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During many decades, continuous device performance improvement has been made possible only 

through device scaling. But presently, due to aggressive scaling at the sub-micron or nanometer region, the 

conventional planner silicon technology is suffering from the fundamental physical limits. Such imposed 

limits on further downscaling of silicon planner technology have lead to alternative device technology like 

Silicon-On-Insulator (SOI) technology. Due-to some of its inherent advantages, the Silicon-On-Insulator 

(SOI) technology has reduced the Short-channel-effects (SCEs) and thus increased transistor scalability. 

Till now, intense research interests have been paid in practical fabrication and theoretical modeling of SOI 

MOSFETs but a little attention has been paid to understand the circuit level performance improvement 

with nano-scale SOI MOSFETs. The circuit level performance analysis of SOI MOSFET is highly essential 

to understand the impact of SOI technology on next level VLSI circuit and chip design and for doing so de-

vice compact models are high on demand. In such scenario, under present research, a physics based com-

pact device model of SOI MOSFET has been developed. At the first phase of the compact model develop-

ment, a physics based threshold voltage model has been developed by solving 2-D Poisson’s equation at the 

channel region and at the second phase, a current-voltage model has been developed with drift-diffusion 

analysis. Different SCEs, valid at nano-scale, are effectively incorporated in threshold voltage and Cur-

rent-Voltage model. At the third phase, using the compact model, the Voltage Transfer Characteristics 

(VTC) for a nano-scale SOI CMOS inverter has been derived with graphical analysis. The impacts of differ-

ent device parameters e.g.; channel length and channel doping concentration on VTC has been investigated 

through simulation and the results have been analyzed. 
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1. INTRODUCTION  
 

Under present electronics era, the CMOS technology 

is widely used for circuit design for numerous applica-

tions [1]. Till now performance improvement of CMOS 

technology has been achieved by increasing the speed 

and decreasing, both the power consumption and size of 

its two fundamental building blocks, one nmos and one 

pmos device [2]. In recent time, as the scaling of planar 

MOS is facing significant challenges, several noncon-

ventional geometry MOS based CMOS structures have 

been studied experimentally as well as theoretically [2]. 

Among the nonconventional MOS structures, Silicon-

On-Insulator (SOI) technology has received much atten-

tion of the researchers due to some of its inherent func-

tional advantages [3]. The SOI CMOS technology offers 

many advantages over bulk CMOS technology, in par-

ticular, higher speed, high radiation tolerance, lower 

parasitic capacitance, lower short channel effects, better 

current deliverability, manufacturing compatibility 

with the existing CMOS technology [4]. Intense re-

search on experimental fabrication and theoretical 

modeling of SOI MOSFET has been carried out during 

last decades but till now, little attention has been paid to 

understand its circuit level performance improvement 

compared to conventional MOSFET [5]. But to under-

stand the true impact of SOI technology in next genera-

tion CMOS VLSI, the SOI MOSFET based circuit design 

and its performance analysis are truly essential. In such 

context, the development of SPICE compatible fast con-

verging, accurate SOI compact models and designing 

some circuits using those, are highly essential [6].  

In the present research work, a simple but accurate 

compact model of nano-scale SOI MOSFET has been 

derived. At the first phase of the compact model devel-

opment, 2D Poisson’s equation has been solved at the 

channel region and from that a threshold voltage ex-

pression has been derived for SOI MOSFET. Different 

SCEs like drain induced barrier lowering (DIBL) or 2D 

charge sharing (2DCS) are incorporated in analytical 

threshold voltage model. At the next phase, the threshold 

voltage model has been incorporated into drift-diffusion 

analysis to develop a current-voltage model. At the final 

phase, using Current-Voltage characteristics of nmos and 

pmos, the Voltage Transfer Characteristics (VTC) of a SOI 

CMOS inverter has been derived using graphical ap-

proach. Lastly, the effect of deferent device parameters on 

VTC are theoretically studied and analyzed. 

