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Sergei Solodky, Evgeny Volynets

Ðåçþìå. Äëÿ ðîçâ'ÿçóâàííÿ íåêîðåêòíî¨ çàäà÷i ó ñîáîëiâñüêèõ øêàëàõ,
îòðèìàíî¨ â ðåçóëüòàòi çàñòîñóâàííÿ ìåòîäó êîëîêàöi¨ äî iíòåãðàëüíîãî
ðiâíÿííÿ Ôðåäãîëüìà ïåðøîãî ðîäó, âèêîðèñòàíî ïî¹äíàííÿ ν-ìåòîäiâ ç
ïðèíöèïîì áàëàíñó ÿê àïîñòåðiîðíèì ïðàâèëîì âèáîðó ïàðàìåòðà ðåãó-
ëÿðèçàöi¨.
Abstract. To solve ill-posed problem in Sobolev scales appearing as a re-
sult of application by a collocation method to Fredholm integral equation
of the �rst kind a combination of ν-methods with balancing principle as an
a-posteriori regularization parameter choice rule is used.

1. Introduction
Let us consider an equation

Af = g (1)
with integral operator A de�ned as

Af(x) :=
∫

Ω
k(x, t)f(t)dt, x ∈ Ω.

Here Ω ⊂ Rd is a bounded domain with a Lipschitz continuous boundary and
kernel k(x, t) : Ω × Ω → R is such that A is compact operator with in�nite
dimensional range acting from L2 = L2(Ω) into L2. Without loss of generality
we may assume that ‖A‖ ≤ 1.

To guarantee a stable solution some regularization method should be used.
In the paper we use ν-methods, but regularization process will be done not
for original problem (1) but for semi-discrete equation obtained from it by
collocation scheme. Let X = {x1, . . . , xn} ⊂ Ω be some set of pairwise distinct
points. Consider an equation

AXf = ḡ, (2)
where ḡ = {g1, . . . , gn}T , gj = g(xj), and AX is de�ned as

(AXf)j = Af(xj), 1 ≤ j ≤ n,

i.e. AX is the restriction of A to set X (AXf = Af |X). To obtain good
approximation to exact solution in the framework of ν-methods it is important
to choose regularization parameter in properly way. In this case regularization
parameter is the number of iteration step. As a rule we use balancing principle
(see [5], [7]).

†Key words. Inverse problems, ν-methods, Sobolev scales, collocation method, a-posteriori
parameter choice, error bound.
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In practice exact right-hand side of (1) is usually unavailable and only noisy
data vector ḡδ = {gδ

1, . . . , g
δ
n}T such that
|gj − gδ

j | ≤ δ, j = 1, n

is known. Let n-dimensional Euclidean space Rn provided with standard norm
‖·‖Rn and corresponding inner product 〈·, ·〉Rn . Then the whole data error can
be estimated as

‖ḡ − ḡδ‖Rn ≤ δ
√

n.

Our aim is stable recovery of unknown solution of (2) from noisy values ḡδ.

2. ν-methods in Sobolev scales
Following [2] we assume that A acts along scale of Sobolev spaces Hτ , τ ≥

d/2, with step α > 0 i.e. there are constants c
′′ ≥ c

′ ≥ 0 such that for �xed
α ∈ R

c
′‖f‖τ ≤ ‖Af‖τ+α ≤ c

′′‖f‖τ . (3)
Recall that Sobolev space Hτ = Hτ (Ω) is completion in norm of space of square-
summable function in Ω together with derivatives of order τ , and H0 = L2(Ω).

For the �rst time ill-posed problems in Hilbert scales was considered in [6].
But in the paper we consider the case of discretization by projection methods.
The �rst result in Hilbert scales for the case of discretization by collocation
method was obtained recently in [2] where a-priori rule is used for regularization
parameter choice. We consider aposteriory rule for choosing the parameter, i.e.
without information about smoothing of exact solution.

Let f∗ be an exact solution of original problem (1). Then f∗ also solves
semi-discrete problem (2) and can be represented in the form

f∗ = fδ + v0,

where fδ = A†X ḡ, A†X is the Moore-Penrose generalized inverse of AX , and v0

belongs to the null space of AX .
We will obtain approximation to solution fδ. Since AX acts from Hτ into

Rn than fδ ∈ Hτ for some τ > 0.
In [3] was shown that always exists some continuous increasing index function

φ(λ), λ ∈ [0, 1], such that φ(0) = 0 and
fδ = φ(A∗XAX)v, (4)

where v ∈ Hτ , ‖v‖τ ≤ ρ, ρ > 0, and A∗X : Rn → Hτ is the adjoint of AX . Later
we assume that (4) is ful�lls.

