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NONLOCAL PROBLEM FOR AN EVOLUTION
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Vitaliy Vasylyk

Ðåçþìå. Ðîçãëÿíóòî äâîòî÷êîâó íåëîêàëüíó çàäà÷ó äëÿ äèôåðåíöiàëü-
íîãî åâîëþöiéíîãî ðiâíÿííÿ ïåðøîãî ïîðÿäêó ç îïåðàòîðíèì êîåôiöi¹íòîì
ó áàíàõîâîìó ïðîñòîði. Çàïðîïîíîâàíî i îá ðóíòîâàíî åêñïîíåíòöiàëüíî
çáiæíèé àëãîðèòì ó ïðèïóùåííi, ùî îïåðàòîðíèé êîåôiöi¹íò ¹ ñòðîãî
ïîçèòèâíèé i âèêîíóþòüñÿ äåÿêi óìîâè iñíóâàííÿ i ¹äèíîñòi. Àëãîðèòì
ïðèâîäèòü äî ñèñòåìè ëiíiéíèõ ðiâíÿíü, ÿêi ìîæíà ðîçâ'ÿçàòè ìåòîäîì
ïðîñòî¨ iòåðàöi¨. Àëãîðèòì çàáåçïå÷ó¹ åêñïîíåòöiàëüíó çáiæíiñòü çà ÷à-
ñîì, ùî â ïî¹äíàííi ç øâèäêèìè àëãîðèòìàìè çà ïðîñòîðîâèìè çìiííèìè
ìîæå áóòè åôåêòèâíèì äëÿ ðîçâ'ÿçóâàííÿ òàêèõ çàäà÷. Åôåêòèâíiñòü
ïðîïîíîâàíèõ àëãîðèòìiâ ïðîäåìîíñòðîâàíà íà ÷èñåëüíèõ åêñïåðèìåíòàõ.
Abstract. Two-points nonlocal problem for the �rst order di�erential evolu-
tion equation with an operator coe�cient in a Banach space X is considered.
An exponentially convergent algorithm is proposed and justi�ed under the as-
sumption that the operator coe�cient is strongly positive and some existence
and uniqueness conditions hold. This algorithm leads to a system of linear
equations that can be solved by �xed-point iteration. The algorithm provides
exponentially convergence in time that in combination with fast algorithms
on spatial variables can be e�cient for solving such problems. The e�ciency
of the proposed algorithms is demonstrated through numerical examples.
AMS Subject Classi�cation: 65J10, 65M12, 65M15, 46N20, 46N40,
47N20, 47N40

1. Introduction
The m-point initial (nonlocal) problem for a di�erential equation with the

nonlocal condition
u(t0) + g(t1; . . . ; tp; u) = u0

and a given function g on a given point set P = {0 = t0 < t1 < · · · < tp} is
one of the important topics in the study of di�erential equations. Interest in
such problems originates mainly from some physical problems with a control of
the solution at P . For example, when the function g(t1; . . . ; tp; u) is linear we
will have a periodic problem u(t0) = u(t1). Problems with nonlocal conditions
arise in the theory of physics of plasma [15], nuclear physics [10], mathemat-
ical chemistry [11], waveguides [8] etc. Two-point problem is also useful for
considering the �nale value problem [18].

Di�erential equations with operator coe�cients in a Hilbert or Banach space
can be considered as meta-models for systems of partial or ordinary di�erential
equations and are suitable for investigating using the tools of the functional

†Key words. First order di�erential evolution equations in Banach space, nonlocal problem,
unbounded operator coe�cient, operator exponential, exponentially convergent algorithms.
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analysis (see e.g. [4, 9]). Nonlocal problems can also be considered within this
framework [2, 3].

Discretization methods for di�erential equations in Banach and Hilbert spa-
ces were intensively studied in the last decade (see e.g. [5, 7, 12, 13, 16, 17, 22,
23] and the references therein). Methods from [7, 12, 13, 17, 22, 23] possess an
exponential convergence rate, i.e. the error estimate in an appropriate norm is
of the type O(e−Nα

), α > 0 with respect to a discretization parameter N →∞.
For a given tolerance ε such discretization provides optimal or nearly optimal
computational complexity [7].

