiε = 0). We assume the
following conditions hold.

I. The condition of “ε-net” on the boundary ∂Ω. The set M0
ε of the particles

assigned to ∂Ω is an ε-net for ∂Ω. It is clear that the number of the particles
is N0

ε = O(ε−2)� Nε

II. The triangulation condition. Let Γε be a graph with vertices at the points
xiε and the edges (xiε, x

j
ε) (i, j = 1, . . . , Nε, i 6= j). Assume that for any

ε > 0 there exists a subgraph Γ′ε ⊂ Γε with the same set of vertices Mε and
edges of length |xiε − xjε| = dijε (0 < d1 ≤ dij < d2) that corresponds to
the interaction coefficients Kij

ε = kijε (0 < a ≤ kij ≤ A). The subgraph Γ′ε
triangulates the domain Ω. The volumes |Pαε | of the corresponding simplexes
of the triangulation Pαε (α = 1 . . . N̂ε) satisfy the inequality |Pαε | > Cε3

(C > 0).

Under these conditions, the equilibrium state (x1
ε, . . . , x

Nε
ε ) is isolated. In the

small neighborhood of (x1
ε, . . . , x

Nε
ε ) the nonstationary oscillations of the system

Mε are described by the following problem:

mi
εü
i
ε = −∇uiεHε(u

1
ε, . . . , u

Nε
ε ), xiε ∈ Ω, t > 0, (2.4)

uiε(t) = 0, xiε ∈ ∂Ω, t > 0, (2.5)

uiε(0) = aiε, u̇iε(0) = biε, i = 1, . . . , Nε, (2.6)

where mi
ε is the mass of the i-th particle, aiε are the given initial displacements

of the particles, biε are the given initial velocities (aiε = 0, biε = 0 when xiε ∈ ∂Ω).
There is the unique solution {uε} = {u1

ε, . . . , u
Nε
ε } of this problem. The main

goal of the paper is to study the asymptotic behavior of the solution as ε → 0.
We obtain a homogenized system of equations. This system describes the leading
term of asymptotic. It is a macroscopic model of the oscillation of an elastic
medium with nonlocal interaction.

3. Quantitative characteristics of the system of interacting par-
ticles and formulation of the main result

We denote by Kx
h = K(x, h) the cubes with centers at the points x ∈ Ω and

sides of length h with a fixed orientation. It is assumed that 0 < ε� h� 1 and

the cube Kx
h contains a large number of the particles of order O

(
h3

ε3

)
. Consider

the functional of the symmetric tensor T = {Tnp}3n,p=1:

HKx
h
(T ) = inf

vε

{
1

2

∑
i,j

|xiε−x
j
ε|≤βε

Kx
h

〈Eijε (viε − vjε), (viε − vjε)〉

+
∑
i

Kx
h

h−2−γ
∣∣∣∣viε − 3∑

n,p=1

ψnp(xiε)Tnp

∣∣∣∣2
}
. (3.1)
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The sum
∑

Kx
h

consists of the particles xiε ∈ Kx
h and the inf is taken over the

displacements vε = {viε, i = 1, . . . , Nε} of the particles. The vector function
ψnp(x) is defined by the equality ψnp(x) = 1

2(xne
p + xpe

n), and γ is an arbitrary
penalty parameter 0 < γ < 2.

The functional HKx
h
(T ) is quadratic and we can rewrite it in the form

HKx
h
(T ) =

3∑
n,p,q,r=1

anpqr(x; ε, h; γ)TnpTqr, (3.2)

where anpqr(x; ε, h; γ) are the components of the symmetric tensor of rank 4 in
R3: anpqr = aqrnp = apnqr = . . . . This tensor is a mesoscopic (0 < ε � h �
1) characteristic of the concentration of the short-range interaction energy in the
neighborhood of the point x ∈ Ω.

Assume that the limits

lim
h→0

lim
ε→0

anpqr(x; ε, h; γ)

h3
= lim

h→0
lim
ε→0

anpqr(x; ε, h; γ)

h3
= anpqr(x) (3.3)

exist.

Remark 3.1. Formally, the limit tensor {anpqr(x)}3n,p,q,r=1 must depend on
the parameter γ and the orientation of the cubes K(x, h). But the main result
and the example in Section 6 show that the limiting tensor {anpqr(x)}3n,p,q,r=1

does not depend on the parameter γ and the orientation of the cubes K(x, h).

Let ρε(x) ∈ L∞(Ω) be a density of the distribution of the mass of particles and
let ϕε(x, y) ∈ L∞(Ω×Ω) be a function of the distribution of the pairs of particles
in Ω × Ω with long-range interaction. We will denote by V i

ε (i = 1, . . . , Nε) the
Voronoi cells of a set of points xiε ∈ Ω,

V i
ε =

Nε⋂
j=1

{x ∈ Ω : |x− xiε| < |x− xjε|},

|V i
ε | is the volume of the cell and χiε(x) is a characteristic function of the cell. We

put

ρε(x) =

Nε∑
i=1

mi
ε

|V i
ε |
χiε(x), (3.4)

ϕε(x, y) = ε6
Nε∑
i,j=1

|xiε−x
j
ε|≥βε

Aijε

|V i
ε ||V

j
ε |
χiε(x)χjε(y), (3.5)

where mi
ε are the masses of the particles, Aijε are the elements of the adjacency

matrix Aε = {Aijε }Nεi,j=1 of the complete graph Γε for the system Mε (see (2.3)).
Suppose that for any i = 1, . . . , Nε,

mi
ε = miε3 (0 < m1 ≤ mi

ε ≤ m2 <∞). (3.6)
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By condition II, |V i
ε | = ciεε

3 (0 < C1 ≤ ci ≤ C2 < ∞) and the estimates
‖ρε‖L∞(Ω) < C, ‖ϕε‖L∞(Ω×Ω) < C are valid uniformly with respect to ε. Hence
the set of functions {ρε(x), ε > 0} is *-weakly compact in L∞(Ω) and the set
{ϕε(x, y), ε > 0} is *-weakly compact in L∞(Ω× Ω) (see [20,22]).

