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NONLOCAL PROBLEM FOR AN EVOLUTION
FIRST ORDER EQUATION IN BANACH SPACE

VITALIY VASYLYK

PE3IOME. Po3risinyTo ABOTOYKOBY HEIOKAIbHY 3344y Ajd AudepeHIiaib-
HOTO €BOJIIOIITHOTO PIBHSHHS IIEPIIOro OPSIKY 3 OIIePATOPHUM KoedirieHToM
y 6aHaxoBOMYy IIpOCTOpPi. 3aIIPOIIOHOBAHO I OOIPYHTOBAHO €KCIIOHEHTIAIBLHO
3012KHUN AJTOPUTM y TMPUILYIIEHHI, 10 OIePATOpHUI KoedilieHT € cTporo
TMO3UTUBHUN 1 BUKOHYIOTHCS [I€SKi YMOBM iCHYBaHHs 1 €quHOCTI. AjropurMm
NPUBOIUTEH O CHUCTEMH JIHINHUX DIBHSHB, SKi MOXHA DO3B’S3aTH METOOM
npocroi irepamii. AsiropurM 3abe3ledye eKcroHermiaabHy 361KHICTD 3a Ya-
COM, IO B ITOE€IHAHHI 3 NIBUIKAMHU AJITOPUTMAMHU 32 IIPOCTOPOBUMHU 3MIHHUMMI
Moxke OyTr edeKTHBHHM [Jis PO3B’sI3yBaHHS TAaKuX 331a4. EdexrusnicThb
[POIIOHOBAHUX AJI'OPATMIB IIPOEMOHCTPOBAHA HA UCE/IbHUX €KCIIEPUMEHTAX.
ABSTRACT. Two-points nonlocal problem for the first order differential evolu-
tion equation with an operator coefficient in a Banach space X is considered.
An exponentially convergent algorithm is proposed and justified under the as-
sumption that the operator coefficient is strongly positive and some existence
and uniqueness conditions hold. This algorithm leads to a system of linear
equations that can be solved by fixed-point iteration. The algorithm provides
exponentially convergence in time that in combination with fast algorithms
on spatial variables can be efficient for solving such problems. The efficiency
of the proposed algorithms is demonstrated through numerical examples.
AMS Subject Classification: 65J10, 65M12, 65M15, 46N20, 46N40,
47N20, 47N40

1. INTRODUCTION

The m-point initial (nonlocal) problem for a differential equation with the

nonlocal condition
u(to) +g(ti;.. . itpiu) = uo

and a given function g on a given point set P = {0 =ty < t1 < --- < tp} is
one of the important topics in the study of differential equations. Interest in
such problems originates mainly from some physical problems with a control of
the solution at P. For example, when the function g(t1;...;t,;u) is linear we
will have a periodic problem u(tg) = u(t1). Problems with nonlocal conditions
arise in the theory of physics of plasma [15], nuclear physics [10], mathemat-
ical chemistry [11], waveguides [8] etc. Two-point problem is also useful for
considering the finale value problem [18].

Differential equations with operator coefficients in a Hilbert or Banach space
can be considered as meta-models for systems of partial or ordinary differential
equations and are suitable for investigating using the tools of the functional

T Key words. First order differential evolution equations in Banach space, nonlocal problem,
unbounded operator coefficient, operator exponential, exponentially convergent algorithms.
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analysis (see e.g. [4, 9]). Nonlocal problems can also be considered within this
framework |2, 3].

Discretization methods for differential equations in Banach and Hilbert spa-
ces were intensively studied in the last decade (see e.g. [5, 7, 12, 13, 16, 17, 22,
23| and the references therein). Methods from |7, 12, 13, 17, 22, 23] possess an
exponential convergence rate, i.e. the error estimate in an appropriate norm is
of the type O(e™™"), a > 0 with respect to a discretization parameter N — oc.
For a given tolerance € such discretization provides optimal or nearly optimal
computational complexity [7].

