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Using the elastic continuum model, exact analytical solutions for the equations of motion for the elastic
medium of a multilayer resonant tunneling nanosystem describing the shear modes of acoustic phonons
are obtained. The expressions describing the components of the stress tensor arising in the studied
nanostructure and boundary conditions for the components of the elastic displacement vector and the com-
ponents of the stress tensor are obtained. Using the obtained equations of motion for the elastic medium
and boundary conditions, the theory of the spectrum and phonon modes for shear acoustic phonons is de-
veloped in the proposed work for a plane arsenide semiconductor nanostructure. It is shown that the spec-
trum of the displaced acoustic phonons of the studied nanosystem is obtained from the dispersion equation
following from the boundary conditions using transfer-matrix method. Using the orthonormality condition,
the normalized modes of shear acoustic phonons are obtained. For the parameters of the three-barrier
nanostructure — the active zone of a quantum cascade detector — the calculation of the spectrum of acoustic
phonons and its dependencies on the wave vector and the geometric parameters of the nanostructure has
been performed. It is shown that the calculated dependences of the spectrum of acoustic phonons on the
wave vector form three groups with boundary values equal to the corresponding energies of acoustic pho-
nons in massive crystals. Also it is obtained that an increase in the thickness of the internal barrier at con-
stant other geometrical parameters of the nanosystem leads to a steady decrease in the values of the pho-
non energy levels energies. The proposed theory can be used to study the scattering of electron fluxes on
acoustic phonons in multilayer resonant-tunneling structures.
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1. INTRODUCTION

The rapid development of nanoscience as a part of
solid state physics determines the current relevance
and wide range of nanotechnology applications [1-3]. In
particular, in the physics of semiconductor nanosystems,
the creation of quantum cascade lasers (QCL) [4, 5] and
detectors (QCD) [6, 7] operating in the terahertz range of
electromagnetic waves is significant. To expand the ca-
pabilities of the above-mentioned nanodevices, it is im-
portant to take into account the effects of various kinds
arising in multilayer semiconductor resonant tunneling
structures (RTS), which are their functional elements.

Despite the fact that the effects of the interaction of
electrons tunneled through a RTS with optical pho-
nons, constant electric and high-frequency electromag-
netic fields, have been sufficiently clarified and ana-
lyzed [8-11], studies of acoustic phonons and their in-
fluence on electron tunneling transport are practically
absent. Attention should be paid only to a few papers,
calculations of the acoustic phonons spectrum in which
were performed for single quantum wells [12] and
nanosystems of cylindrical and spherical symmetry
[13, 14]. It should also be noted that the classification
of acoustic phonons arising in a quantum well placed in
a massive semiconductor medium and calculations of
their spectra was investigated in [15]. However, for
RTS, used in QCL and QCD due to the mutual con-
sistency of their cascades, this theory is not applicable,
primarily as it is necessary to use other boundary con-
ditions for the displacement vector and the components
of the stress tensor.

Based on the model of an elastic continuum, the
theory of the spectrum and acoustic modes of shear
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acoustic phonons arising in two-well-RTS with GaAs —
quantum wells and AIAS — quantum barriers was de-
veloped in the proposed work. Direct calculations of the
spectrum of acoustic phonons were performed for the
three-barrier RTS as the active band of QCD. It is
shown that the developed theory can be the basis for
studying the interaction of electrons with a shear
acoustic phonon in multilayer RTS.

2. EQUATIONS FOR SHEAR ACOUSTIC
PHONON MODES IN NANOSTRUCTURE.
DISPERSION EQUATIONS FOR THE
DETERMINATION OF THE ACOUSTIC
PHONON SPECTRUM

We will explore the shear acoustic phonons arising
in the RTS, consisting of two In1..GaxrAs potential quan-
tum wells and internal Ini.Al:As potential barrier. The
geometrical scheme of the nanosystem is presented in
Fig. 1.