We assume that

ρε(x) ⇀ ρ(x) *-weakly in L∞(Ω), (3.7)

ϕε(x, y) ⇀ ϕ(x, y) *-weakly in L∞(Ω× Ω), (3.8)

as ε→ 0. Here ρ(x) > 0 and ϕ(x, y) ≥ 0 are the functions in L∞(Ω) and L∞(Ω×
Ω) respectively. It follows from (3.5) that ϕ(x, y) = ϕ(y, x).

To each discrete function uε(x) = {u1
ε, . . . , u

Nε
ε } defined at the points xiε:

uε(x
i
ε) = uiε we will match the vector function ũε(x) ∈ L∞(Ω) by the formula

ũε(x) =

Nε∑
i=1

uiεχ
i
ε(x). (3.9)

The vector-functions ãε(x) ∈ L∞(Ω), b̃ε(x) ∈ L∞(Ω) correspond to the initial
data {a1

ε, . . . , a
Nε
ε } and {b1ε, . . . , bNεε } in (2.4)–(2.6). The vector-function ũ(x, t) ∈

L∞(Ω × [0, T ]) ∀T > 0 corresponds to the solution {u1
ε(t), . . . , u

Nε
ε (t)} of the

problem.
We assume that

ãε(x)→ a(x), b̃ε(x)→ b(x) in L2(Ω), (3.10)

as ε→ 0. Here a(x) and b(x) are the vector functions from
◦
W1

2(Ω). Suppose that
the inequality

Nε∑
i,j=1

〈Eijε (aiε − ajε), (aiε − ajε)〉 < C (3.11)

holds uniformly with respect to ε.
Now we can formulate the main result.

Theorem 3.2. Let the system of interacting particles Mε with the interaction
energy (2.1)–(2.3) and the masses mi

ε (3.6) be located in Ω̄ and conditions I and II
be fulfilled. Suppose that conditions (3.3), (3.7), (3.8) and (3.10), (3.11) hold as
ε → 0. Then the vector function ũε(x, t) constructed by (3.9) using the solution
uε(t) = {u1

ε(t), . . . , u
Nε
ε (t)} of problem (2.4)–(2.6) converges in L2(Ω× [0, T ]) as

ε→ 0 to the solution u(x, t) of the initial-boundary value problem:

ρ(x)
∂2u

∂t2
−

3∑
n,p,q,r=1

∂

∂xq
{anpqr(x)enp[u]er}

+

∫
Ω
G(x, y)(u(x, t)− u(y, t))dy = 0, x ∈ Ω, t > 0, (3.12)

u(x, t) = 0, x ∈ ∂Ω, t > 0, (3.13)
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u(x, 0) = a(x),
∂u

∂t
(x, 0) = b(x), x ∈ Ω. (3.14)

Here enp[u] = 1
2

(
∂un
∂xp

+
∂up
∂xn

)
are the components of the elasticity tensor, er is

the unit vector of the xr axis, and the elements of the matrix G(x, y) are defined
by

Gkl(x, y) =
K(|x− y|)ϕ(x, y)

|x− y|2
(xk − yk)(xl − yl). (3.15)

The theorem is proved in Sections 4, 5. In remainder of this section we give
only the main ideas of the proof. In Section 4, we reduce the initial problem
to a stationary problem with a spectral parameter λ (Reλ > 0) by the Laplace
transform in time. We introduce the variational formulation of the problem for
real λ > 0. Then we study the asymptotic behavior of its solution as ε→ 0 and
obtain the homogenized equation. In Section 5, we study analytic properties of
solutions of the initial and homogenized stationary problems on λ for Reλ > 0
using Vitali’s theorem. We prove the convergence of the solutions and, finally,
prove the convergence of the solutions of original nonstationary problem (2.3)–
(2.6) to the solution of homogenized problem (3.11)–(3.13) with the help of the
inverse Laplace transform.

4. Auxiliary propositions

Let us denote by Liε(x) a continuous function in R3 that is linear in every
simplex Pαkε (condition II), and Liε(x

j
ε) = δij at xiε. It is clear that Liε(x) is

nonzero only in the simplexes with vertices xiε.
Using this function, we construct a piecewise linear spline ûε(x) to interpolate

the given discrete vector-function uε = {u1
ε, . . . , u

Nε
ε }:

ûε(x) =

Nε∑
i=1

uiεL
i
ε(x), (4.1)

where uiε = uε(x
i
ε).

Further, we will assume that uiε = 0 for xiε ∈ ∂Ω. Then, ûε(x) ∈
◦
W

1

2 (Ω) for

any ε > 0 if the domain Ω is convex. If Ω is not convex, then ûε(x) ∈
◦
W

1

2 (Ωδ)
for sufficiently small ε ≤ ε(δ). Here Ωδ is a domain in R3 such that Ω b Ωδ and
dist(∂Ω, ∂Ωδ) = δ (∀δ > 0). This statement follows from conditions I, II, and the
smoothness of ∂Ω.