In the present paper we consider the problem

P 4 Aoyt = 1)

u(0) + au(l) = ¢,

(1)

where A;(t) is a densely defined closed (unbounded) operator with the domain
D(A;) independent of ¢ in a Banach space X, ¢ is a given vector and fi(t)
is a given vector-valued function, o € R. We suppose that the operator A;(t)
is strongly positive; i.e. there exists a positive constant Mp independent of ¢
such that on the rays and outside a sector X9 = {z € C: 0 < arg(z) < 0,0 €
(0,7/2)} the following estimate for a resolvent holds:

Mg
. 2
1+ |z] )

This assumption implies that there exists a positive constant ¢, such that ( see
[6], p.103)

(21 = A ()} <

A5 (H)e MWD < ¢es™, 5>0, k>0. (3)
Our further assumption is that there exists a real positive w such that
le=s A1) < ems s, te[0,1] (4)

(see [14], Corollary 3.8, p.12, for corresponding assumptions on A;(t)). Let us
also assume that the following conditions are valid

1[Ax(0) — AL()AT (O]l < Ll —s| Ve 5, 0y <1, (5)

AT (£)AT7 (s) = I|| < Lyt — 5| V¢, s €[0,1]. (6)
We suppose also that

fi(t) € C(0,1; X). (7)
The aim of this paper is to construct an exponentially convergent approx-
imation for a solution to problem (1). The paper is organized as follows. In
Section 2 we discuss the existence and uniqueness of the solution as well as
its representation through input data. A numerical algorithm is presented in
section 3. The main result of this section is theorem 1 about the convergence
rate of the proposed discretization. In the next section 4 we present a numerical

example which confirm theoretical results from the previous sections.
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2. EXISTENCE AND UNIQUENESS OF THE SOLUTION
It is well known, that for & = 0 the problem (1) has a unique solution under
the assumptions (2)-(7) (se e.g. [14, 9]). This solution can be written down as
follows:

u(t) = U(t,0)u(0) + /0 U(t,s)fi(s)ds = U(t,0)¢ —I-/O Ul(t,s)fi(s)ds, (8)

where U(t, s) is an evolution operator that corresponds to (1) for a = 0.
Let us study conditions when there is a unique solution to the two-points
problem (1). We have from (8)

1
u(1l) = U(1,0)u(0) —|—/0 U(1,s)fi(s)ds

Substituting this expression into the nonlocal condition we obtain

w(0) = [I + alU(1,0)] [—a/Ulsfl ]

and for u(t) we have
1
u(t) = U(t,0) [I +alU(1,0)] [(p — a/o U, s)fl(s)ds] +
—i—/OtU(t, s)f1(s)ds.

It is necessary to establish conditions on « for the existence of u(t). In fact,

we have to explore when exists [I + aU/(1, ())]71 . So, we obtain using estimate
for U(t, s) (see e.g. [14, 9]).

[ir+au@,o || < 0=l Jo@, 07" < [1 = JalM] ! < €,
for small enough o (v < M~1).

3. NUMERICAL ALGORITHM
We use the approach developed in [7] and [21] to construct numerical method

for solving problem (1). First of all we change variable in (1) by ¢t — 1 and
for v(t) = u (1) we have
dv(t)
V04 Ale) = £0) o)
o(=1) +av(l) =¢

where A(t) = 341 (41, f(t) = 3 A (),
We choose a mesh w, = {tx, k =0,...,n} of n+ 1 various points on [—1, 1]

that are Chebyshev-Gauss-Lobatto nodes tr, = cos (” kw) and set 7, = t —
tk 1- Let

A(t) =Ap = A(tg),t € (te_1,tx], k=1,n,
Ay = A(—1).
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Let us rewrite the problem (9) in the equivalent form

% + At = [A(t) — A®Jo(t) + £(1), te(-1,1)

v(—=1) = ¢ — av(l).

Note that now all operators on the left hand side of these equations are
constant on each subinterval and piece-wise constant on the whole interval
[—1,1].

On each subinterval we can write down the equivalent to (10) integral equa-
tion

(10)

t
o(t) =e~ Mty (1) + / oM (A — A1) v(s)ds+
te—1
t (11)
+/ e A=) f(s)ds, te[tp_r,te], k=2 n,

tp—1

o(t) =e= 1D [, — au(1)] + /_ tl e A=) (4] — A(t)] v(s)ds+

t
+/ e~ A=) £(5)ds, te[-1,H].

-1
Let

n

Pa(t;v) = Pov =Y _w(t;)Ljn(t),
§=0
be the interpolation polynomial for v(¢) on the mesh wy,, x = (xq, ..., zp), z; € X
given vector and

n
Pu(tiy) = Pow = Y a;Ljn(t)
=0

the polynomial that interpolates x where
T (s)(1 — s2
Lin(s) = 2O Z5)
s (1 = 2) T3 (8)]s=s; (5 — 55)
are the Lagrange fundamental polynomials. Substituting P, (s;x) for v(s), xj

for v(tx) and then setting ¢t = t; in (11) we obtain the following system of linear
equations with respect to the unknown xj, :

