NUMERICAL INVESTIGATION OF A PLAIN STRAIN STATE FOR A BODY WITH THIN COVER USING DOMAIN DECOMPOSITION

Ivan Dyyak, Yarema Savula, Andriy Styahar

Abstract

Резюме. Розглядається модель, яка описує напружено деформований стан двовимірного гетерогенного тіла з тонким покриттям. Спочатку доведено збіжність ітеративного алгоритму, побудованого на основі поєднання методу скінченних елементів (MCE) та методу граничних елементів (МГЕ) з використанням декомпозиції областей. Після цього алгоритм проілюстровано на прикладі двовимірної задачі для тіла з покриттям.

Abstract. We consider a model, that describes the plain stress state of the $2 D$ heterogeneous elastic body with the thin cover. First we prove the convergence of the iterative algorithm based on finite element method/boundary element method (FEM/BEM) coupling using domain decomposition. Further we illustrate this algorithm with an example of $2 D$ problem for the body with a cover.

1. Introduction

A lot of structures, both natural and artificial, contain thin covers or thin inclusions. Therefore, the problem of analyzing the stress-strain state of such bodies is of great importance. Typically they consist of two or more homogeneous parts that have a big differences in physical dimensions and properties between them. A lot of aspects of the problems, related to this subject, were analyzed (see for example $[2,4,5,7,8]$). In this paper we use the combined model, where the parts of the body with comparable physical dimensions are described by the linear elasticity equations, whereas the sress state of the thin cover is described by Tymoshenko shell theory equations [5]. These parts are connected using the appropriate coupling conditions on the common boundaries.

In order to perform numerical analysis of our model we solve the corresponding problems in thin shells by finite element method (FEM) with bubble basis functions, and the other parts of the body are solved numerically using boundary element method (BEM) with linear basis functions; the iterative domain decomposition algorithm is then used to connect the solutions in both domains.

In this paper we also prove the properties of our model and prove the convergence of the algorithm.

[^0]
2. Problem statement

Let us consider a problem of plane strain of cylindrical body Ω_{1} with the cover Ω_{2}.

Fig. 1. Body with cover
The plane strain stress of the body in Ω_{1} can be described by [1]

$$
\begin{align*}
& \frac{\partial \sigma_{11}}{\partial x_{1}}+\frac{\partial \sigma_{12}}{\partial x_{2}}=f_{1} \\
& \frac{\partial \sigma_{21}}{\partial x_{1}}+\frac{\partial \sigma_{22}}{\partial x_{2}}=f_{2} \tag{1}
\end{align*}
$$

that holds for $x \in \Omega_{1}, x=x_{1}, x_{2}$. Here $f=f_{1}, f_{2}$ denotes the volume forces that act on the body in Ω_{1}. From the Hook's law it follows that the components of the stress tensor can be written as

$$
\sigma_{i j}=\frac{1}{2} E_{1}\left(\frac{\partial u_{i}}{\partial x_{j}}+\frac{\partial u_{j}}{\partial x_{i}}\right), \quad i, j=1,2,
$$

where $u(x)=u_{1}(x), u_{2}(x)$ is the displacement vector with u_{i} being the displacements in the directions x_{i} for $i=1,2 ; E_{1}$ is the Young's modulus of the body in Ω_{1}. In the following we assume that no volume forces act on the body in Ω_{1}.

Let us denote by n the outer normal vector to Ω_{1}, and by τ - the tangent vector. Equations (1) are considered together with the boundary conditions

$$
u_{v}=0, \quad u_{\tau}=0, \quad x \in \Gamma_{D}
$$

and

$$
\sigma_{v v}=0, \quad \sigma_{v \tau}=0, \quad x \in \Gamma_{N},
$$

where u_{v} and u_{τ} are the components of the stress tensor in the coordinate system n, τ. Similarly, $\sigma_{v v}$ and $\sigma_{v \tau}$ are the components of the stress tensor in the n, τ coordinate system.