Lemma 4.1. Let us construct the vector-functions ũε(x) and ûε(x) by for-
mulas (3.9) and (4.1) for the same set of vectors (u1

ε, . . . , u
Nε
ε ) (uiε = 0 for xiε ∈

∂Ω). If the inequality
‖ûε‖W 1

2 (Ω) < C

holds uniformly with respect to ε, then

‖ûε − ũε‖L2(Ω) → 0 as ε→ 0.
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Proof. Denote vε(x) = ûε(x)− ũε(x). Let V i
ε be the Voronoi cell at the point

xiε, and Pαε be a simplex with vertex at the point xiε (see condition II). By (4.1)
with x ∈ V i

ε

⋂
Pαε , we get

|∇vε(x)|2 = |∇ûε(x)|2 ≡ |M iα
ε |2 = const. (4.2)

Taking into account vε(x
i
ε) = 0, we obtain

vε(x) =

∫ |x−xiε|
0

∂vε
∂r

(xiε + r(x− xiε))dr, x ∈ V i
ε

⋂
Pαε .

By this equality, condition II and (4.2), we have

|vε(x)|2 ≤ Cε2|M iα
ε |2, x ∈ V i

ε

⋂
Pαε ,

and, consequently,∫
Ω
|vε(x)|2dx =

∑
i,j

∫
V iε

⋂
Pαε

|vε(x)|2dx ≤ Cε2
∑
i,α

∫
V iε

⋂
Pαε

|M iα
ε |2 dx.

Thus, according to (4.2), the inequality∫
Ω
|vε(x)|2dx ≤ Cε2

∫
Ω
|∇ûε|2 dx

holds, which establishes the assertion of the lemma.

Consider the function Gεkl(x, y) ∈ L∞(Ω× Ω) (k, l = 1, 2, 3),

Gεkl(x, y) = ε6
Nε∑
i,j=1

|xiε−x
j
ε|>βε

K(|xiε − x
j
ε|)eijεke

ij
εl

|V i
ε ||V

j
ε |

Aijε χ
i
ε(x)χjε(y), (4.3)

where eijεk are the k-th components of the vectors eijε = (xiε − x
j
ε)|xiε − x

j
ε|−1.

Lemma 4.2. Let conditions (3.8) hold. Then the function Gεkl(x, y) con-
verges to the function

Gkl(x, y) =
K(|x− y|)ϕ(x, y)

|x− y|2
(xk − yk)(xl − yl) (4.4)

*-weakly in L∞(Ω× Ω) as ε→ 0.

Proof. Let f(x, y) be an arbitrary function in L1(Ω×Ω). By (4.3), we write∫
Ω

∫
Ω
Gεkl(x, y)f(x, y) dx dy

=

∫
Ω

∫
Ω

(
ε6
∑
i,j=1

|xiε−x
j
ε|≥βε

Aijε

|V i
ε ||V

j
ε |
χiε(x)χjε(y)

)
Rkl(x, y)f(x, y) dx dy
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+

∫
Ω

∫
Ω
ε6
∑
i,j=1

|xiε−x
j
ε|>δ

(
Rkl(x

i
ε, x

j
ε −Rkl(x, y)

) Aijε

|V i
ε ||V

j
ε |
χiε(x)χjε(y)f(x, y) dx dy

+

∫
Ω

∫
Ω
ε6
∑
i,j=1

βε<|xiε−x
j
ε|≤δ

(
Rkl(x

i
ε, x

j
ε −Rkl(x, y)

) Aijε

|V i
ε ||V

j
ε |
χiε(x)χjε(y)f(x, y) dx dy

= Iε1kl + Iε2kl (δ) + Iε3kl (δ). (4.5)

Here

Rkl(x, y) = K(x, y)
(xk − yk)(xl − yl)

|x− y|2
(4.6)

and δ is an arbitrary number δ � ε.
Since Rkl(x, y)f(x, y) ∈ L∞(Ω× Ω),

lim
ε→0

Iε1kl =

∫
Ω

∫
Ω
Gkl(x, y)f(x, y) dx dy. (4.7)

This follows from (3.5), (3.8) and (4.4), (4.6).
As f(x, y) ∈ L1(Ω×Ω), the function Rkl(x, y) is continuous for |x− y| > δ >

0, and diamV i
ε ≤ Cε, |V i

ε | ≥ C2ε
3 (condition II), we have

lim
ε→0

Iε2kl (δ) = 0 (4.8)

and
lim
δ→0

lim
ε→0

Iε2kl (δ) = 0 (4.9)

for any fixed δ > 0.
From (4.5)–(4.9) there follows the assertion of the lemma.

The next lemma is fundamental for studying the compactness of discrete
vector-valued functions. The well-known Korn inequality plays the same role for

the functions in
◦
W1

2(Ω) [19].

Lemma 4.3 (discrete analogue of the Korn inequality). Let conditions I and
II hold. Then∑
i,j

′
〈Eijε [uiε − ujε], [uiε − ujε]〉 ≥ C‖ûε‖2W 1

2 (Ω) ≥ C1

(
ε
∑
i,j

′
|uiε − ujε|2 + ε3

∑
i

′
|uiε|2

)
for any discrete function uε(x) defined at the points xiε by uε(x

i
ε) = uiε i =

1, . . . , Nε, and uiε = 0 for xiε ∈ ∂Ω. Here Eijε are the pair interaction matrices
(see (2.1)–(2.3)), the sum

∑
i,j
′ is taken over all (i, j) of the edges (xjε, x

j
ε) of the

triangulation subgraph Γ′ε, and C, C1 > 0 are the constants that do not depend
on ε.