In the present paper we consider the problem

du(t)
dt

+ A1(t)u(t) = f1(t),

u(0) + αu(1) = ϕ,
(1)

where A1(t) is a densely de�ned closed (unbounded) operator with the domain
D(A1) independent of t in a Banach space X, ϕ is a given vector and f1(t)
is a given vector-valued function, α ∈ R. We suppose that the operator A1(t)
is strongly positive; i.e. there exists a positive constant MR independent of t
such that on the rays and outside a sector Σθ = {z ∈ C : 0 ≤ arg(z) ≤ θ, θ ∈
(0, π/2)} the following estimate for a resolvent holds:

‖(zI −A1(t))−1‖ ≤ MR

1 + |z| . (2)

This assumption implies that there exists a positive constant cκ such that ( see
[6], p.103)

‖Aκ
1(t)e−sA1(t)‖ ≤ cκs−κ, s > 0, κ ≥ 0. (3)

Our further assumption is that there exists a real positive ω such that
‖e−sA1(t)‖ ≤ e−ωs ∀s, t ∈ [0, 1] (4)

(see [14], Corollary 3.8, p.12, for corresponding assumptions on A1(t)). Let us
also assume that the following conditions are valid

‖[A1(t)−A1(s)]A
−γ
1 (t)‖ ≤ L1,γ |t− s| ∀t, s, 0 ≤ γ < 1, (5)

‖Aγ
1(t)A−γ

1 (s)− I‖ ≤ Lγ |t− s| ∀t, s ∈ [0, 1]. (6)
We suppose also that

f1(t) ∈ C(0, 1;X). (7)
The aim of this paper is to construct an exponentially convergent approx-

imation for a solution to problem (1). The paper is organized as follows. In
Section 2 we discuss the existence and uniqueness of the solution as well as
its representation through input data. A numerical algorithm is presented in
section 3. The main result of this section is theorem 1 about the convergence
rate of the proposed discretization. In the next section 4 we present a numerical
example which con�rm theoretical results from the previous sections.
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2. Existence and uniqueness of the solution
It is well known, that for α = 0 the problem (1) has a unique solution under

the assumptions (2)-(7) (se e.g. [14, 9]). This solution can be written down as
follows:

u(t) = U(t, 0)u(0) +
∫ t

0
U(t, s)f1(s)ds = U(t, 0)ϕ +

∫ t

0
U(t, s)f1(s)ds, (8)

where U(t, s) is an evolution operator that corresponds to (1) for α = 0.
Let us study conditions when there is a unique solution to the two-points

problem (1). We have from (8)

u(1) = U(1, 0)u(0) +
∫ 1

0
U(1, s)f1(s)ds.

Substituting this expression into the nonlocal condition we obtain

u(0) = [I + αU(1, 0)]−1

[
ϕ− α

∫ 1

0
U(1, s)f1(s)ds

]
,

and for u(t) we have

u(t) = U(t, 0) [I + αU(1, 0)]−1

[
ϕ− α

∫ 1

0
U(1, s)f1(s)ds

]
+

+
∫ t

0
U(t, s)f1(s)ds.

It is necessary to establish conditions on α for the existence of u(t). In fact,
we have to explore when exists [I + αU(1, 0)]−1 . So, we obtain using estimate
for U(t, s) (see e.g. [14, 9]).

∥∥∥[I + αU(1, 0)]−1
∥∥∥ ≤ [1− |α| ‖U(1, 0)‖]−1 ≤ [1− |α|M ]−1 ≤ C,

for small enough α (α < M−1).

3. Numerical algorithm
We use the approach developed in [7] and [21] to construct numerical method

for solving problem (1). First of all we change variable in (1) by t → 1+t
2 and

for v(t) = u
(

1+t
2

)
we have

dv(t)
dt

+ A(t)v(t) = f(t),

v(−1) + αv(1) = ϕ,
(9)

where A(t) = 1
2A1

(
1+t
2

)
, f(t) = 1

2f1

(
1+t
2

)
,

We choose a mesh ωn = {tk, k = 0, ..., n} of n + 1 various points on [−1, 1]
that are Chebyshev-Gauss-Lobatto nodes tk = cos

(
n−k

n π
)
and set τk = tk −

tk−1. Let
A(t) =Ak = A(tk), t ∈ (tk−1, tk], k = 1, n,

A0 = A(−1).
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Let us rewrite the problem (9) in the equivalent form
dv

dt
+ A(t)v = [A(t)−A(t)]v(t) + f(t), t ∈ (−1, 1)

v(−1) = ϕ− αv(1).
(10)

Note that now all operators on the left hand side of these equations are
constant on each subinterval and piece-wise constant on the whole interval
[−1, 1].