For the description of the cover in Ω_{2} we use the equations of Timoshenko shell theory for the cylindrical shell of the form [5]

$$
\begin{gather*}
-\frac{1}{A_{1}} \frac{d T_{11}}{d \xi_{1}}-k_{1} T_{13}=p_{1} \\
-\frac{1}{A_{1}} \frac{d T_{13}}{d \xi_{1}}+k_{1} T_{11}=p_{3} \tag{2}\\
-\frac{1}{A_{1}} \frac{d M_{11}}{d \xi_{1}}+T_{13}=m_{1}, \quad-1 \leq \xi_{1} \leq 0
\end{gather*}
$$

where $\mathrm{v}_{1}, w, \gamma_{1}$ are the displacements and angle of revolution in the shell; T_{11}, T_{13}, M_{11} are the forces and moments in the shell; $A_{1}=A_{1}\left(\xi_{1}\right), k_{1}=k_{1}\left(\xi_{1}\right)$ correspond to Lame parameter and median surface curvature parameter; p_{1}, p_{3}, m_{1} are given functions; it holds

$$
\begin{gather*}
T_{11}=\frac{E_{2} h}{1-v_{2}^{2}} \varepsilon_{11}, \quad T_{13}=k^{\prime} G^{\prime} h \varepsilon_{13}, \quad M_{11}=\frac{E_{2} h^{3}}{12\left(1-v_{2}^{2}\right)} \chi_{11} \tag{3}\\
\varepsilon_{11}=\frac{1}{A_{1}} \frac{d \mathrm{v}_{1}}{d \xi_{1}}+k_{1} w, \quad \varepsilon_{13}=\frac{1}{A_{1}} \frac{d w}{d \xi_{1}}+\gamma_{1}-k_{1} \mathrm{v}_{1}, \quad \chi_{11}=\frac{1}{A_{1}} \frac{d \gamma_{1}}{d \xi_{1}} \tag{4}\\
p_{1}=\left(1+k_{1} \frac{h}{2}\right) \sigma_{13}^{+}-\left(1-k_{1} \frac{h}{2}\right) \sigma_{13}^{-} \\
p_{3}=\left(1+k_{1} \frac{h}{2}\right) \sigma_{33}^{+}-\left(1-k_{1} \frac{h}{2}\right) \sigma_{33}^{-} \tag{5}\\
m_{1}=\frac{h}{2}\left(\left(1+k_{1} \frac{h}{2}\right) \sigma_{13}^{+}-\left(1-k_{1} \frac{h}{2}\right) \sigma_{13}^{-}\right)
\end{gather*}
$$

Here E_{2} is the Young's modulus for the shell, v_{2} is the Poisson's ratio; g_{1}, g_{3} are the components of the volume forces vector, that act on the shell; $\sigma_{i j}^{+}, \sigma_{i j}^{-}$, $i, j=1,3$ are the components of the stress tensor on the outer $\left(\xi_{3}=\frac{h}{2}\right)$ and inner $\left(\xi_{3}=-\frac{h}{2}\right)$ surfaces of the shell. It is known, that in the case of isotropic bodies we have $k^{\prime}=\frac{5}{6}, G^{\prime}=\frac{E_{2}}{2\left(1+v_{2}\right)}$.

At each end of the thin cover we impose boundary conditions either on the displacements v_{1}, w and γ_{1} or on the forces T_{11}, T_{13} and moment M_{11} in the shell (if the end is subjected to load or free). At the outer surface of the shell we prescribe to σ_{13}^{+}and σ_{33}^{+}some given stresses.

Remark 1. The choice of $2 D$ curvilinear coordinate system for the shell as ξ_{1}, ξ_{3} (instead of ξ_{1}, ξ_{2}) is based on the fact, that 2D problem is obtained from the 3D case by assuming the cylinder being infinite in the direction of ξ_{2}.

On the boundary Γ_{I}, common to both Ω_{1} and Ω_{2} we prescribe the following coupling conditions [5]:

$$
\begin{gather*}
u_{v}=w, \quad u_{\tau}=\mathrm{v}_{1}-\frac{h}{2} \gamma_{1} \tag{6}\\
\sigma_{v v}=\sigma_{33}^{-}, \quad \sigma_{v \tau}=\sigma_{13}^{-}
\end{gather*}
$$

Let us rewrite the coupling conditions (6) on Γ_{I} as follows:

$$
\begin{gather*}
u_{v}=w, \quad u_{\tau}=\mathrm{v}_{1}-\frac{h}{2} \gamma_{1} \\
A_{1}\left(1-k_{1} \frac{h}{2}\right) \sigma_{v v}-A_{1}\left(1-k_{1} \frac{h}{2}\right) \sigma_{33}^{-}=0 \tag{7}\\
A_{1}\left(1-k_{1} \frac{h}{2}\right) \sigma_{v \tau}-A_{1}\left(1-k_{1} \frac{h}{2}\right) \sigma_{13}^{-}=0
\end{gather*}
$$