The Oxs axis is directed perpendicular to the inter-
faces of the nanosystem media. In view of this and the
designations in Fig. 1, the density of the nanostructure
material medium can be represented as

p00) = 3 PP [006 - ") - 006 — P |,
p=0

where X:SO) = —o0; X§7) =400, pP= (TG s and

O Por P=135
o P=0,2 4.

is the density of the correspond-
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ing nanosystem layer material, 6(x;) is the Heaviside

unit function.
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Fig. 1 — Geometric scheme of the three-barrier RTS

Using the elastic continuum model, the equation of
motion for the elastic displacement vector in the iso-
tropic case looks like:

62U(x1, Xy, X3) _ 0o (X, %, X3)

ot ox;

p(x3) 1 j:1|2|3;

@)
where 0} (X, %,,%;) is the stress tensor. Equation (2)

can be reduced to the form:

o’u - -
p(X3)¥ =(Cy, +2C4,)V (V1) -C,,Vx(V x1), 3

U=0(X,%, %),

dzul(P)(X)
S W

2
ax; Y,

where Ul(p) =wf(C1(2p) +2C§f))p(p); Ut(p) :«¢C§f) 1 p? s the

propagation velocity of longitudinal and transverse
waves, respectively.
Solutions of equations (8) are as follows:

2
2 W 1(p) _n
Uy (X3) =0;

P

_ (P (p)
u:(fp)(x3):A1(p)e 07% +Bl(p)el|pxa;

u;fp)(x3) _ A(p)em‘p’xa i Bt(p)e;a‘"’xs;

)

To find u:(gp) (%3) and u;sp) (%3), the conditions (6)

are used. Since

Vx(0, (%) +00y, (%)) =0 (10)

2.t
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where

6
Cioagy = ch(zpzu) [H(XS - ") = 0(x, - Xépﬂ))] =
p=0

3 Choa,» P=135
C12(44)1, p=0,214

“4)

are the elastic constants for the corresponding p-th
RTS layer.

In the «case of shear acoustic phonons
(X, Xy, X5) =U (X, X5) =U(X)U(X;) where the vector

U(X;) has two non-zero components:

U(xy) =0y (%) +0, (X5) = (ux1 (%3);0; Uy, (Xa)) )

Vectors U, (x3), a,, (%3) can be represented in the form:

0, (%) = U;(l (%) + LT)L (%); -
0, (%) =y (%) +Ty, (%),

where for the components U, (X;) and U, (X;) of shear
acoustic phonons, the following conditions are satisfied:
= = 2 i
V x u;lm (%) =0, V-(V Ty _ (%)) = V7T, (%3);

®)
VT, (%) =0; Vx (VT (%)) ==V,  (X)-

Solutions of equation (3) taking into account (5), (6) will
be found in the form:

DX, Xp, X5) =T (X, Xg) = T (x5 )€' @™, (7

Then equation (3) within the p-th RTS layer splits into
two equations:

t(p) _
u (%) =0, (®
dx32 utzp . (%)
and
=t —t _
V-(uxi(x3)+uxs (x3))_0, (11)
then from (11) and (12), respectively, we get:
ol (%;) 0y (%) .
X x
3 X (12)
oty (xg) oty (Xs)
1 + 3 —
X OXg
Accounting of (7) gives:
. | (p)
u>l(3 (X3) = —l aqu (XS) — ii(A(p)e'll(p)xs _ BI(P)eZ|(p)X3 )’ (13)
q 0x q
U (%) =i ?p) (A(P)e‘lf”xs —B(Pen™ ) (14)

Xt
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Now the solutions of equations (8) within the RTS can be represented as:

(0) (0) _,(6) _ (P
Uy, (%) :U'xfp)(xs)+utxfp’(xg) :(B,(O)e’f' % 4 et X3)9(—z)+(A1(6)e #7% 1 p®)g zlpx3)9(X3_X§5))+

5
+3 (A(p)e—z.‘“’xg +BPer™ 4 AP 4" | B(Penx )[9(X3 —xPDY = O(x, xgm)];
p=:

U, (Xg) =y (x3)+u (x3)_—(;('0I B“’)elI LR I q B(p)el‘ X3}9( Z)+ (15)
Zt

(P)
+i[ZI_(A1(p)ez.‘”’x3 _ Bl(p)ez.””xa) (A(p)e 2% _ Bt(p)e;d"’xa) 0(x; — X&)+
q

_HZ:L{Z'q A1(6)e 7P X3 A z(p) As)e ltp XB]I:H(X3 X3p 1) Q(X _X(P)):|
p

In expressions (15) it is taken into account that sor o, &
from a physical point of view deformation can not grow ¢
infinitely when X; — too, which requires enforcement

= (Xl; X3) are used, that is:

©) | (p)
.. u X X
of condition: it (%) x3—>x§p’—5 (%) X —>x3'”+5
(p) (P)
u,,,, (%) i ™ 0. (16) Uy, (xg)‘xﬁxép)_ 5 (%), s
oM — 5P 17
Condition (16) is ensured by equating to zero the coeffi- xgxl( S5 O, (%) YooxP s (7
cients in expressions (15) at X; <0 and X; > X(S) that e e
is A(O) — A(O) — ; B|(5) — BI(S) =0. X3x3( 3) x _>X§D)7(5 X3X3( 3) X —)Xgp)Jr(S’
To determine the coefficients 60, p=0-5.
B|(0),Bt(0)| A(ﬁ), A(6)’ A(P), Bl(P), A(P), Bt(p) , the continuity con- . .
ditions of the displacement vector components where in ratios (17):
Uy, (x3), Uy, (X3) and the components of the stress ten-
outP (x3)  aul” (x,) aul”(x) )
o) (x) = CP | 22— 20 (=P iquiP (xg) + —" [ =
0%, OXg 0%y
(P (P) A(P =75, Mp®er | 4 ® | D2 [ 4 ™ |gPar™% |aitx -
=Cu’ | 21" Ae +27'B"e NOREL Ate H =t B"'e e,
At Xt
o1 (x) ouP () ) |
(p) (Xs) C VU(le Xg) + ZCﬁp) 5 = iqcl(zp)uilp) (%) + (Cl(zp) + 2022)) 5 e =
X3 X3 (18)

(D)( )) . .
- g u o) +fp I =i[[qu2p) (Zlq )’ cy JA‘w)e A%
3

(qcfzp) @™ C(p)JB Ped” 1g(CP - P | APe A% 1 q(C - C(p))B‘”eh‘”*s]
q

cfy =cfp ~2c.

The ratio between the coefficients is established using the transfer matrix method:
A(p), Bl(p), A(p), Bt(p) of the p-th and p+1-th RTS layers
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A‘(p) A|(D+1)
B(P) (P+D)
! =T(P.P+Y) ! TP — MM (19)
AP AP | PR
Bt( p) Bt(p+1)
where, taking into account (15), (17), the matrix M p is defined as:
e"" PP e}a‘p)X“” e—;a“”Xé"’ ezf”’X&")
i }a(p) efl.‘%") _ }a(p) AN (PP i q e — i q e,l‘(p)xy)
(p) (p)
q q Xt yA:

_Zcif)ll(l))e*lfp)xw 2C44 (P

Now the coefficients Bl(o), BI(O) in the medium to the
left of the RTS can be expressed through the coeffi-
clents A(G) , A(S) in the medium to the right of the RTS:

0 A®
B® 0
' |=T09 : @1)
0 A(G)
B(® 0

where
T8 =T(q, ) =TOVT AT @IT BT ST () (22)

is the transfer matrix of nanostructure.
Then the dispersion equation, from which the spec-
trum an = ha)nyq of shear acoustic phonons of the

studied RTS is determined, is obtained by equating the
determinant of the transfer matrix to zero:

T(0,)|=0. (23)
Designating
(0) (6) (6) ()
qo)zB‘—; |(6)=A—;afe)=A—;a|(")=£,
Bl(o) BI(O) BI(O) BI(O)
(p) (p) (p) 24)
ORI M :A_.bt(p):Bt_
I Bl(o) 1 .

and using the phonon amplitude normalization condi-
tion [16]

BV | P06, 000U, 06) 1, ()u5, () =

(P)y(P)
| 3

(p))2
i[qu(z) (Z|q) C(p)] o i[qcl(zp)_()ﬁq) Cl(lp)JeZ;p)xép)

[ q(zp) Z(p)Je 209 ( q(2 +Zt jeh(mx(p)
X X

iq(Cl(zp) _Cl(lp) )e-l[(p)x(p q<c(p) C )el

(20)

_h
20, 25 ’

(25)

all the coefficients (24) are expressed in terms of the
coefficient Bl(o) , which can be found from (25). Thus, all

the coefficients in (17), and hence the acoustic modes
U, (X3) and st(xs) are uniquely determined.

3. DISCUSSION OF THE RESULTS

Using the theory developed above, we carried out
calculations of the shear acoustic phonons spectrum on
the wave vector ( and the geometric parameters of the

studied RTS with GaAs — quantum wells and AlAs —

quantum barriers. The geometric parameters of the
three-barrier RTS were chosen as follows: quantum
well widths d, =d, =2 nm, potential barrier widths

d, =d; =d; =1nm. The physical parameters of the

nanostructure are as follows: material density of poten-
tial barriers and wells

£, =3,76 glcm®; p, =5,32¢g/cm®,
constants
CY =12,02-10" dyn/cm?*; C§ =11,90-10" dyn/cm?;
C9 =5,99-10" dyn/cm*; C% =5,94-10" dyn/cm?.