Lemma 4.3 was proved in [2].
The next lemma establishes the estimates of the solution {viε} of problem

(3.1). The lemma is given without the proof (for more details see [2]).
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Lemma 4.4. Let conditions (3.2) hold. Then∑
i,j

|xiε−x
j
ε|≤βε

Kx
h

〈Eijε (viε − vjε), (viε − vjε)〉 = O(h3),

∑
i

Kx
h

∣∣∣∣viε −∑
n,p

ψnp(xiε)Tnp

∣∣∣∣2 ≤ O(h5+γ),∑
|xiε−x

j
ε|≤βε
Kx
h\K

x
h′
〈Eijε (viε − vjε), (viε − vjε)〉 = o(h),

∑
i

Kx
h\K

x
h′

∣∣∣∣viε −∑
n,p

ψnp(xiε)Tnp

∣∣∣∣2 = o(h5+γ),

where viε is a solution of problem (3.1); h′ = h− 2h1+γ/2, γ > 0 and ε ≤ ε̂(h).

5. Variational formulation of the problem and asymptotic be-
havior of the solution as ε→ 0

By Laplace transform we convert the function uiε(t) of a real variable t to the
function of a complex variable λ:

uiε(t)→ uiε(λ) =

∫ ∞
0

uiε(t)e
−λt dt, i = 1, . . . , Nε, Reλ > 0.

Applying the Laplace transform to problem (2.4)–(2.6) and taking into account
(2.1), we get the stationary problem for uε(λ) = {u1

ε(λ), . . . , uNεε (λ)} with a
spectral parameter λ:

λ2mi
εu
i
ε(λ) +

Nε∑
j=1

Eijε (uiε(λ)− ujε(λ)) = mi
εf
i
ε(λ), xiε ∈ Ω, (5.1)

uiε(λ) = 0, xiε ∈ ∂Ω, (5.2)

where f iε(λ) = λaiε + biε, i = 1, . . . , Nε.
This problem has a unique solution for all λ ∈ C, except the finite number of

the spectrum points λ = ±iµεk (µεk > 0, k = 1, . . . , N ′ε < Nε). For λ = 0, the
problem describes the equilibrium elastic system under the action of the forces
mi
εf
i
ε.
The solution uε = {u1

ε, . . . , u
Nε
ε } of problem (5.1), (5.2) for λ2 ≥ 0 minimizes

the functional

Φε[vε] =
1

2

Nε∑
i,j=1

〈Eijε [viε − vjε], [viε − vjε]〉+ λ2
Nε∑
i=1

mi
ε|viε|2 − 2

Nε∑
i=1

mi
ε〈f iε, viε〉 (5.3)

in the space
◦
Jε of discrete vector-functions vε(x) = {v1

ε , . . . , v
Nε
ε } that equal 0 on

∂Ω: viε = 0 when xiε ∈ ∂Ω. Thus, the vector-function uε = {u1
ε, . . . , u

Nε
ε } is the
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solution of the minimization problem

Φε[uε] = min
vε∈

◦
Jε

Φε[vε]. (5.4)

To describe the asymptotic behavior of uε as ε → 0, we introduce in
◦
W1

2(Ω)
the functional

Φ[v] =

∫
Ω

3∑
n,p,q,r=1

anpqr(x)enp[v]eqr[v] dx+ λ2

∫
Ω
ρ(x)|v|2 dx

+
1

2

∫
Ω

∫
Ω
〈G(x, y)(v(x)− v(y), (v(x)− v(y)〉 dx dy

− 2

∫
Ω
ρ(x)〈f, v〉 dx. (5.5)

Here

enp[v] =
1

2

[
∂vn
∂xp

+
∂vp
∂xn

]
,

the tensor {anpqr(x)}3n,p,q,r=1 is given by (3.3), the functions ρ(x) and ϕ(x, y) are
defined by (3.7) and (3.8), the vector-function f(x) = λa(x) + b(x) is given by
(3.10), and the elements of the matrix G(x, y) are defined by (4.4).

Consider the minimization problem

Φ[u] = min
w∈

◦
W1

2(Ω)

Φ[w]. (5.6)

Theorem 5.1. Let conditions I, II, (2.2), (2.3) hold and let limits (3.3),
(3.7), (3.8) exist as ε → 0. Then the vector-function ũε(x) constructed by (3.9)
on the solution uε = {u1

ε, . . . , u
Nε
ε } of the minimization problem (5.4) converges

in L2(Ω) to the solution of the minimization problem (5.6).

Proof. Taking into account that {0} ∈
◦
Jε and Φε[0] = 0, we get the inequality

Nε∑
i,j=1

〈Eijε [uiε − ujε], [uiε − ujε]〉+ 2λ2
Nε∑
i=1

mi
ε|uiε|2

≤ 4

{
Nε∑
i=1

mi
ε|f iε|2

}1/2{ Nε∑
i=1

mi
ε|uiε|2

}1/2

. (5.7)

From (3.4), (3.7), (3.10) and condition II it follows that

Nε∑
i=1

mi
ε|f iε|2 ≤ C(|λ|2 + 1), (5.8)

where C does not depend on ε.
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We construct the vector-function ûε(x) by (4.1), where uε = {u1
ε, . . . , u

Nε
ε } is

the solution of (5.4). By inequalities (5.7), (5.8) and Lemma 4.3, we get

‖ûε‖W 1
2 (Ω) ≤ C. (5.9)

The inequality is satisfied uniformly with respect to ε.
Thus, the set of vector-functions {ûε(x), ε > 0} is a weakly compact set in

◦
W 1

2(Ω). We can extract a subsequence {ûεk(x), εk → 0} that converges to the

vector-function u(x) ∈
◦
W1

2(Ω) weakly in
◦
W1

2(Ω) and strongly in Lq(Ω) (q ≤ 6).
By (3.9), we construct the subsequence {ũεk(x), εk → 0} for the set of vector-

functions {u1
εk
, . . . , uNεεk }. According to Lemma 4.1 and (5.9), the subsequence

converges to u(x) in Lq(Ω). Let us prove that u(x) minimizes (5.6). For this
purpose we write the functional Φε (5.3) in the form