 

2. ANALYTICAL MODELING 
 

For short channel device, the potential profile in the 

channel is two-dimensional in nature [7]. Threshold 

voltage can be calculated by solving 2-D Poisson’s equa-

tion in the channel and current-voltage model can be 

formed from simple drift-diffusion analysis [8-9]. A 

layered structure of SOI MOSFET for compact model 

formulation is shown in Fig. 1. Let tgox, tSi, tbox, tsub and 

L be the thicknesses of gate oxide, silicon channel lay-

er, buried layer layer, substrate layer and metallurgi-

cal channel length of the device, respectively. 

http://jnep.sumdu.edu.ua/index.php?lang=en
http://jnep.sumdu.edu.ua/index.php?lang=uk
http://sumdu.edu.ua/
mailto:sanjoydeb@bitsathy.ac.in


 

A. DANIYEL RAJ, C. RAJARAJACHOZHAN, SANJOY DEB J. NANO- ELECTRON. PHYS. 7, 01004 (2015) 
 

 

01004-2 

 
 

Fig. 1 – A SOI MOSFET layered structure 

 

2.1 Threshold Voltage Modeling 
 

The 2-D Poisson’s equation in the two-dimensional 

channel region of the depleted silicon film body 

(0  x  L, 0  y  tsi) can be written as [10]; 
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where, (x, y) is the 2-D potential profile in the silicon 

channel, NA is the doping concentration of the p-type 

channel and the substrate and Si is the permittivity of 

silicon. Considering a second order potential approxi-

mation, the 2D potential profile in the channel is writ-

ten as [11]; 
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At the front and back channel interfaces, uniform 

electric field are considered and the surface potentials 

are abbreviated as sf(x) and sb(x), respectively. The 

four boundary conditions are given as [10-11]; 

1. Electric flux at the gate / front-oxide interface is 

continuous so at y  0; 
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2. Electric flux at the interface of buried oxide and 

the back-channel is continuous so at y  tSi 
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3. The potential at the source end is (L  0); 
 

 ( 0, 0) bix y V     (5) 

 

Where, Vbi is the built in potential in the channel.  

4. The potential at the drain end is (L  L); 
 

 ( , 0) bi DSx L y V V      (6) 

 

Where, BL is the dielectric permittivity of silicon di-

oxide, Vgs and Vss are the effective applied front and 

back channel voltages. The front and back channel 

voltages are expressed as Vgs  Vgs – Vffb and Vss  Vss –

Vbfb, where Vffb and Vbfb are the front and back channel 

flat band voltages, respectively. The values of the coef-

ficients F1(x), F2(x) and F3(x) derived by solving equa-

tions 2 and 3, 4 and device long channel threshold volt-

age can be obtained as [10-11]; 
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where, 2 ln( )B A
F

i

K T N

q N
   is the Fermi potential in the 

silicon film. To encounter the lateral field in the chan-

nel the boundary conditions at source and drain side 

(eqn. 5, 6) have been incorporated and the final short 

channel threshold voltage is obtained as; 
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Equation 8 can be further simplified as; 
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2.2 Current Voltage Modeling 
 

Incorporating the threshold voltage into drift-

diffusion analysis, I-V expression at cut-off, linear and 

saturation region for nmos has been derived as [12]; 
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Where Vth,nshort is the threshold voltage, n is the 

mobility of the electron, L is the channel length, W is 

the channel width and n is the channel length modula-

tion factor respectively for the nmos. Similarly consid-

ering ND (n-type channel doping concentration) in place 

of NA, p in place of n, Wp in place of Wn. 

 

2.3 Voltage Transfer Characteristics  
 

The voltage-transfer characteristic (VTC) can be 

graphically deduced by superimposing the current-

voltage characteristics of the nmos and the pmos devic-

es [13]. Such a graphical construction is traditionally 

called a load-line plot and it requires that the Idn – Vds 

curves of the nmos and pmos devices are transformed 

onto a common coordinate set [13]. The input voltage 

Vin, the output voltage Vout and the nmos drain current 

Idn as the variables of choice and the pmos Idp – Vds re-

lations has been translated into this variable space. 

