Особливості спектральної інтенсивності розсіяного світла поблизу точки фазового переходу в кристалах ніобата барію-натрію

С.Д. Точилін*

Запорізький національний технічний університет, вул. Жуковського, 64, 69093 Запоріжжя, Україна

(Отримано 08.09.2014; опубліковано online 29.11.2014)

Динамічна опалесценція, що проявляється в кристалах ніобата барію-натрію поблизу точки фазового переходу першого роду, задовільно описується при урахуванні спектрального інтервалу її спостереження та просторово-неоднорідних флуктуацій параметра порядку.

Ключові слова: М'яка мода, Фазовий перехід, Розсіяння світла.

PACS numbers: 78.20. - e, 64.70.K -

1. ВСТУП

В наш час дослідження м'яких мод, а також фізичних явищ тісно пов'язаних з ними, в сегнетоелектричних кристалах поблизу точки Кюрі є актуальною задачею [1].

Однак визначити параметри м'якої моди у безпосередній близькості від точки переходу важко, тому що відповідне коливання, як правило, стає передемпфованим [2].

Параметри м'якої моди, навіть у випадку її передемпфування, можна отримати при аналізі ізочастотних залежностей непружного розсіювання світла [2], які реєструються при фіксованих частотах Ω в області існування м'якої моди та повільній зміні температури.

Дослідження ізочастотних залежностей цікаві і у зв'язку з тим, що при цьому повинна виявлятися опалесценція динамічної природи. Ефект динамічної опалесценції (ДО) в сегнетоелектричних кристалах ніобіта барію-натрію (НБН) спостерігався нами раніше в роботі [3].

У той час у роботі [3] вказувалося, що для більш повного опису ефекту ДО необхідно ураховувати просторово-неоднорідні флуктуації параметра порядку, які обумовлюють дисперсію частоти м'якої моди та її кінцеве значення поблизу точки фазового переходу. Однак аналіз ефекту ДО в [3] з урахуванням флуктуацій такого роду не розглядався.

При дослідженні ДО важливим є також урахування експериментальних умов її спостереження [3].

У даній роботі, з метою детального опису ДО в кристалах НБН та визначення кінцевого значення частоти м'якої моди поблизу точки Кюрі, аналізуються експериментальні дані [3] про цей ефект з урахуванням як просторово-неоднорідних флуктуацій параметра порядку, так і реальної величини спектрального інтервалу її спостереження.

2. ТЕОРЕТИЧНИЙ АНАЛІЗ

Для кількісного опису ДО в кристалах використовується загальна теорія розсіювання світла поблизу точки фазового переходу в кристалах [4]. Відповідно до неї спектральна інтенсивність *J* розсіяного

2077-6772/2014/6(4)04044(3)

світла в кристалах, у випадку однокомпонентного параметра порядку η , без урахування просторовонеоднорідних флуктуацій, для релаксаційної моделі м'якої моди може бути записана у вигляді:

$$J = \frac{CT\eta_0^2(T)}{\pi\gamma \left(\frac{\Phi_{\eta\eta}^2}{\gamma^2} + \Omega^2\right)} = \frac{CT\eta_0^2(T)}{\pi\gamma \left(\frac{\Omega_0^4}{\Gamma^2} + \Omega^2\right)} = \frac{CT\eta_0^2(T)}{\pi\gamma \left(\Omega_R^2 + \Omega^2\right)}, (1)$$

де C – постійна величина, що не залежить від температури T та частоти Ω , $\eta_0(T)$ – температурна залежність рівноважного значення параметра порядку, Ω_0 і Ω_R – частота та «частота» релаксації м'якої моди, відповідно, $\Omega_0 = \sqrt{\Phi_{\eta\eta}/m}$, $\Omega_R = \Omega_0^2/\Gamma$, $\Phi_{\eta\eta} = \partial^2 \Phi/\partial \eta^2$, Φ – термодинамічний потенціал системи, Γ – коефіцієнт загасання, $\Gamma = \gamma/m$, m та γ – маса і коефіцієнт опору руху, відповідно, для осцилятора, що представляє м'яку моду.