In Fig. 2 we show the spectrum of acoustic phonons
Q. =hw,, depending on the wave vector

g=1/(d,+d, +d;+d, +d;).
As can be seen from Fig. 2, the dependencies
Q@) =hw,,(q) form three different groups

(1, 11, HII') whose energy values lie within the intervals
I(Qti SQSQtO), II(Qto SQSQ,l), III(QIl SQSQ,O),

where

respectively, elastic
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Q, (@) =" (a); Q, =" (a);
are the corre-
0, () =97 (a); Q, = QP (q)
sponding values of the transverse and longitudinal
acoustic phonon energies for massive AlAs and GaAs
crystals, respectively.
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Fig. 2 — Dependence of the acoustic phonon spectrum groups with
different dispersions on the wave vector ¢

At the same time, for the I and III groups of the
spectrum, the variance of the dependences is as follows:
the energy values begin at the values Q. (q) = Q (q)

and Q,,(q) =Q), , respectively, and with increasing g
they also grow, reaching values €Q.,(q) =€, (q) and
Qq(a) = €, . For the II group, the values of the pho-
non energy begin at Q,(q) = Q (q) , and with increas-
ing g they increase reaching values €,(Q) =Q . It

should be noted that the dependences for the I and III
groups of the spectrum have a similar behavior, con-
sisting in the approximation of the curves for the adja-
cent levels Q,(q) and Q,,,,(q), however, for the III

group, the adjacent level except for the approximation,
as can be seen from Fig. 2 tend to merge with increas-
ing g. By their physical nature, phonons of the I group
belong to the transverse displacements of the medium
and of the III group — to the longitudinal displace-
ments.

Fig. 3 illustrates the dependences of the phonon en-
ergy on the position b=d, +d, of the internal poten-

tial barrier in the total potential well calculated with
the value of the wave vector q=1.7, while the other
geometric parameters of the RTS are constant.

With the value of the wave vector =1.7, as seen

from Fig. 2, there are acoustic phonon modes of the I
and IIT established groups, the energies of which lie
within QT_l <Q< Qto and Qll <Q< Qlo .

Fig. 4 shows the dependences of the phonon mode
energies for the I and III groups on the thickness d; of

the internal barrier calculated for q=1.7.

JJ. NANO- ELECTRON. PHYS. 11, 01019 (2019)

Q

8 lo

Fig. 3 — The dependences of the acoustic phonon spectrum groups
on b=d,+d, forg=1.7

In addition, as can be seen from Fig. 3, two curves
Q. =0Q,(q) are formed in each dependency group.

With a change of b for N=1 and Nn=2 in both curves,
one and two maxima are formed, respectively. This
suggests that the processes of branch formation for the
transverse and longitudinal components of the phonon
modes are weakly coupled.

Q. ()
3 1 1 1 1 1 1
0,0 0,5 1,0 15 2,0 25 3,0 3,5
d,, nm

3

Fig. 4 — The dependences of the acoustic phonon spectrum groups
ondsfor g =1.7

As can be seen from Fig. 4, an increase in the thick-
ness of the internal barrier at constant other geomet-
rical parameters of the nanosystem leads to a steady
decrease the values of the phonon energy levels ener-
gies. In this case, there is a gradual convergence of the
first and second phonon energy levels in each group.

4. CONCLUSIONS

Using the model of an elastic continuum, the theory
of the energy spectrum and phonon modes of shear
acoustic phonons arising in a two-dimensional plane
nanostructure is developed. It is shown how the acous-
tic modes can be normalized for the studied type of
acoustic phonons. Using the developed theory on the
example of a double-well nanosystem with GaAs —

quantum wells and AIAS — quantum barriers, we cal-
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culated the spectrum of shear acoustic phonons. The
properties of the shear acoustic phonons spectrum aris-
ing in the nanostructure on its geometrical parameters
are established. The developed theory can be used as a

JJ. NANO- ELECTRON. PHYS. 11, 01019 (2019)

basis for further investigation of the interaction pro-
cesses of electrons with shear acoustic phonons in mul-
tilayer arsenide semiconductor nanosystems.
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3mimyBajbHi akycTudHi GpOHOHM B GaraTomapoBUX apCeHigHnx
HANIBIPOBIIHUKOBUX HAHOCTPYKTYpPax