Recall that ν-methods is the process of successive computation of elements
f δ

k , k = 1, 2, . . . by the rule
f δ

k = pk(A∗XAX)A∗X ḡδ,

where {pk} is some series of the polynomials of order k− 1. Consider one more
polynomial:

rk(λ) := 1− λpk(λ).
It is easy to obtain that for fk = pk(A∗XAX)A∗X ḡ we have

fk − f δ
k = pk(A∗XAX)A∗X(ḡ − ḡδ),
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fδ − fk = rk(A∗XAX)f †,

sup
0≤λ≤1

√
λpk(λ) ≤ 2k, (5)

sup
0≤λ≤1

λpk(λ) ≤ 2, (6)

|λµrk(λ)| ≤ cµk−2µ, (7)
|rk(λ)| ≤ 1, (8)

where λ ∈ [0, 1], cµ > 0 is some constant, 0 < µ ≤ ν.

3. Auxiliary assertions
Lemma 1. If φ(t)

tν−1/2 is the decreasing function then estimations

‖fδ − fk‖τ ≤ κρφ(k−2), (9)

‖AXfδ −AXfk‖Rn ≤ cνρk−1φ(k−2), (10)
are hold, where c and cν are some constants.
Proof. In [1, Theorem 6.15] the estimate

‖fδ − fk‖ ≤ κ‖fδ − fγk,ν‖,

is obtained, where fγk,ν =
ν∑

i=1
γi−1

k (A∗XAX + γkI)−iA∗X ḡ is the approximate
solution obtained by iterated Tikhonov method of order ν (ν is integer), γk ∈
[(k+1)−2, k−2], and κ is a constant. On the other hand, it is easy to show that

‖fδ − fγk,ν‖τ ≤ ρφ(γk).

So, �rst statement of the Lemma is proved.
Further
‖AXfδ −AXfk‖Rn = ‖AX(fδ − fk)‖Rn = ‖AXrk(A∗XAX)fδ‖Rn =

= ‖AXrk(A∗XAX)φ(A∗XAX)v‖Rn ≤ ‖v‖τ sup
0≤λ≤1

√
λrk(λ)φ(λ).

To estimate expression in the right-hand side we consider two cases.
1. λ ≤ k−2. Due to (8) and increase of the function φ we have

√
λrk(λ)φ(λ) ≤ k−1φ(k−2).

2. k−2 ≤ λ. Due to decrease of the function φ(t)

tν−1/2 and (7) we obtain
√

λrk(λ)φ(λ) =
√

λrk(λ)λν−1/2 φ(λ)
λν−1/2

≤
√

λrk(λ)λν−1/2 φ(k−2)
k−2(ν−1/2)

≤

≤ λνrk(λ)
k−2ν

k−1φ(k−2) ≤ cνk
−1φ(k−2).

Hence,
‖AXfδ −AXfk‖Rn ≤ cνρk−1φ(k−2)

and Lemma is proved. ¤
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Remark 7. It is follows from decreasing of φ(t)

tν−1/2 that in the case of φ(γ) = γβ

the restriction is arisen β: 0 ≤ β ≤ ν − 1/2.
Lemma 2. Following estimations

‖fk − f δ
k‖τ ≤ 2kδ

√
n, (11)

‖AXfk −AXf δ
k‖Rn ≤ 2δ

√
n. (12)

are hold.
Proof. Due to (5) we obtain the following estimation

‖fk − f δ
k‖τ = ‖pk(A∗XAX)A∗X(ḡ − ḡδ)‖τ ≤

≤ ‖ḡ − ḡδ‖Rn sup
0≤λ≤1

√
λpk(λ) ≤ 2kδ

√
n

and the �rst statement of Lemma is proved.
Later due to (6) we have

‖AXfk −AXf δ
k‖Rn = ‖AXpk(A∗XAX)A∗X(ḡ − ḡδ)‖Rn ≤

≤ ‖ḡ − ḡδ‖Rn sup
0≤λ≤1

λpk(λ) ≤ 2δ
√

n.

Thus, Lemma is proved. ¤
De�ne data density of the set X in domain Ω as

h := sup
x∈Ω

min
xi∈X

‖x− xi‖Rd .