3. The properties of the Steklov-Poincare operators AND CONVERGENCE OF THE DOMAIN DECOMPOSITION ITERATIVE ALGORITHM

Let us suppose that on the inferface Γ_{I} the displacement is equal to $\varphi=$ $\varphi_{1}, \varphi_{2}, \varphi_{i} \in H^{1}\left(\Gamma_{I}\right), i=1,2$. In the following we consider the Steklov-Poincare operator S for our problem as well as local Steklov-Poincare operators S_{i}, that correspond to $\Omega_{i}, i=1,2$. Therefore, we have from (7)

$$
\begin{gather*}
\langle S \varphi, \psi\rangle_{\Gamma_{I}}=\left\langle S_{1} \varphi, \psi\right\rangle_{\Gamma_{I}}+\left\langle S_{2} \varphi, \psi\right\rangle_{\Gamma_{I}}, \quad \forall \varphi, \psi \in H^{1}\left(\Gamma_{I}\right) \times H^{1}\left(\Gamma_{I}\right) \\
\left\langle S_{1} \varphi, \psi\right\rangle_{\Gamma_{I}}=\left\langle A_{1}\left(1-k_{1} \frac{h}{2}\right) G_{I} \sigma_{v v}(\varphi), \psi_{1}\right\rangle_{\Gamma_{I}}+ \\
+\left\langle A_{1}\left(1-k_{1} \frac{h}{2}\right) G_{I} \sigma_{v \tau}(\varphi), \psi_{2}\right\rangle_{\Gamma_{I}}, \tag{8}\\
\left\langle S_{2} \varphi, \psi\right\rangle_{\Gamma_{I}}=\left\langle-A_{1}\left(1-k_{1} \frac{h}{2}\right) \sigma_{33}^{-}(\varphi), \psi_{1}\right\rangle_{\Gamma_{I}}+ \\
+\left\langle A_{1}\left(1-k_{1} \frac{h}{2}\right) \sigma_{13}^{-}(\varphi), \psi_{2}\right\rangle_{\Gamma_{I}}
\end{gather*}
$$

where $G_{I} \sigma$ is the trace of σ on $\Gamma_{I} ;\langle u, v\rangle_{\Gamma_{I}}$ denotes the bilinear form which formally can be written as

$$
\langle u, v\rangle_{\Gamma_{I}}=\int_{\Gamma_{I}} u v d \Gamma_{I}
$$

First we prove that there exists a unique solution to the problem for SteklovPoincare operators. For this purpose we will use the Lax-Milgram lemma.

Let Ω_{2}^{*} be a midline of Ω_{2}. Without loss of generality we assume that $g_{1}=$ $g_{3}=\sigma_{13}^{+}=\sigma_{33}^{+}=0$. Moreover, one notices that all the displacements defined
in Ω_{2} are continuous with respect to ξ_{3}, since both equations and boundary conditions are independent of ξ_{3}. Using the coupling conditions (7), one can rewrite (8) as

$$
\begin{gather*}
\left\langle S_{2} \varphi, \psi\right\rangle_{\Gamma_{I}}=\left\langle-A_{1}\left(1-k_{1} \frac{h}{2}\right) \sigma_{33}^{-}(\varphi), \tilde{w}\right\rangle_{\Gamma_{I}}+ \\
+\left\langle-A_{1}\left(1-k_{1} \frac{h}{2}\right) \sigma_{13}^{-}(\varphi),\left(\tilde{\mathrm{v}}_{1}-\frac{h}{2} \tilde{\gamma}_{1}\right)\right\rangle_{\Gamma_{I}}= \\
=\left(-A_{1}\left(1-k_{1} \frac{h}{2}\right) \sigma_{33}^{-}, \tilde{w}\right)_{\Omega_{2}^{*}}+\left(-A_{1}\left(1-k_{1} \frac{h}{2}\right) \sigma_{13}^{-}, \tilde{\mathrm{v}}_{1}\right)_{\Omega_{2}^{*}}+ \tag{9}\\
+\left(A_{1} \frac{h}{2}\left(1-k_{1} \frac{h}{2}\right) \sigma_{13}^{-}, \tilde{\gamma}_{1}\right)_{\Omega_{2}^{*}}
\end{gather*}
$$