On each subinterval we can write down the equivalent to (10) integral equa-
tion

v(t) =e−Ak(t−tk−1)v(tk−1) +
∫ t

tk−1

e−Ak(t−s) [Ak −A(t)] v(s)ds+

+
∫ t

tk−1

e−Ak(t−s)f(s)ds, t ∈ [tk−1, tk], k = 2, n,

(11)

v(t) =e−A1(t+1) [ϕ− αv(1)] +
∫ t

−1
e−A1(t−s) [A1 −A(t)] v(s)ds+

+
∫ t

−1
e−A1(t−s)f(s)ds, t ∈ [−1, t1].

Let
Pn(t; v) = Pnv =

n∑

j=0

v(tj)Lj,n(t),

be the interpolation polynomial for v(t) on the mesh ωn, x = (x0, ..., xn), xi ∈ X
given vector and

Pn(t; y) = Pnx =
n∑

j=0

xjLj,n(t)

the polynomial that interpolates x where

Lj,n(s) =
T ′n(s)(1− s2)

d
ds [(1− s2)T ′n(s)]s=sj (s− sj)

, j = 0, ..., n

are the Lagrange fundamental polynomials. Substituting Pn(s; x) for v(s), xk

for v(tk) and then setting t = tk in (11) we obtain the following system of linear
equations with respect to the unknown xk :

x0 + αxn = ϕ,

xk = e−Akτkxk−1 +
n∑

j=0

αkjxj + φk, k = 1, n,
(12)

which represents our algorithm. Here we use the notations

αkj =
∫ tk

tk−1

e−Ak(tk−s)[Ak −A(s)]Lj,n(s)ds,

φk =
∫ tk

tk−1

e−Ak(tk−s)f(s)ds, k = 1, n, j = 0, n,
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and suppose that we have an algorithm to compute these coe�cients.
For the error z = (z1, ..., zn), with zk = v(tk)− xk we have the relations

z0 + αzn = 0,

zk = e−Akτkzk−1 +
n∑

j=0

αkjzj + ψk, k = 1, n,
(13)

where

ψk =
∫ tk

tk−1

e−Ak(tk−s)[Ak −A(s)][v(s)− Pn(s; v)]ds, k = 1, n,

In order to represent algorithm (12) in a block-matrix form we introduce the
matrix

S =




I 0 0 · · · 0 ασ0

−σ1 I 0 · · · 0 0
0 −σ2 I · · · 0 0
· · · · · · · ·
0 0 0 · · · −σn I




, (14)

where σ0 = Aγ
0A−γ

n , σk = e−AkτkAγ
kA−γ

k−1, k = 1, n, the matrix B = {α̃k,j}n
k,j=0

with α̃k,j = Aγ
kαk,jA

−γ
j , k = 1, n, j = 0, n, and α̃0,j = 0, j = 0, n, the vectors

x̃ =




Aγ
0x0

Aγ
1x1

·
·

Aγ
nxn




, φ =




Aγ
0ϕ

Aγ
1φ1

·
·

Aγ
nφn




, z̃ =




Aγ
0z0

Aγ
1z1

·
·

Aγ
nzn




, ψ =




0
Aγ

1ψ1

·
·

Aγ
nψn




. (15)

It is easy to check that for the (left) inverse
S−1 = δ (R1 −R2) ,

where
δ = (I + ασ0σ1 . . . σn)−1 ,

R1 =




I 0 · · · 0 0
σ1 I · · · 0 0

σ2σ1 σ2 · · · 0 0
· · · · · · ·

σn · · ·σ1 σn · · ·σ2 · · · σn I




,

R2 = αs0




0 σn . . . σ2 σn . . . σ3 · · · σn I
0 0 σ1σn . . . σ3 · · · σ1σn σ1

· · · · · · · ·
0 0 0 · · · 0 σn−1 . . . σ1

0 0 0 · · · 0 0




.

Remark 10. Using results of [7] one can get a parallel and sparse approxi-
mations with an exponential convergence rate of the operator exponentials con-
tained in S−1 and as a consequence a parallel and sparse approximation of S−1.
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We multiply the equations in (12) and the equation in (13) by Aγ
k , k = 0, n

and obtain
Aγ

0x0 + αAγ
0xn = Aγ

0ϕ,

Aγ
kxk = e−AkτkAγ

kxk−1 +
n∑

j=0

α̃kjA
γ
j xj + Aγ

kφk, k = 1, n,
(16)

Aγ
0z0 + αAγ

0zn = 0,

Aγ
kzk = e−AkτkAγ

kzk−1 +
n∑

j=0

α̃kjA
γ
j zj + Aγ

kψk, k = 1, n,
(17)

Then systems (16), (17) can be written down in the matrix form using notations
(14), (15) as

Sx̃ = Bx̃ + φ,

Sz̃ = Bz̃ + ψ.
(18)

Next, for a vector v = (v1, v2, ..., vn)T and a block operator matrix A =
{aij}n

i,j=1 we introduce a vector norm
|‖v‖| ≡ |‖v‖|1 = max

1≤k≤n
‖vk‖,

and the consistent matrix norm

|‖A‖| ≡ |‖A‖|1 = max
1≤i≤n

n∑

j=1

‖ai,j‖.