Φε[vε] = Φ1ε[vε] + Φ2ε[vε], (5.10)

where

Φ1ε[vε] =
1

2

Nε∑
i,j=1

|xiε−x
j
ε|≤βε

〈Eijε (viε − vjε), (viε − vjε)〉, (5.11)

Φ2ε[vε] =
1

2

Nε∑
i,j=1

|xiε−x
j
ε|≥βε

〈Eijε (viε − vjε), (viε − vjε)〉

+ λ2
Nε∑
i=1

mi
ε|viε|2 − 2

Nε∑
i=1

mi
ε〈f iε, viε〉. (5.12)

Strong interactions between nearby particles are included in the functional
Φ1ε. According to (2.2), (2.3), they are of order O(ε) (see [2]). Recalling that

ûε → u converges weakly in
◦
W1

2(Ω), as ε = εk → 0, and taking into account (3.2),
we get the lower bound for Φ1ε using the same method as in [2]:

lim
ε=εk→0

Φ1ε[ũε] ≥ Φ1[u] =

∫
Ω

3∑
n,p,q,r=1

anpqr(x)enp[u]eqr[u]dx. (5.13)

By (2.2), (2.3), (3.4), (4.5), we can write Φ2ε[vε] in the form

Φ2ε[ũε] =

∫
Ω

∫
Ω

3∑
k,l=1

Gεkl(ũεk(x)− ũεk(y))(ũεl(x)− ũεl(y)) dx dy

+ λ2

∫
Ω
ρε(x)|ũε|2dx− 2

∫
Ω
ρε(x)〈f̃ε, ũε〉 dx, (5.14)

where

f̃ε(x) =

Nε∑
i=1

f iεχ
i
ε(x) =

Nε∑
i=1

(λaiε + biε)χ
i
ε(x),
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and ũεk(x) is the k-th component of the vector-function ũε(x).
Since ũε → u in L2(Ω) as ε = εk → 0, we have

(ũεk(x)− ũεk(y))(ũεl(x)− ũεl(y))→ (uk(x)−uk(y))(ul(x)−ul(y)) in L2(Ω×Ω)

and by (3.10),
〈f̃ε, ũε〉 → 〈f, u〉 in L1(Ω),

where f(x) = λa(x) + b(x).
From the above, by Lemma 4.2, (3.7), and (5.14), we obtain

lim
ε=εk→0

Φ2ε[ũε] = Φ2[u] =

∫
Ω

∫
Ω
〈G(x, y)(u(x)− u(y)), (u(x)− u(y))〉 dx dy

+ λ2

∫
Ω
ρ(x)u2(x)dx− 2

∫
Ω
ρ(x)〈f(x), u(x)〉 dx. (5.15)

On the account of (5.10), (5.14), (5.15), we get the lower bound for Φε[ũε]:

lim
ε=εk→0

Φε[ũε] ≥ Φ[u], (5.16)

where u(x) is a limit in L2(Ω) of the vector-functions ũε(x), and the functional
Φ[u] = Φ1[u] + Φ2[u] is defined by (5.5).

In order to get the upper bound, we introduce the test vector-function wεk =

(w1
εk, . . . , w

Nε
εk ) in

◦
Jε for problem (5.4). To this end, we cover Ω by the cubes

Kα
h = K(xα, h) with centers at the points xα and sides of length h. The centers

of the cubes form a cubic lattice with a period h − h1+γ/2 (0 < γ < 2). By this
covering, we construct a partition of the unity ϕα(x). Namely, a set of functions
with the following properties: ϕα(x) ∈ C2

0 (Kα
h ),

∑
α ϕα(x) = 1, ϕα(x) = 0 when

x 6∈ Kα
h , ϕα(x) = 1 when x ∈ Kα

h \
⋃
β 6=α

Kβ
h ; |∇ϕα(x)| ≤ Ch−1−γ/2.

Let w(x) be an arbitrary vector-function in C2(Ω) with a compact support in
Ω. Define

wiεh =
∑
α

{
w(xα) +

3∑
n,p=1

(enp[w(xα)]vαnpεh (xiε)

+ ωnp[w(xα)]ϕnp(xiε − xα))

}
ϕα(xiε), i = 1, . . . , Nε. (5.17)

Here vαnpεh (xiε) is a minimizer of the functional (3.1) in the cube Kα
h for T =

Tnp (Tnpik = δinδpk), enp[w], ωnp[w] are symmetric and antisymmetric parts of the
tensor ∇w, ϕnp(x) = 1

2(xne
p − xpen).

Using the properties of the discrete vector-functions vαnpεh (see Lemma 4.4),
the properties of the partition of the unity {ϕα(x)} and (3.2), we get

lim
h→0

lim
ε→0

Φ1ε[wεh] ≤ Φ1[w] (5.18)

in the same way as in [2]. The functional Φ1 is defined by (5.13).



216 Mariya Goncharenko and Eugen Khruslov

To estimate Φ2ε[wεh], we use the following equality for the vector-functions
w(x) ∈ C2

0 (Ω) for x ∈ Kα
h :

w(x) = w(xα) +
∑
n,p

enp[w(xα)]ψnp(x− xα) + ωnp[w(xα)]ϕnp(x− xα) +O(h2).

Substituting this equality in (5.17) and applying Lemma 4.4, we conclude

lim
h→0

lim
ε→0
‖wεh − w‖2L2(Ω) = 0. (5.19)

Taking into account convergence (3.7), (3.10), and Lemma 4.2, we get

lim
h→0

lim
ε→0

Φ2ε[wεh] = Φ2[w], (5.20)

where Φ2 is defined by (5.15).