Below we need the sampling inequality obtained in [2, Theorem 4.8]. Namely,
for arbitrary function u ∈ Hθ = Hθ(Ω), θ > d/2 and su�ciently small h it is
true

‖u‖σ ≤ κ
(
hθ−σ‖u‖θ + h

d
2
−σ‖u|X‖Rn

)
, (13)

where σ ∈ [0, bθc), and κ is some constant, doesn't depending on u and h.

4. Error estimate
Theorem 1. Let (3) is true. Then for any discrete set X with su�ciently
small data density h there is constant c1 > 0 such that

‖fδ − f δ
k‖L2 ≤ c1(hτ

(
κρφ(k−2) + 2δk

√
n
)

+ (14)
+h

d
2
−α

(
cνρk−1φ(k−2) + 2δ

√
n
)
).

Proof. First of all we estimate ‖fδ − f δ
k‖τ . Due to (9) and (11) we have

‖fδ − f δ
k‖τ ≤ ‖fδ − fk‖τ + ‖fk − f δ

k‖τ ≤ κρφ(k−2) + 2kδ
√

n. (15)
Using the sampling inequality (13) with u = A(fδ−f δ

k ), σ = α and θ = τ +α
we obtain

‖A(fδ − f δ
k )‖α ≤ κ

(
hτ‖A(fδ − f δ

k )‖τ+α + h
d
2
−α‖A(fδ − f δ

k )|X‖Rn

)
.

Now we apply condition (3) to last inequality

c′‖fδ − f δ
k‖L2 ≤ κ

(
c′′hτ‖fδ − f δ

k‖τ + h
d
2
−α‖A(fδ − f δ

k )|X‖Rn

)
.
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Taking into account that Af |X = AXf , we obtain

‖fδ − f δ
k‖L2 ≤ c1

(
hτ‖fδ − f δ

k‖τ + h
d
2
−α‖AX(fδ − f δ

k )‖Rn

)
,

where c1 = κ
c′ max{1, c′′}.

Considering estimates (10), (12), (15) we have Theorem's statement. ¤

Let partition of the set X is uniform, i.e. h = χn−
1
d for some constant χ.

Then inequality (14) can be rewritten as
‖fδ − f δ

k‖L2 ≤ Φ(k) + Ψ(k),

where
Φ(k) := c2ρ

(
χ

d
2
−αn

α
d
− 1

2 k−1φ(k−2) + χτn−
τ
d φ(k−2)

)
,

Ψ(k) := c2

(
χ

d
2
−αn

α
d δ + χτn−

τ
d kδ

√
n
)

,

and c2 = c1 max{2,κ, cν}.
It is obvious that due to the monotonicity of φ the function Φ is increasing

and Ψ is decreasing. Herewith optimal value of the regularization parameter
γ = γopt balances functions Φ and Ψ, i.e. Φ(γopt) = Ψ(γopt) and

‖fδ − f δ
kopt

‖L2 ≤ 2Φ(kopt).

In the case of unknown function φ such apriory rule for choosing regulariza-
tion parameter is inapplicable so it is necessary to use one of the aposteriory
rules. As a rule we use balancing principle.

Take into consideration following sets
∆N =

{
1, . . . , N, N ³ (δ

√
n)−1

}
, (16)

and
M+(∆N ) =

{
k ∈ ∆N : ‖f δ

k − f δ
l ‖L2 ≤ 4Ψ(l), l = k, . . . , N

}
.

To obtain approximate solution we use as regularization parameter such element
k = k+ := min

{
k ∈ M+(∆N )

}
.

Let us consider one more set
M(∆N ) := {k ∈ ∆N : Φ(k) ≤ Ψ(k)}

and de�ne
k∗ := min {k ∈ M(∆N )} .

Without loss of generality we assume that M(∆N ) 6= ∅ and ∆N\M(∆N ) 6= ∅.
Theorem 2. Let the set ∆N is de�ned as (16). Then for regularization pa-
rameter k = k+ following estimate

‖fδ − f δ
k+
‖L2 ≤ 6qΦ(kopt), (17)

holds, where 2 ≥ q ≥ k+

k+−1 .
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Proof. From the beginning we show that k∗ ≤ k+. For any element l > k∗ we
have

‖f δ
k∗ − f δ

l ‖L2 ≤ ‖fδ − f δ
k∗‖L2 + ‖fδ − f δ

l ‖L2

≤ Φ(k∗) + Ψ(k∗) + Φ(l) + Ψ(l)

≤ 2Φ(k∗) + Ψ(k∗) + Ψ(l)

≤ 3Ψ(k∗) + Ψ(l) ≤ 4Ψ(l).