1.B. Boiiro, M.P. Ilerpuk

TeproninocvKkull HQUIOHANLHUT MexHIwHUl yHisepcumem tmeri Isana Ilynios,
eyi. Pycvra, 56, 46001 Tepnoninoy, Yrkpaina

3 BHKOPHUCTAHHSAM MOJIEJII IPYIKHOI0 KOHTUHYYMY OTPHMMAHI TOYHI aHAITHYHI PO3B'SI3KU JJIsI PIBHSIHB
PyXy HPY:KRHOTO CEePeOBHINA 0AraToIIapoBOl PEe30HAHCHOI TYHEJIBHOI HAHOCUCTEMH, 10 OIMCYIOTH 3MIILyBa-
JBHI MoOAM arycTHdHuUX (oHOHIB. OTPpUMAHO BHpPA3H, IO 3aJa0Th KOMIIOHEHTH TEH30pa HAIpPYIKeHb, SKi
BUHUKAKTH B JIOCTIPKYBAHIN HAHOCTPYKTYPi, & TAKOkK TPAHHUYHI YMOBH JIJIsI KOMIIOHEHT BEKTOPA IPYIKHOIO
3MIIIEHHS Ta KOMIIOHEHT TeH30pa HAIIPY:KeHb. 3 BUKOPUCTAHHAM OTPUMAHUX PIBHSHD PYXY JJIS IPYIKHOTO
CEepPEeIOBUINA 1 TPAHUYHUX YMOB Y IPOIIOHOBAHIN POOOTI IJIs IJIOCKOI apeceHiTHOI HAINBIIPOBIIHUKOBOI HAHO-
CTPYKTYPH PO3po0JIeHa Teopisa cIeKkTpa 1 (POHOHHUX MO/ JJIA 3MIIyBaJbHUX aKyCcTHIHUX GoHOHIB. [Tokaaa-
HO, IO CIIEKTP 3MIIYBAJbHUX AKYCTHYHHUX (POHOHIB JOCJIJI3KYBAHOI HAHOCUCTEMU OTPUMYETHCS 3 JUCIIED-
CIHOTO PIBHSIHHS, I0 BUIJIMBAE 3 TPAHUYHUX YMOB 3aCTOCYBAHHSM MeTO/y TpaHcdep-marpuili. Bukopuc-
TOBYIOUM YMOBY OPTOTOHAJIBHOCTI, OTPHMAHI HOPMAJII30BAHI MOOM 3CYBHUX AKyCTHYHMX (poHOHIB. Jsa ma-
paMerpiB Tpubap epHOI HAHOCTPYKTYPH - AKTHBHOI 30HU KBAHTOBOIO KACKA/HOIO JIETEKTOPa - BUKOHAHO PO-
3PaXyHOK CIIEKTPY aKyCTHYHHUX (DOHOHIB 1 HOT0 3aJIeKHOCTEH BiJi XBUJILOBOTO BEKTOPA 1 T€OMETPUYHHMX IIa-
pamerpiB HaHOCTPYKTypu. [lokasawo, 1m0 po3paxoBaHi 3aJIEKHOCT] CIEKTPA aKyCTUYHUX (DOHOHIB BIJ[ XBHU-
JIBOBOTO BEKTOPA YTBOPIOIOTH TPHU TPYIH 3 TPAHUYHUMHU 3HAYEHHAMH, PIBHUMU BIIOBITHAM €HEpriaM aKyc-
TUYHUX (POHOHIB B MACHBHUX KPUCTAJIAX. TAK0OK BCTAHOBJIEHO, IT[0 30LJILITIEHHS TOBIIWHNA BHYTPIIITHHOTO Oa-
p'epa IIpu MOCTIMHMX IHINIMX MEOMETPUYHMX ITapaMeTpax HAHOCUCTEMHU IIPU3BOIUTE JI0 CTIAKOTO 3MEHIIIeHHS
3HAYEHb eHeprii piBHIB QoHOHIB. Po3BrHEHA Teopist Moske OyTH 3aCTOCOBAHOIO JIJIS JIOCIIIKEHHS PO3CITHHS
©JIEKTPOHHUX ITOTOKIB Ha aKyCTUYHMX (DOHOHAX B 0AraToIIapOBUX PE30HAHCHO-TYHEJIBHUX CTPYKTYpPaX.

Knrouori cimoBa: Axycruuni donoru, @ononni monu, PesomancHo-tyHesnpHa cTpykTypa, KBanTOBUI
KackaHuM Jasep, KBaHTOBMIT KacKaJHUH JeTeKTOP.
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