Thus, by (5.10), (5.18), (5.20), we obtain

lim
h→0

lim
ε→0

Φε[wεh] ≤ Φ[w].

Recalling that uε is the minimizer of Φε in
◦
Jε for sufficiently small h (ε < ε̂(h))

and wεh ∈
◦
Jε, we can write

lim
h→0

lim
ε→0

Φε[uε] ≤ Φ[w]. (5.21)

Combining (5.16) and (5.21), we obtain

Φ[u] ≤ Φ[w], w ∈ C2
0 (Ω).

The inequality is valid for any vector-function w ∈
◦
W 2

1(Ω) due to the continuity

of the functional Φ[w] in
◦
W 2

1(Ω). Thus, by the subsequence ε = εk → 0, the
limit u(x) of the vector-functions ũε(x) is a solution of minimizing problem (5.6).
Hence, u(x) is a weak solution of the boundary value problem:

3∑
n,p,q,r=1

∂

∂xq
{anpqr(x)enp[u]er}+ λ2ρ(x)u

+

∫
Ω
〈G(x, y)(u(x)− u(y))〉 dy = λa(x) + b(x), x ∈ Ω, (5.22)

u(x) = 0, x ∈ ∂Ω. (5.23)

Since λ ≥ 0, the function ρ(x) and the matrix-function G(x, y) are nonnegative,
and the tensor {anpqr(x)}3n,p,q,r=1 is positive definite, the problem has a unique
solution. Thus, Theorem 5.1 is proved.
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6. The convergence of solutions of problem (5.1), (5.2) to the
solution of problem (5.22), (5.23) for complex λ

1. Consider problem (5.1), (5.2) for complex λ in the semiaxis Reλ > 0.
Denote by Lε a Hilbert space of finite sets of Nε 3-component complex vectors
defined in xiε ∈ Ω̄: uε = {u1

ε, . . . , u
Nε
ε }. If xiε ∈ ∂Ω, then uiε = 0. Define a scalar

product in Lε:

(uε, wε)ε =

Nε∑
i=1

〈uiε, w̄iε〉mi
ε,

where mi
ε is a mass of the point xiε. By the parentheses 〈·, ·〉, we denote the scalar

product in R3. The bar denotes the complex conjugation. The corresponding

norm is denoted by ‖uε‖ε = (uε, ūε)
1/2
ε .

Consider in Lε a linear operator Aε : Lε → Lε:

(Aεuε)i =

{
1
miε

∑Nε
i=1E

ij
ε (uiε − u

j
ε), xiε ∈ Ω

0, xiε ∈ ∂Ω
. (6.1)

From (2.2), (2.3), (3.5), it follows that Aε is a bounded selfadjoint operator
in Lε. By Lemma 4.3, Aε is a positive definite operator (uniformly with respect
to ε):

(Aεuε, uε)ε =

Nε∑
i,j=1

〈Eijε (uiε − ujε), uiε − ujε〉 ≥ α‖uε‖2ε, (α > 0). (6.2)

Let us write problem (5.1), (5.2) in the operator form in Lε:

Aεuε + λ2uε = λaε + bε. (6.3)

By the indicated properties of the operator Aε, its resolvent is a meromorphic
operator function of the parameter τ = λ2 with poles on the negative semiaxis
τ < 0. Hence the solution uε = uε(λ) of (6.3) is a holomorphic function of λ in
the half-plane Reλ > 0. Multiplying (6.3) on ūε and separating the imaginary
and real parts, taking into account (3.5) and (3.10), we obtain the estimate for uε
in the half-plane Reλ > σ (∀σ > 0), which is uniform with respect to ε: ‖uε‖ε ≤
C (C = C(σ) <∞). This implies that the vector-function ũε = uε(x, λ) defined
by (3.9) is a holomorphic function in Reλ > σ (∀σ > 0). Moreover, ũε is bounded
in the norm of L2(Ω) uniformly with respect to ε:

‖ũε‖L2(Ω) ≤ C <∞. (6.4)

2. We now turn to problem (5.22), (5.23). Denote by L2(Ω, ρ) a Hilbert
space of the complex-valued vector-functions in L2(Ω) with a weight ρ(x) > 0.
We define the scalar product in L2(Ω, ρ) by

(u,w)ρ =

∫
Ω
u(x)w(x)ρ(x) dx.
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Consider a sesquilinear form defined on the set of vector-valued functions C0(Ω)
that is dense in L2(Ω, ρ),

Â(u,w) =
1

ρ

∫
Ω

3∑
n,p,q,r=1

anpqrenp[u]eqr[w̄] dx

+
1

2ρ

∫
Ω
〈G(x, y)[u(x)− u(y)], [w̄(x)− w̄(y)]〉 dx dy.

Due to the properties of the elasticity tensor {anpqr}3n,p,q,r=1 and the long-range
matrix G(x, y), the form generates a self-adjoint operator A in L2(Ω, ρ) [22]. The
equality

(Au, u)ρ =

∫
Ω

3∑
n,p,q,r=1

anpqr(x)|enp[u]|2 dx

+
1

2

∫
Ω
〈G(x, y)[u(x)− u(y)], [ū(x)− ū(y)]〉 dx dy

is valid. From Korn’s inequality it follows that

(Au, u)ρ ≥ C‖u‖2◦
W1

2(Ω)
(C > 0). (6.5)

This inequality implies that the operator A is positive definite and has a com-
pletely continuous inverse operator. Now we can write problem (5.22), (5.23) in
the operator form

Au+ λ2u = λa+ b. (6.6)

The properties of the operator A imply that equation (6.6) has a solution u(x)
for complex λ (Reλ > 0). This solution is a holomorphic function of λ satisfying
the inequality

‖u‖ρ < C.