where

$$
(u, v)_{\Omega_{2}^{*}}=\int_{\Omega_{2}^{*}} u v d \Omega_{2}^{*}
$$

Let us substitute into (9) the corresponding left sides of the system of equations (2)-(5):

$$
\begin{gathered}
\left\langle S_{2} \varphi, \psi\right\rangle_{\Gamma_{I}}=\left(-\frac{d T_{13}}{d \xi_{1}}+k_{1} A_{1} T_{11}, \tilde{w}\right)_{\Omega_{2}^{*}}+ \\
+\left(-\frac{d T_{11}}{d \xi_{1}}-k_{1} A_{1} T_{13}, \tilde{\mathrm{v}}_{1}\right)_{\Omega_{2}^{*}}+\left(-\frac{d M_{11}}{d \xi_{1}}+A_{1} T_{13}, \tilde{\gamma}_{1}\right)_{\Omega_{2}^{*}}
\end{gathered}
$$

After integrating by parts one can easily notice that the coerciveness and symmetry of the Steklov-Poincare operator S_{2} follows from the properties of the corresponding operator defined on the midline Ω_{2}^{*} which has been proven in [2]. Therefore, one obtains

$$
\begin{aligned}
\left\langle S_{2} \varphi, \varphi\right\rangle_{\Gamma_{I}} & \geq c^{2} \int_{-1}^{0}\left(\left(\frac{d \mathrm{v}_{1}}{d \xi_{1}}\right)^{2}+\left(\frac{d w}{d \xi_{1}}\right)^{2}+\left(\frac{d \gamma_{1}}{d \xi_{1}}\right)^{2}\right) d \Omega_{2}^{*}+ \\
& +c^{2} \int_{-1}^{0}\left(\mathrm{v}_{1}^{2}+w^{2}+\gamma_{1}^{2}\right) d \Omega_{2}^{*}, \quad c \neq 0
\end{aligned}
$$

Further,

$$
\left\langle S_{2} \varphi, \varphi\right\rangle_{\Gamma_{I}} \geq c_{1}^{2} \int_{-1}^{0}\left(\left(\frac{d w}{d \xi_{1}}\right)^{2}+\left(\frac{d \mathrm{v}_{1}}{d \xi_{1}}-\frac{h}{2} \frac{d \gamma_{1}}{d \xi_{1}}\right)^{2}\right) d \Omega_{2}^{*}+
$$

$$
+c_{1}^{2} \int_{-1}^{0}\left(w^{2}+\left(\mathrm{v}_{1}-\frac{h}{2} \gamma_{1}\right)^{2}\right) d \Omega_{2}^{*}, \quad c_{1} \neq 0
$$

Thus, S_{2} is coercive. The linearity of S_{2} follows directly from the linearity of the corresponding operator in Ω_{2}^{*}.

Let us now prove the continuity of S_{2}. For this purpose, firstly one proves the continuity of the following operator in Ω_{2}^{*}

$$
\begin{gathered}
(A y, \tilde{y})_{\Omega_{2}^{*}}=\left(-\frac{d T_{13}}{d \xi_{1}}+k_{1} A_{1} T_{11}, \tilde{w}\right)_{\Omega_{2}^{*}}+ \\
+\left(-\frac{d T_{11}}{d \xi_{1}}-k_{1} A_{1} T_{13}, \tilde{\mathrm{v}}_{1}\right)_{\Omega_{2}^{*}}+\left(-\frac{d M_{11}}{d \xi_{1}}+A_{1} T_{13}, \tilde{\gamma}_{1}\right)_{\Omega_{2}^{*}}
\end{gathered}
$$

where $y=\mathrm{v}_{1}, w, \gamma_{1}, \quad \tilde{y}=\tilde{\mathrm{v}}_{1}, \tilde{w}, \tilde{\gamma}_{1}$. Using Cauchy-Schwarz inequality, one obtains for $y, \tilde{y} \in H^{1}\left(\Gamma_{I}\right) \times H^{1}\left(\Gamma_{I}\right) \times H^{1}\left(\Gamma_{I}\right)$