У випадку фазових переходів першого роду, поблизу температури спинодалі несиметричної фази T_{S1} , маємо [4]:

$$\eta_0^2(T) \cong B$$
, $\Phi_{\eta\eta} = \sqrt{b(T_{S1} - T)} = \sqrt{bx}$, (2)

де b та B – постійні коефіцієнти, $x = T_{S1} - T$.

При кількісному аналізі температурних залежностей спектральної інтенсивності непружного розсіювання світла можуть бути використані приведені ізочастотні залежності, які описуються приведеною спектральною інтенсивністю $I(\Omega, x) = J I(nT)$, $n = BC I(\gamma \pi)$ [2]:

$$I(\Omega, x) = (\Omega_R^2 + \Omega^2)^{-1} = (cx + \Omega^2)^{-1}, \qquad (3)$$

де c – постійний коефіцієнт, $c = b / \gamma^2$.

Функція (3) при Ω=*const* має максимум з координатами:

$$I_0 = \Omega^{-2} , \qquad (4)$$

$$x_0 = 0$$
. (5)

^{*} tochno@inbox.ru

Як слідує з (4), при $\Omega \to 0$ максимум інтенсивності I_0 непружного розсіювання повинен необмежено зростати в точці фазового переходу, що й відповідає ефекту ДО. Однак з фізичних міркувань величина I_0 не повинна бути нескінченно великою.

Усунути розбіжність в (4) дозволяє урахування просторово-неоднорідних флуктуацій параметра порядку [3, 4]. У цьому випадку для визначення $I(\Omega, x)$, відповідно до [4], замість (1) та (3) варто використовувати вирази:

$$J = \frac{CT\eta_0^2(T)}{\pi\gamma \left[\frac{\left(\Phi_{\eta\eta} + aq^2\right)^2}{\gamma^2} + \Omega^2 \right]} = \frac{1}{\pi\gamma \left[\frac{\left(\Omega_{\eta\eta}^2 + \alpha_{0L}^2\right)^2}{\gamma^2} + \Omega^2 \right]} = \frac{CT\eta_0^2(T)}{\pi\gamma \left[\left(\Omega_R + \Omega_{RL}\right)^2 + \Omega^2 \right]}, (6)$$

$$I(\Omega, x) = \frac{1}{\left(\Omega_R + \Omega_{RL}\right)^2 + \Omega^2} = \frac{1}{\left(\sqrt{cx} + \Omega_{RL}\right)^2 + \Omega^2}, (7)$$

де $\Omega_{RL} = \Omega_{0L}^2 / \Gamma$ (Ω_{0L} , Ω_{RL} – гранична частота та гранична «частота» релаксації м'якої моди, відповідно), $\Omega_{0L} = q \sqrt{a/m} = \rho \cdot q$, q – модуль хвильового вектора коливання, що розсіює світло, $\rho = \sqrt{a/m}$ та a – постійні коефіцієнти (ρ характеризує дисперсію м'якої моди).

У ході досліджень ефекту ДО в області низьких частот Ω також необхідно урахувати умови її спостереження за допомогою оптичного приладу.

Позначивши апаратну функцію оптичного приладу як $A(\omega - \Omega)$, для приведеної спектральної інтенсивності, що реєструється в інтервалі зміни частоти пропущення ω спектрального приладу, характерному для даної апаратної функції, у випадку настроювання на деяку частоту Ω можна записати:

$$I(\Omega, x) = \int_{-\infty}^{+\infty} I(\omega, x) A(\omega - \Omega) d\omega, \qquad (8)$$

При реєстрації ізочастотних залежностей реалізується прямокутна апаратна функція, для якої, у відповідності з [5], справедливі співвідношення:

$$A(\omega - \Omega) = \begin{cases} A_0, |\omega - \Omega| \le \delta / 2, \\ 0, |\omega - \Omega| > \delta / 2, \end{cases}$$
(9)

де δ – спектральна ширина щілини, A_0 – постійний коефіцієнт (при фіксованих значеннях δ).