3. By Theorem 3.2, the vector-function ũε(x, λ) converges in L2(Ω) for λ >
0 to the solution u(x, λ) of problem (5.22), (5.23) (or equation (6.6)) as ε →
0. Moreover, the set of vector-functions {ũε, ε > 0} is bounded by the norm in
L2(Ω), uniformly with respect to ε in the half-plane Reλ > σ (∀σ > 0). Therefore,
using Vitali’s theorem and taking into account that u(x, λ) is holomorphic, we
get the following assertion.

Theorem 6.1. Let conditions I, II, (3.2), (3.6), (3.9) be fulfilled. Let us
construct the function ũε(x, λ) by (3.9) on the solution of problem (5.1), (5.2).
Then the vector-function ũε(x, λ) converges in L2(Ω) to the solution u(x, λ) of
equation (6.6) (or problem (5.22), (5.23)) uniformly with respect to complex λ
from the half-plane Reλ > σ (∀σ > 0).
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7. The end of the proof of the main theorem

By definition (6.1) of the operator Aε, problem (2.4)–(2.6) in Lε has the form

üε +Aεuε = 0,

uε(0) = aε, u̇ε(0) = bε.

From this on account of (6.1), we have

‖u̇ε‖2ε +

Nε∑
i,j=1

〈Eijε (uiε − ujε), (uiε − ujε)〉 = ‖bε‖2ε +

Nε∑
i,j=1

〈Eijε (aiε − ajε), (aiε − ajε)〉.

The equality above with discrete Korn’s inequality, the properties of Eijε and mi
ε,

and (3.9), (3.10), implies the inequality∫
ΩT

{(
∂ûε
∂t

)2

+ |∇ûε|2
}
dx dt ≤ CT (∀T > 0),

where ûε = ûε(x, t) is a spline vector-function, defined by (4.1), and C does not
depend on ε.

Thus the set of vector-functions {ûε, ε→ 0} is bounded in W 1
2 (ΩT ) uniformly

with respect to ε. We can extract a subsequence {ûε, ε = εk → 0} which con-
verges weakly in W 1

2 (ΩT ) to a function u(x, t) ∈W 1
2 (ΩT ) (and by the embedding

theorem, converges strongly in Lq(Ω× (0, T )) (q ≤ 4) and for almost all t ∈ (0, T ]
converges strongly in L2(Ω)). By the above and Lemma 4.1, we conclude that the
piecewise-constant vector-functions ũε(x, t), defined by (3.9), converge in L4(Ω)
and L2(Ω) to u(x, t) for almost all t ∈ [0, T ] as ε = εk → 0.

Let us prove that the function u(x, t) is a solution of problem (3.11)–(3.13).
By the definition of the operator A, this problem can be written in the operator
form

ü+Au = 0, (7.1)

u(0) = a, u̇ = b. (7.2)

The solution uε(x, t) of problem (2.4)–(2.6) is an inverse Laplace transform
of the solution uε(x, λ) of problem (5.1), (5.2):

uε(x, t) =
1

2πi

∫ σ+i∞

σ−i∞
eλtuε(x, λ) dλ, σ > 0.

Thus we have

ũε(x, t) =
1

2πi

∫ σ+i∞

σ−i∞
eλtũε(x, λ) dλ, (7.3)

where ũ(x, t) and ũ(x, λ) are defined by (3.9). Multiply the equality above by
ψ(x)ϕ(t), where ψ(x) ∈ L2(Ω), ϕ(t) ∈ C2

0 (0, T ], and integrate over ΩT . Changing
the integration order and integrating on t by parts, we obtain∫

ΩT

ũε(x, t)ψ(x)ϕ(t) dx dt =
1

2πi

∫ σ+i∞

σ−i∞

eλt

λ2

(∫
ΩT

ũε(x, λ)ψ(x)
∂2ϕ

∂t2
dx dt

)
dλ.
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Note that due to (6.4), the integrals on λ in the right-hand side converge abso-
lutely.

Let us pass to the limit in the equation above as ε = εk → 0. We should take
into account that ũεk(x, t) converges to u(x, t) in L2(Ω) and ũεk(x, λ) converges
to the solution u(x, λ) of equation (6.6) in L2(Ω) uniformly on the compacts Λ
in the half-plane Reλ > 0 (see Theorem 6.1). Hence we get∫

ΩT

u(x, t)ψ(x)ϕ(t) dx dt =

∫
ΩT

{
1

2πi

∫ σ+i∞

σ−i∞
u(x, λ)eλtdλ

}
ψ(x)ϕ(t) dx dt.

Since the linear combination of the functions ψ(x)ϕ(t) form a dense set in L2(ΩT ),
then u(x, t) is a solution of problem (7.1), (7.2). By the properties of the operator
A, this problem has the unique solution. Thus ũε(x, t) converges to u(x, t) in
L2(ΩT ) as ε→ 0. Theorem 3.2 is proved.

8. Periodic structure

We now consider the concrete case when the conditions of Theorem 3.2 are
satisfied and the elastic tensor {anpqr(x)} and the matrix-function G(x, y) are
computed explicitly.