Due to (6) we have
|‖Aγ

kA−γ
k−1‖| = |‖Aγ

kA−γ
k−1 − I + I|‖ ≤ 1 + Lγτk,

‖σ0‖ = ‖Aγ
0A−γ

n ‖ ≤ 1 + LγT.

In our case T = 2. So, we have the following, using these estimates
‖σk‖ = ‖e−AkτkAγ

kA−γ
k−1‖ ≤ e−ωτk‖Aγ

kA−γ
k−1‖ ≤ e−ωτk (1 + Lγτk) ,

‖δ‖ =
∥∥∥∥
(
I + ασ0σ1 . . . σn

)−1
∥∥∥∥ ≤

(
1− |α| ‖σ0‖ ‖σ1‖ ‖σ2‖ . . . ‖σn‖

)−1
≤

≤
(
1− |α| (1 + 2Lγ) e−ωτ1 (1 + Lγτ1) e−ωτ2 (1 + Lγτ2) . . . e−ωτn (1 + Lγτn)

)−1

≤
(

1− |α| (1 + 2Lγ) e−2ω

(
1 +

2Lγ

n

)n)−1

≤

≤
(
1− |α| (1 + 2Lγ) e−2ωe2Lγ

)−1
≤ c,

for α small enough.
In order to estimate the norm of matrix S we must estimate the norms of

matrices R1, R2. In [7] it was proved that for a matrix similar to R1 the estimate
|‖R1‖| ≤ cn holds true. Let us estimate the norm of matrix R2.
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|‖R2‖| ≤ (1 + 2c)
(
1 + e−ωτ (1 + cτ) + · · ·+ [e−ωτ (1 + cτ)]n−1

) ≤

≤ (1 + 2c)
(

1 + (1 + cτ) + · · ·+ (1 + cτ)n−1 ≤ (1 + cτ)n − 1
cτ

)
≤

≤ (1 + 2c)
e2c

cτ
≤ cn.

Using these estimates we obtain that
|‖S−1‖| ≤ cn. (19)

It was proved an estimate for the matrix B in [7]:
|‖B‖| ≤ cnγ−2 ln(n). (20)

So we can formulate the following assertion
Lemma 1. Let assumptions (2)-(6) are ful�lled. Then estimates (19), (20)
hold true.

Using (18) we have

x̃ =
[
E − S−1B

]−1
S−1φ,

z̃ =
[
E − S−1B

]−1
S−1ψ,

(21)

where E is a diagonal matrix with unit operators I on diagonal. Using lemma
1 we obtain that

|‖S−1B‖| ≤ cnγ−1 ln(n) → 0, n →∞. (22)
It means that for n large enough there exists the matrix

[
E − S−1B

]−1 and
∣∣∣
∥∥∥
[
E − S−1B

]−1
∥∥∥
∣∣∣ ≤ c.

Consequently we obtain the following stability estimates from (21) using lem-
ma 1:

|‖x̃‖| ≤ cn|‖φ‖|,
|‖z̃‖| ≤ cn|‖ψ‖|. (23)

Let Πn be the set of all polynomials in t with vector coe�cients of degree less
or equal than n. In complete analogy with [1, 19, 20] the following Lebesgue
inequality for vector-valued functions can be proved

‖u(t)− Pn(t; u)‖C[−1,1] ≡ max
t∈[−1,1]

‖u(t)− Pn(t; u)‖ ≤ (1 + Λn)En(u),

with the error of the best approximation of u by polynomials of degree not
greater than n

En(u) = inf
p∈Πn

max
t∈[−1,1]

‖u(t)− p(t)‖.
Now, we can go over to the main result of this section.