Беручи до уваги (9) та (7), замість (8), маємо вираз для $I(\Omega, x)$, який ураховує як умови спостереження, так і просторово-неоднорідні флуктуації параметра порядку:

$$I(\Omega, x) = \int_{\Omega - \delta/2}^{\Omega + \delta/2} \frac{A_0 d\omega}{\left(\sqrt{cx} + \Omega_{RL}\right)^2 + \omega^2}.$$
 (10)

Функція (10) при $\Omega = const$ має максимум з координатами:

$$I_{0} = \int_{\Omega-\delta/2}^{\Omega+\delta/2} \frac{A_{0}d\omega}{\Omega_{RL}^{2} + \omega^{2}} = \frac{A_{0}}{\Omega_{RL}} \left(\operatorname{arctg} \frac{\Omega+\delta/2}{\Omega_{RL}} - \operatorname{arctg} \frac{\Omega-\delta/2}{\Omega_{RL}} \right), \qquad (11)$$
$$x_{0} = 0. \qquad (12)$$

Як слідує з аналізу (11), у випадку урахування як просторово-неоднорідних флуктуацій параметра порядку, так і кінцевого значення спектрального інтервалу реєстрації непружного розсіювання світла, у точці фазового переходу першого роду в кристалах з однієї передемпфованою м'якою модою, варто очікувати прояв ефекту ДО. Однак, у цьому випадку, при $\Omega \rightarrow 0$, максимум інтенсивності I_0 непружного розсіювання має кінцеве значення в точці фазового переходу, яке дорівнює $2A_0\Omega_{RL}^{-1} \operatorname{arctg}(\delta/2\Omega_{RL})$.

3. АНАЛІЗ ЕКСПЕРИМЕНТАЛЬНИХ ДАНИХ

Проаналізуємо експериментальні дані по ДО в кристалах НБН, яка спостерігалася в [3] поблизу точки Кюрі за допомогою ізочастотних залежностей з частотою $\Omega \leq 10$ см⁻¹.

В [5] ізочастотні залежності реєструвалися з використанням Не-Ne-лазера ($\lambda = 632,8$ нм) та спектрометра ДФС-24 (ширина щілини 0,6 см⁻¹), при X(ZZ)Y – геометрії розсіювання.

Як з'ясувалося, приведені ізочастотні залежності спектральної інтенсивності для кристалів НБН мали виразні максимуми непружного розсіювання світла, що проявлялись при одній і тій же температурі, яка в [3] ототожнювалася з точкою спинодалі ($x_0 = 0$) розмитого сегнетоелектричного фазового переходу в Ba₂NaNb₅O₁₅.

Зі зменшенням частоти спостереження Ω величина цих максимумів різко зростала. В області низьких частот характер зміни інтенсивності розсіювання здобував вид опалесценції. При цьому при переході від частот Ω порядку 10 см⁻¹ до мінімально можливих, інтенсивність максимумів ізочастотних залежностей зростала в $\approx 10^3$ раз [3].

Експериментальні та теоретичні значення I_0 для кристалів НЬН, які були отримані в інтервалі частот від 0 до 10 см⁻¹ та сполучені по величині I_0 для $\Omega = 4$ см⁻¹, наведені в табл. 1.

Теоретичні значення I_0 визначалися нами із співвідношення (4), справедливого для наближення однієї м'якої моди. Як видно з табл. 1, у цьому випадку має місце задовільна згода з експериментом для всіх частот спостереження, крім $\Omega = 0$ см⁻¹.

Для уточнення характеру залежності $I_0(\Omega)$ ми використовували співвідношення (11), що враховує дисперсію частоти м'якої моди та кінцеве значення спектральної ширини щілини спектрометра, та спеціально розроблену (на мові програмування C++) комп'ютерну програму. При цьому спочатку, при використанні експериментальних даних по I_0 для Особливості спектральної інтенсивності...

Таблица 1 – Експериментальні та теоретичні значення І₀ для кристалів НБН

Ω, cm ⁻¹	0	2	3	4	6	8	10
<i>I</i> ₀ , від. од., (експеримент [3])	$1.2 \cdot 10^{5}$	167	131	100	62	40	29
<i>I</i> ₀ , від. од., вираз (4)	8	400	178	100	44	25	16
<i>I</i> ₀ , від.од., вираз (12)	$2.8 \cdot 10^{5}$	407	179	100	44	25	16

частот спостереження 0 та 2 см⁻¹, визначалося гранична частота релаксації м'якої моди Ω_{RL} . Потім обчислювалися величини I_0 для всього дослідженого діапазону частот. Крім того, визначалася гранична частота м'якої моди Ω_{0L} . При обчисленнях покладалося, що для кристалів НБН $\Gamma = 100$ см⁻¹ (оцінювалася за даними роботи [6]).