So, k∗ ∈ M+(∆N ) and by the de�nition k∗ ≥ k+.
De�ne the unknown norm using Ψ(k∗)

‖fδ − f δ
k+
‖L2 ≤ ‖fδ − f δ

k∗‖L2 + ‖f δ
k∗ − f δ

k+
‖L2

≤ 6Ψ(k∗).

Due to monotonicity of the function Ψ for 2 ≥ q ≥ k+

k+−1 > 1 we have

Ψ(k∗) = c2

(
χ

d
2
−αn

α
d δ + χτn−

τ
d k∗δ

√
n
)

≤ qc2

(
χ

d
2
−αn

α
d δ + χτn−

τ
d

k∗
q δ
√

n
)

= qΨ(k∗
q ).

It follows from the de�nitions of the elements k∗, kopt that k∗ ≥ kopt ≥ k∗−1.
Then

‖fδ − f δ
γ+
‖L2 ≤ 6Ψ(k∗) ≤ 6qΨ(k∗/q) ≤ 6qΨ(kopt) = 6qΦ(kopt)

and Theorem is proved. ¤

Corollary 3. For θ(k) = φ(k−2)k−1 the estimate

‖fδ − f δ
m,γ+

‖L2 ≤ 6qΦ
(

θ−1
(δ
√

n

ρ

))
,

is true. In particular for φ(γ) = γβ with 0 < β ≤ ν − 1/2

‖fδ − f δ
k‖L2 ≤ 6qc2

(
χ

d
2
−αδn

α
d + χτρ

1
2β+1 n−

τ
d (δ
√

n)
2β

2β+1

)
. (18)

Proof. By the de�nition of kopt it holds that Φ(kopt) = Ψ(kopt), i.e.

ρk−1φ(k−2)
(
χ

d
2
−αn

α
d
− 1

2 + χτn−
τ
d k

)
= δ

√
n

(
χ

d
2
−αn

α
d
−1/2 + χτn−

τ
d k

)
.

Then k−2
opt = θ−1

(
δ
√

n
ρ

)
.

Taking into account that for φ(γ) = γβ we have θ−1(γ) = γ
2

2β+1 , then from
(17) we obtain (18). ¤
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Remark 8. In view of the data error estimation
‖ḡ − ḡδ‖Rn ≤ δ

√
n

it is natural to assume that δ
√

n ¿ 1, or, what is the same, n ¿ δ−2. If n can
be chosen at will, then, as it has been shown in [2, Corollary 4.13], under the
condition α + τ > d/2, an optimal choice is n ' δ−

d
α+τ . However, it is very

often, that the amount of available noisy data is limited such that one should
deal with

n ¿ δ−
d

α+τ .

For such n using a-priori parameter choice γ̃ = δn−
α+τ−d

d suggested in [2,
Corollary 4.11] one has the following error bound

‖fδ − f δ
γ̃‖L2 ≤ C̃

(
n−

τ
d + δn

α
d +

√
δn

α−τ
2d

)

= O(n−
τ
d ).

At the same time, from Corollary 1 it follows that a-posteriori parameter
choice k = k+ allows a higher order error bound. Indeed, keeping in mind that

n−
τ
d À δn−

α
d , n−

τ
d À

√
δn−

α−τ
2d

from (18) we have
‖fδ − f δ

k+
‖L2 ¿ n−

τ
d .

Remark 9. Recall that we are looking for the solution f+ of a normally solvable
problem (2). It is well known (see, for example, [1, Section 3.3]) that in such
situation the error bound for direct reconstruction of f+ from noisy data is
determined by ε

λn
, where ε is a given data error level of the right-hand side

and λn is the smallest singular value of AX . In view of the condition (3) it is
natural to assume that in our case it holds λn ∼ n−

α
d . Then, keeping in mind

ε = δ
√

n we obtain
ε

λn
∼ δn

α
d
+ 1

2 . (19)

At the same time, from (18) it follows that for δ−1 ≤ n
1
2
+

(2β+1)(α+τ)
d

‖fδ − f δ
k+
‖L2 ≤ O(δn

α
d
+ 1

2 ). (20)

Comparing (19) and (20) one can conclude that, if the amount n of available
discrete data is su�ciently large such that n ¿ δ−2 but

δ
− 2d

2(2β+1)(α+τ)+d ¿ n,

or (see Remark 2)
δ
− 2d

2(2β+1)(α+τ)+d ¿ n ¿ δ−
d

α+τ

then the regularized solution f δ
k+

allows a better error bound (in the sense of
order) than the direct reconstruction.
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