Suppose that the points xiε of the equilibrium state of the system are located
periodically. They form a cubic lattice with a period ε. Each point xiε interacts
with the tops of the cube xjε. The points xiε, x

j
ε belong to the same cube. For

clarity, elastic springs are used to simulate the interaction. The stiffness of the
springs (the elasticity coefficient in Hooke’s law) directed along the edges of the
cubes is k1ε

2, directed along the diagonals of the faces of the cubes is k2ε, and
directed along the diagonals of the cubes is k3ε

2 (Fig. 8.1). Thus we have modeled
a strong short-range interaction. The corresponding coefficients of interaction

Fig. 8.1

(2.2) Kij
ε are of order O(ε), Kij

ε = k1ε, 4k2ε, 9k3ε.
Let us assume that there exists a long-range interaction. Each point xiε inter-

acts with the points xjε of the cubic sublattice {xjε}(i) with the period Nε (∃N ∈
Z, N ≥ 2), which is a weak interaction, and

Kij
ε = ε6K|xiε − xjε|,

where K(r) is a nonnegative function (see (2.3)).
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The system of the points xiε satisfies condition II. The corresponding inter-
action is described by (2.2), where α =

√
3, β = 2 Kij = k1, k2, k3; Aij = 1

only for |xiε − x
j
ε| = ε,

√
2ε,
√

3ε and for |xiε − x
j
ε| =

√
k2 + l2 +m2Nε (k, l,m =

1, 2, 3, . . . ).
By (3.3), the limit dense ϕ(x, y) is equal to 1

N3 . Therefore, by (4.4),

Gkl(x, y) =
K(|x− y|)(xk − yk)(xl − yl)

N3|x− y|2
. (8.1)

The components of the elasticity tensor for this system were calculated in [2] and
determined by the formulas:

annnn = k1 + 2
k2√

2
+

4k3

3
√

3
, annpp = anpnp =

k2√
2

+
4k3

3
√

3
(n 6= p)

and anpqr = 0 for other cases.

Remark 8.1. If we take k1 = k2√
2

+ 8k3
3
√

32
, then the components of the limiting

elasticity tensor satisfy the condition annnn = 2anpnp+annpp, and the limit model
of the elastic system is isotropic. Equation (3.12) has the form

∂2u

∂t2
− a∆u+ 2a∇divu+

∫
Ω
G(x, y)(u(x)− u(y)) dy = 0,

where a = annpp = anpnp, and the elements of the matrix G(x, y) are defined
by (8.1).

9. The model of Eringen’s type

As it was mentioned above, we obtain the homogenized system of integro-
differential equations (3.12) that formally differs from the Eringen continuum
model of nonlocal elasticity. Now we will show that this system can be written as
a model of Eringen’s type. Using the method from [11], we introduce the tensor
{tikjl} = {tkijl(x, y)}3i,j,k,l=1, x, y ∈ Ω of rank 4, defined by the formulas,

tikjl(x, y) =
∂2

∂xj∂yl

∫
Ω

∫
Ω

Gik(ξ, η)

4π2|x− ξ||y − η|
dξ dη. (9.1)

Here Gik(ξ, η) are components of the tensor G(x, y) of rank 2 defined by (3.15).
It follows from (9.1) and the symmetry of G(x, y) that tikjl(x, y) satisfy the equa-
tions

3∑
j,l=1

∂2

∂xj∂yl
tikjl = −Gik, x, y ∈ Ω× Ω, (9.2)

and have the symmetries tikjl(x, y) = tkijl(x, y) = tiklj(x, y) = tjlik(x, y).
Integrating by parts and taking into account (9.2), we obtain for each

u(x) ∈
◦
W 1

2(Ω):
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Ω

∫
Ω
〈G(x, y)(u(x)− u(y)), (u(x)− u(y))〉 dx dy

=

∫
Ω

∫
Ω

3∑
i,j,k,l=1

tikjl(x, y)

[
∂ui(y)

∂yl

∂uk(x)

∂xj
+
∂uk(y)

∂yl

∂ui(x)

∂xj

]
dx dy. (9.3)

Following [11], we introduce a tensor of rank 4 with the components:

cijkl(x, y) = tikjl(x, y) + tjkil(x, y)− tjilk(x, y). (9.4)

The tensor has the symmetries cijkl(x, y) = cjikl(x, y) = cijlk(x, y) = cklij(x, y).
Taking the above into account, we obtain from (9.3) and (9.4),∫

Ω

∫
Ω
〈G(x, y)(u(x)− u(y)), (u(x)− u(y))〉 dx dy∫

Ω

∫
Ω
cijklεij [u(x)]εkl[u(y)] dx dy, (9.5)

where εij [u(x)] = 1
2

(
∂ui
∂xj

+
∂uj
∂xi

)
are the components of the strain tensor.

Now we introduce a nonlocal stress tensor of Eringen’s type with the compo-
nents:

σij [u(x)] =
3∑

i,j,k,l=1

aijkl(x)εkl[u(x)] +

∫
Ω

3∑
i,j,k,l=1

cijklεkl[u(y)] dy.

Then, according to Theorem 3.2 and equalities (9.3), (9.4), we can rewrite ho-
mogenized equation (3.12) as follows:

ρ(x)
∂2ui(x)

∂t2
−

n∑
j=1

∂σij [u]

∂xj
= 0, x ∈ Ω, t > 0, i = 1, 2, 3.

Finally, we have obtained the equation which corresponds to the nonlocal model
of elasticity theory of Eringen’s type.
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Нелокальна модель теорiї пружностi як
неперервна межа 3D сiтки точкових взаємодiючих

мас
Mariya Goncharenko and Eugen Khruslov

Розглядаються малi коливання пружної системи точкових мас (ча-
сток) з нелокальною взаємодiєю. Вивчається асимптотичне поводження
системи, коли кiлькiсть часток прямує до нескiнченностi, а вiдстанi мiж
ними та сили взаємодiї прямують до нуля. Перший член асимптотики
описується усередненою системою рiвнянь, що є нелокальною моделлю
коливань пружного середовища.

Ключовi слова: нелокальна еластичнiсть, усереднення, iнтегральна
модель, модель Ерiнгена.
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