$$
\begin{aligned}
& (A y, \tilde{y})_{\Omega_{2}^{*}}=\int_{-1}^{0}\left(T_{13} \frac{d \tilde{w}}{d \xi_{1}}+k_{1} A_{1} T_{11} \tilde{w}\right) d \xi_{1}+ \\
& +\int_{-1}^{0}\left(T_{11} \frac{d \tilde{\mathrm{v}}_{1}}{d \xi_{1}}-k_{1} A_{1} T_{13} \tilde{\mathrm{v}}_{1}\right) d \xi_{1}+\int_{-1}^{0}\left(M_{11} \frac{d \tilde{\gamma}_{1}}{d \xi_{1}}+A_{1} T_{13} \tilde{\gamma}_{1}\right) d \xi_{1}= \\
& =\int_{-1}^{0}\left(k^{\prime} G^{\prime} h\left(\frac{1}{A_{1}} \frac{d w}{d \xi_{1}}+\gamma_{1}-k_{1} \mathrm{v}_{1}\right) \frac{d \tilde{w}}{d \xi_{1}}+\right. \\
& \left.+k_{1} A_{1} \frac{E_{2} h}{1-v_{2}^{2}}\left(\frac{1}{A_{1}} \frac{d \mathrm{v}_{1}}{d \xi_{1}}+k_{1} w\right) \tilde{w}\right) d \xi_{1}+ \\
& +\int_{-1}^{0}\left(\frac{E_{2} h}{1-v_{2}^{2}}\left(\frac{1}{A_{1}} \frac{d \mathrm{v}_{1}}{d \xi_{1}}+k_{1} w\right) \frac{d \tilde{\mathrm{v}}_{1}}{d \xi_{1}}-\right. \\
& \left.-k_{1} A_{1} k^{\prime} G^{\prime} h\left(\frac{1}{A_{1}} \frac{d w}{d \xi_{1}}+\gamma_{1}-k_{1} \mathrm{v}_{1}\right) \tilde{\mathrm{v}}_{1}\right) d \xi_{1}+ \\
& +\int_{-1}^{0}\left(\frac{E_{2} h^{3}}{12\left(1-v_{2}^{2}\right)} \frac{1}{A_{1}} \frac{d \gamma_{1}}{d \xi_{1}} \frac{d \tilde{\gamma}_{1}}{d \xi_{1}}+A_{1} k^{\prime} G^{\prime} h\left(\frac{1}{A_{1}} \frac{d w}{d \xi_{1}}+\gamma_{1}-k_{1} \mathrm{v}_{1}\right) \tilde{\gamma}_{1}\right) d \xi_{1} \leq \\
& \leq k^{\prime} G^{\prime} h \frac{1}{A_{1}^{m}}\left[\int_{-1}^{0}\left(\frac{d w}{d \xi_{1}}\right)^{2} d \xi_{1}\right]^{\frac{1}{2}}\left[\int_{-1}^{0}\left(\frac{d \tilde{w}}{d \xi_{1}}\right)^{2} d \xi_{1}\right]^{\frac{1}{2}}+
\end{aligned}
$$