The resulting load lines are plotted in Fig. 2. 
 

 
 

Fig. 2 – Superimposed I-V characteristics of n-MOS and p-MOS 
 

For a DC operating points to be valid, the currents 

through the n-MOS and p-MOS devices must be equal 

and graphically this means that the dc points must be 

located at the intersection of corresponding load lines 

[13]. In Fig. 2, a number of those points (for Vin  0, 0.5, 

0.75, 1 and 1.25 V) are marked and all these observed 

points are translated into the VTC [13]. One of the im-

portant VTC parameter is switching threshold, (VM) 

which is defined as the point where Vin  Vout. Its value 

can be obtained graphically from the intersection of the 

VTC with the line given by Vin  Vout. 

 

3. RESULT AND DISCUSSIONS  
 

The VTC of an inverter with higher noise margin 

will exhibit a very narrow high-to-low transition zone 

and VM at the middle of maximum Vout or Vin [14]. 

Steeper transition from high-to-low sate or vise versa 

will signify high gain and better noise immunity [14]. 
 

Table 1 – Parameter values used for simulation 
 

Parameter Value 

NA 1021 m – 3 

NSUB 1021 m – 3 

NS-D 1026 m – 3 

NG 1026 m – 3 

VSUB 0 V 

VDS 1 V 

T 300 K 

tgox 3 nm 

tSi 5 nm 

tbox 50 nm 

Vsat 8.3  104 mS – 1 

0,n 0.0612 m2V – 1S 

0,p 0.0300 m2V – 1S 

Wn 1 m 

Wp 2 m 
 

For the present analysis, results are simulated us-

ing the parameter values (default values) given in the 

Table 1 and any other specific change in parameter 

values from the default values are mentioned at the 

figure caption. 
 

 
 

Fig. 3 – Variation of VTC with different channel lengths for 

NA  ND  1021 /m3 
 

Under present analysis it has been found slope of 

VTC is steeper for longer channel and with the channel 

length reduction the steepness of VTC reduces (Fig. 3). 

The value of VM for L  100, 75 and 50 nm have been 

found 1.46, 1.35 and 1.29 volts, respectively which sig-

nify higher noise margin with longer channel length. 

This fact is attributed from the higher SCEs with short 

channel device compared to longer channel device [15]. 

Fig. 4, shows the variation of VTC with variable 

channel doping concentration, when channel length has 

been kept constant at 100nm. The switching threshold 

value for NA  ND  1019, 1020 and 1021 /m3 have been 

found 1.45, 1.30 and 1.23 volts, respectively. Short 

channel effects like two-dimensional charge sharing is  
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Fig. 4 – Variation of VTC with NA ( ND) for channel length 

100 nm 
 

much more pronounced with lower channel doping con-

centration and thus makes VTC flatter with reduced 

channel doping concentration [15]. 

 

4. CONCLUSION 
 

In the present analysis, a simple but accurate com-

pact threshold voltage model has been developed for 

nano-scale SOI MOSFET by solving 2D Poisson’s equa-

tion at the channel region. Different SCEs are incorpo-

rated in analytical threshold voltage model and finally 

threshold analysis has been extended into Current-

Voltage model for nmos and pmos. Using that compact 

approach, the VTC of a nano-scale SOI CMOS inverter 

has been derived using graphical analysis. The impact 

of different device parameters on VTC has been ana-

lyzed through simulation. It has been found that alt-

hough scaling down the channel length has given ad-

vantage in terms of area but it has reduced the noise 

margin as device with shorter channel length is less 

immune to different SCEs. Reduction of channel doping 

concentration will also induce more noise effect as re-

flected with flatter VTC slop with lower doping concen-

tration. So, the SOI CMOS circuit’s efficiency can be 

significantly improved with successful reduction of 

SCEs at nano-scale and that can be achieved through 

new device structures and material property improve-

ment.
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