7=0,...,n

To + arp = @,

(12)

n
zp =0 Ma g+ ) ok +op, k=1n,
J=0
which represents our algorithm. Here we use the notations

ti
;= / e AU [ A, — A(s)|Lyn(s)ds,

te—1

123
br = / M9 f(s)ds, k=T,m, j=0.m,

tk—1
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and suppose that we have an algorithm to compute these coefficients.
For the error z = (z1, ..., 2,), with zx = v(tx) — xx we have the relations

20+ az, =0,

Y (13)
2k = eiAkaZk—l + Zakaj + T/Jka k= 17”7

J=0

where

s / k o~ Ak (tr—s) [Ar — A(s)][v(s) — Pu(s;v)lds, k=1,n,

te—1

In order to represent algorithm (12) in a block-matrix form we introduce the
matbrix

I o o - - - 0 aog
-y I 0 - - - 0 0
S = 0 —oo I - - - 0 0 , (14)
0 o o - - - -0, I

— _A — - . ~
where 0g = AJAn", op = e AT A, k =1, n, the matrix B = {O‘k,j}z,jzo

with éy, ; = AZakJAj_V, k=1,n,j=0,n,and ao; =0, j = 0,n, the vectors

Alxo Ajp Ag#o 0
Az Al Az Al
i= , o= ‘ , 2= - |, = : - (15)

It is easy to check that for the (left) inverse
STl =6(Ri — Ry),

where

0= (I—|—a0001...0n)71,

I 0 N N
o1 I R
Ry =] o201 o2 - 0 0f,

O'n.--a'l O'n.--0'2 ... O'n I
0 op...00 Op...03 -+ On I
0 0 010n...03 -+ O10p o1
RQ:QSO . . . .

0 0 0 0 Op—1-.-.01

0 0 0 0 0

Remark 10. Using results of |7] one can get a parallel and sparse approzi-
mations with an exrponential convergence rate of the operator exponentials con-
tained in S~! and as a consequence a parallel and sparse approzimation of S™1.
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We multiply the equations in (12) and the equation in (13) by A}, k =0,n
and obtain
Alzo + aAlz, = A,

n
_A ~
Az =e KR Al wp g + E aij;.yxj + Aldr, k=1n,
Jj=0

Az + @Az, =0,
(17)

n
Az,zk = e_AkaAng_l + Z dij}Zj + AZ?/)k, k=1,n,
§=0
Then systems (16), (17) can be written down in the matrix form using notations
(14), (15) as
Si = BF + ¢,

S% = B3 + 9. (18)

Next, for a vector v = (v1,v2,...,v,)" and a block operator matrix A =
{aij}i ;=1 we introduce a vector norm

IollT = flivlll = max loe],

and the consistent matrix norm

n
Al = 1141 = max > il
7j=1
Due to (6) we have
ATAT | = IALADY, — T+ 1)) <1+ Lym,

looll = 44,7 <1+ L, T.
In our case T' = 2. So, we have the following, using these estimates

okl = le LA, | < e ATAL | < e (14 Lym),
—1 -1
151 = (-4 aooe o) | < (1= lallal o el .l ™ <

—1
< (1 — o] (142L,) e ™ (14 Lyri) e “™ (1+ Loym) ..o~ ™ (1 + LWn))

2L, ny\ —1
< <1\a| (1+2L,) e 2 <1+”> > <

n
—1
< (1 —|a| (1+2L) e*Qwe%) <e,

for a small enough.

In order to estimate the norm of matrix S we must estimate the norms of
matrices R1, Ro. In [7] it was proved that for a matrix similar to R; the estimate
[||R1]|| < cn holds true. Let us estimate the norm of matrix Ra.
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IRl < (1 +2¢) (14 e T (A+er) 4+ [T (Lt er)]" ) <
1 -1
<(A+2) 1+ +er)+-+(A+er)" i < HCT)) <
cT
620
< (1+20¢) < cn.
cT
Using these estimates we obtain that
IS~ < en. (19)
It was proved an estimate for the matrix B in [7]:
1B < en?2In(n). (20)

So we can formulate the following assertion

Lemma 1. Let assumptions (2)-(6) are fulfilled. Then estimates (19), (20)
hold true.

Using (18) we have
F=[E-S'B] s,
= [E-5'B] " 571y,

where I is a diagonal matrix with unit operators I on diagonal. Using lemma
1 we obtain that

(21)

[IST!B||| < en? tIn(n) — 0, n — oco. (22)
It means that for n large enough there exists the matrix [E — S_IB] ~!and
557 <

Consequently we obtain the following stability estimates from (21) using lem-
mal:

1zl < enlliglll,
20 < enlll]ll-

Let I1,, be the set of all polynomials in ¢ with vector coefficients of degree less
or equal than n. In complete analogy with [1, 19, 20] the following Lebesgue
inequality for vector-valued functions can be proved

u(®) = Palts )i = s [u(®) = Pafti)] < (14 An) Enlw)
with the error of the best approximation of u by polynomials of degree not
greater than n

(23)

En(u) = inf nax [u(t) = p@)]-

Now, we can go over to the main result of this section.