Theorem 1. Let the assumptions of Lemma 1 with γ < 1 hold, then there
exists a positive constant c such that
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1. For n large enough it holds
|‖z̃‖| ≤ cnγ−1 · ln n · En(Aγ

0v),

where v is the solution of (9);
2. The �rst equation in (18) can be written in the form

x̃ = S−1Bx̃ + S−1φ,

and can be solved by the �xed point iteration
x̃(k+1) = S−1Bx̃(k) + S−1φ, k = 0, 1, ...; x̃(0) − arbitrary,

with the convergence rate of an geometrical progression with the denom-
inator q ≤ cnγ−1 ln(n) < 1 for n large enough.

Proof. For z̃ we have the second estimate in (23). The norm of the �rst sum-
mand on the right hand side of this inequality can be estimated in the following
way

|‖ψ‖| = max
1≤k≤n

∥∥∥∥∥
∫ tk

tk−1

{
Aγ

ke−Ak(tk−s)[Ak −A(s)]×

×A−γ
k (Aγ

kA−γ
0 )(Aγ

0v(s)− Pn(s; Aγ
0v))

}
ds

∥∥∥∥∥ ≤

≤ c max
1≤k≤n

∫ tk

tk−1

|tk − s|−γ |tk − s| ‖Aγ
0v(s)− Pn(s; Aγ

0v)‖ds ≤

≤ cτ2−γ
max ‖Aγ

0u(s)− Pn(·;Aγ
0v)‖C[−1,1] ≤ cτ2−γ

max(1 + Λn)En(Aγ
0v).

So, we obtain
|‖ψ‖| ≤ cnγ−2 · ln n · En(Aγ

0u), (24)
Now, the �rst assertion of the theorem follows from (23), (24). The second

one follows from (18) and (22). ¤

Tabl. 1. The error in the case n = 4, x = 0.5

Point t ε
-1 0.00005276

-0.70710678 0.00097645
0 0.00063440

0.70710678 0.00029592
1 0.00010552

4. Examples
Let us consider the following problem

∂u(x, t)
∂t

− ∂2u(x, t)
∂x2

+ q(x, t)u(x, t) = f(x, t),

u(0, t) = u(1, t) = 0,
u(x,−1) + αu(x, 1) = ϕ(x),

(25)
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Tabl. 2. The error in the case n = 6, x = 0.5

Point t ε
-1 8.12568908Ee-7

-0.86602540 0.00010146
-0.5 0.00030932
0 0.00022136
0.5 0.00013419

0.86602540 0.00007182
1 0.00000162

Tabl. 3. The error in the case n = 8, x = 0.5

Point t ε
-1 0.00000117

-0.92387953 0.00000613
-0.70710678 0.00004544
-0.38268343 0.00005753

0 0.00004745
0.38268343 0.00003362
0.70710678 0.00002096
0.92387953 0.00000846

1 0.00000235

Tabl. 4. The error in the case n = 12, x = 0.5

Point t ε
-1 0.49451310e-8

-0.96592582 0.14687232e-7
-0.86602540 0.23393074e-6
-0.70710678 0.54494052e-6

-0.5 0.76722515e-6
-0.25881904 0.82803283e-6

0 0.76362937e-6
0.25881904 0.63174173e-6

0.5 0.47173110e-6
0.70710678 0.30381367e-6
0.86602540 0.14341583e-6
0.96592582 0.21271757e-7

1 0.98902621e-8

with f(x, t) = e−π2(1+t) sin(πx)(1+ t), α = 0.5, ϕ(x) =
(
1 + 0.5e−2π2

)
sin(πx),

q(x, t) = 1+ t. Then, the solution of this problem is u(x, t) = e−π2(1+t) sin(πx).
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Tabl. 5. The error in the case n = 16, X = 0.5

Point t ε
-1 0.20628738e-11

-0.98078528 0.28602854e-10
-0.92387953 0.48425552e-9
-0.83146961 0.14258845e-8
-0.70710678 0.25968220e-8
-0.55557023 0.36339719e-8
-0.38268343 0.42916820e-8
-0.19509032 0.44975339e-8

0 0.43045006e-8
0.19509032 0.38169887e-8
0.38268343 0.31414290e-8
0.55557023 0.23686579e-8
0.70710678 0.15787207e-8
0.83146961 0.85640040e-9
0.92387953 0.30309439e-9
0.98078528 0.16809109e-10

1 0.41257476e-11

The problem (25) can be written down in the form (9) where the operator
A(t) is de�ned by

D(A(t)) = D(A) = {v ∈ H2(0, 1) : v(0) = 0, v(1) = 0},

A(t)v = −∂2v

∂x2
+ (1 + t)v.

Coe�cients of the system (16) were calculated by using the Fourier series expan-
sion. The results of calculation presented in tables con�rm our theory above.
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