Як видно з табл. 1, теоретичні значення I_0 , отримані з використанням (11), задовільно описують експериментальні дані для кристалів НБН у всьому дослідженому діапазоні частот.

У той час розраховані гранична частота та гранична частота релаксації м'якої моди для кристалів $Ba_2NaNb_5O_{15}$ були рівні 1,7 см⁻¹ та 2,8·10⁻² см⁻¹ відповідно.

Розрахована величина Ω_{0L} близька до теоретичних значень частот компонент розсіювання Мандельштама-Бриллюена в кристалах НБН, які, відповідно до [7], для 90°-геометрії світла з довжиною хвилі $\lambda = 632,8$ нм та даними про показник переломлення та швидкості звуку в $Ba_2NaNb_5O_{15}$ [8], повинні бути порядку 0,5 см⁻¹. Такий результат аналізу ізочастотних залежностей у Ba₂NaNb₅O₁₅ дозволяє зробити висновок про те, що розм'якшення м'якої оптичної моди в кристалах ніобата барію-натрію, що проявляється в сигналах ДО, відбувається до її перетинання з акустичними модами.

4. ВИСНОВКИ

Таким чином, особливості розсіювання світла, які спостерігаються в кристалах НБН, можуть бути пояснені в рамках динамічної теорії фазових переходів.

Кількісний опис аномалій, які спостерігаються в області фазового переходу здійснюється на основі моделі однієї ефективної м'якої моди з урахуванням як дисперсії частоти м'якої моди, так і розділення спектрометра в ході експерименту.

Можна припустити, що подальші експериментальні дослідження обговорюваного ефекту дозволять уточнити межі застосовності теорії, а також обумовлять можливість його використання в прикладних цілях.

У той час для найбільш точного опису експериментальних даних по ДО варто використовувати моделі м'якої моди, які додатково ураховують взаємодію цієї моди з іншими коливаннями кристалічної ґратки.

The Features of the Light Scattering Spectral Intensity near the Phase Transition in Crystals of Barium Sodium Niobate

S.D. Tochilin

Zaporizhzhya National Technical University, 64, Zhukovsky Str., 69063 Zaporizhzhya, Ukraine

Dynamic opalescence, observed in crystals of barium sodium niobate near the point of first-order phase transition, is satisfactorily described by taking into account the spectral interval of its supervision and the spatially inhomogeneous fluctuations of the order.

Keywords: Soft mode, Phase transition, Light scattering.

Особенности спектральной интенсивности рассеянного света вблизи точки фазового перехода в кристалах ниобата бария-натрия

С.Д. Точилин

Запорожский национальный технический университет, ул. Жуковского, 64, 69093 Запорожье, Украина

Динамическая опалесценция, которая проявляется в кристалах ниобата бария-натрия вблизи точки фазового перехода первого рода, удовлетворительно описывается при учете как спектрального интервала ее наблюдения, так и пространственно-неоднородных флуктуаций параметра порядка.

Ключевые слова: Мягкая мода, Фазовый переход, Рассеяние света.

СПИСОК ЛІТЕРАТУРИ

- Е.Г. Максимов, УФН 179 № 6, 639 (2009) (Е.G. Maksimov, Phys. Usp. 52, 603 (2009)).
- 2. В.С. Горелик, Труды ФИАН **180**, 180 (1987).
- V.S. Gorelik, S.D. Tochilin, J. Russ. Laser Res. 24 No 4, 335 (2010).
- V.L. Ginzburg, A.P. Levanyuk, A.A. Sobyanin, *Phys. Rep.* 57, 151 (1980).
- 5. В.В. Лебедева, Экспериментальная оптика. (М: Физ. фак. МГУ: 2005).
- 6. В.С. Горелик, Труды ФИАН 132 (1982).
- И.Л. Фабелинский, УФН 164 № 9, 897 (1994) (I.L. Fabelinskii, *Phys. Usp.* 37, 821 (1994)).
- 8. А.А. Блистанов и др. Акустические кристаллы: Справочник (М: Наука: 1982).