Theorem 1. Let the assumptions of Lemma 1 with v < 1 hold, then there
exists a positive constant ¢ such that
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1. For n large enough it holds
20 < e Inm - B, (Af),

where v is the solution of (9);
2. The first equation in (18) can be written in the form

z=S5"'Bi+ S 1o,
and can be solved by the fized point iteration
FD = 671 4 g 1g K =0,1,...; 29 — arbitrary,
with the convergence rate of an geometrical progression with the denom-

inator ¢ < cn?"'1n(n) < 1 for n large enough.

Proof. For Z we have the second estimate in (23). The norm of the first sum-
mand on the right hand side of this inequality can be estimated in the following
way

I[[]]| = max

tg
/ {AZe‘Ak‘(tk_s) [Af, — A(s)] %
tk—1

XA (ALAG)(AJu(s) = Pals; Av)) fs| <

ty
< ¢ max / |tk — s| 77|tk — s ||Agv(s) — Pn(s;Agv)Hds <
1§k§n tkfl

< CToaa | AGu(s) = Pa(3 AG0) ooy, ) < CTimat (14 An) En(AG0).

max —

So, we obtain

]| < en?™2 - Inn - EB,(AJu), (24)
Now, the first assertion of the theorem follows from (23), (24). The second
one follows from (18) and (22). O

TABL. 1. The error in the case n =4, x = 0.5

Point ¢ €
-1 0.00005276
-0.70710678 | 0.00097645
0 0.00063440
0.70710678 | 0.00029592
1 0.00010552

4. EXAMPLES
Let us consider the following problem

ou(z,t)  Ou(z,t) B
5 a2z Ta@tulet) = f(z),

u(0,t) = u(1,t) =0,
u(z,—1) + au(z, 1) = p(z),

(25)
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TABL. 2. The error in the case n =6, x = 0.5

Point ¢ €

-1 8.12568908Ee-7

-0.86602540 0.00010146

-0.5 0.00030932

0 0.00022136

0.5 0.00013419

0.86602540 0.00007182

1 0.00000162

TABL. 3. The error in the case n =8, x = 0.5

Point ¢

3

-1

0.00000117

-0.92387953

0.00000613

-0.70710678

0.00004544

-0.38268343

0.00005753

0

0.00004745

0.38268343

0.00003362

0.70710678

0.00002096

0.92387953

0.00000846

1

0.00000235

The error in the case n =12, x = 0.5

Point ¢

3

-1

0.49451310e-8

-0.96592582

0.14687232e-7

-0.86602540

0.23393074e-6

-0.70710678

0.54494052e-6

-0.5

0.76722515e-6

-0.25881904

0.82803283e-6

0

0.76362937e-6

0.25881904

0.63174173e-6

0.5

0.47173110e-6

0.70710678

0.30381367e-6

0.86602540

0.14341583e-6

0.96592582

0.21271757e-7

1

0.98902621e-8

with f(z,t) = e ™ W sin(rz)(1+1), a = 0.5, o(z) = <1 + 0.56*2”2) sin(mz),
q(z,t) = 1+t. Then, the solution of this problem is u(z,t) = e~ (141 sin(mz).
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Point ¢ €

-1 0.20628738e-11
-0.98078528 | 0.28602854¢-10
-0.92387953 | 0.48425552¢-9
-0.83146961 | 0.14258845e-8
-0.70710678 | 0.25968220e-8
-0.55557023 | 0.36339719e-8
-0.38268343 | 0.42916820e-8
-0.19509032 | 0.44975339¢-8

0 0.43045006e-8
0.19509032 | 0.38169887e-8
0.38268343 | 0.31414290e-8
0.55557023 | 0.23686579¢-8
0.70710678 | 0.15787207e-8
0.83146961 | 0.85640040e-9
0.92387953 | 0.30309439¢-9
0.98078528 | 0.16809109e-10

1 0.41257476e-11

TABL. 5. The error in the case n =16, X = 0.5

The problem (25) can be written down in the form (9) where the operator
A(t) is defined by

D(A(t)) = D(A) = {v € H*(0,1) : v(0) = 0, v(1) = 0},
A(t)v = —g:; + (14 t)v.

Coefficients of the system (16) were calculated by using the Fourier series expan-
sion. The results of calculation presented in tables confirm our theory above.
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