$$
\begin{aligned}
& +k^{\prime} G^{\prime} h\left[\int_{-1}^{0}\left(\gamma_{1}\right)^{2} d \xi_{1}\right]^{\frac{1}{2}}\left[\int_{-1}^{0}\left(\frac{d \tilde{w}}{d \xi_{1}}\right)^{2} d \xi_{1}\right]^{\frac{1}{2}}+ \\
& +k^{\prime} G^{\prime} h\left|k_{1}^{M}\right|\left[\int_{-1}^{0}\left(\mathrm{v}_{1}\right)^{2} d \xi_{1}\right]^{\frac{1}{2}}\left[\int_{-1}^{0}\left(\frac{d \tilde{w}}{d \xi_{1}}\right)^{2} d \xi_{1}\right]^{\frac{1}{2}}+ \\
& +\frac{E_{2} h}{1-v_{2}^{2}}\left|k_{1}^{M}\right|\left[\int_{-1}^{0}\left(\frac{d \mathrm{v}_{1}}{d \xi_{1}}\right)^{2} d \xi_{1}\right]^{\frac{1}{2}}\left[\int_{-1}^{0}(\tilde{w})^{2} d \xi_{1}\right]^{\frac{1}{2}}+ \\
& +\left(A_{1}\left|k_{1}\right|\right)^{M} \frac{E_{2} h}{1-v_{2}^{2}}\left[\int_{-1}^{0}(w)^{2} d \xi_{1}\right]^{\frac{1}{2}}\left[\int_{-1}^{0}(\tilde{w})^{2} d \xi_{1}\right]^{\frac{1}{2}}+ \\
& +\frac{E_{2} h}{1-v_{2}^{2}} \frac{1}{A_{1}^{m}}\left[\int_{-1}^{0}\left(\frac{d \mathrm{v}_{1}}{d \xi_{1}}\right)^{2} d \xi_{1}\right]^{\frac{1}{2}}\left[\int_{-1}^{0}\left(\frac{d \tilde{\mathrm{v}}_{1}}{d \xi_{1}}\right)^{2} d \xi_{1}\right]^{\frac{1}{2}}+ \\
& +\frac{E_{2} h}{1-v_{2}^{2}}\left|k_{1}^{M}\right|\left[\int_{-1}^{0}(w)^{2} d \xi_{1}\right]^{\frac{1}{2}}\left[\int_{-1}^{0}\left(\frac{d \tilde{\mathrm{v}}_{1}}{d \xi_{1}}\right)^{2} d \xi_{1}\right]^{\frac{1}{2}}+ \\
& +\frac{E_{2} h}{1-v_{2}^{2}}\left|k_{1}^{M}\right|\left[\int_{-1}^{0}\left(\frac{d w}{d \xi_{1}}\right)^{2} d \xi_{1}\right]^{\frac{1}{2}}\left[\int_{-1}^{0}\left(\tilde{\mathrm{v}}_{1}\right)^{2} d \xi_{1}\right]^{\frac{1}{2}}+ \\
& +k^{\prime} G^{\prime} h\left(A_{1}\left|k_{1}\right|\right)^{M}\left[\int_{-1}^{0}\left(\gamma_{1}\right)^{2} d \xi_{1}\right]^{\frac{1}{2}}\left[\int_{-1}^{0}\left(\tilde{\mathrm{v}}_{1}\right)^{2} d \xi_{1}\right]^{\frac{1}{2}}+ \\
& +k^{\prime} G^{\prime} h\left(A_{1} k_{1}^{2}\right)^{M}\left[\int_{-1}^{0}\left(\mathrm{v}_{1}\right)^{2} d \xi_{1}\right]^{\frac{1}{2}}\left[\int_{-1}^{0}\left(\tilde{\mathrm{v}}_{1}\right)^{2} d \xi_{1}\right]^{\frac{1}{2}}+ \\
& +\frac{E_{2} h^{3}}{12\left(1-v_{2}^{2}\right)} \frac{1}{A_{1}^{m}}\left[\int_{-1}^{0}\left(\frac{d \gamma_{1}}{d \xi_{1}}\right)^{2} d \xi_{1}\right]^{\frac{1}{2}}\left[\int_{-1}^{0}\left(\frac{d \tilde{\gamma}_{1}}{d \xi_{1}}\right)^{2} d \xi_{1}\right]^{\frac{1}{2}}+
\end{aligned}
$$

$$
\begin{gathered}
+k^{\prime} G^{\prime} h\left[\int_{-1}^{0}\left(\frac{d w}{d \xi_{1}}\right)^{2} d \xi_{1}\right]^{\frac{1}{2}}\left[\int_{-1}^{0}\left(\tilde{\gamma}_{1}\right)^{2} d \xi_{1}\right]^{\frac{1}{2}}+ \\
+k^{\prime} G^{\prime} h A_{1}^{M}\left[\int_{-1}^{0}\left(\gamma_{1}\right)^{2} d \xi_{1}\right]^{\frac{1}{2}}\left[\int_{-1}^{0}\left(\tilde{\gamma}_{1}\right)^{2} d \xi_{1}\right]^{\frac{1}{2}}+ \\
+k^{\prime} G^{\prime} h\left(A_{1}\left|k_{1}\right|\right)^{M}\left[\int_{-1}^{0}\left(\mathrm{v}_{1}\right)^{2} d \xi_{1}\right]^{\frac{1}{2}}\left[\int_{-1}^{0}\left(\tilde{\gamma}_{1}\right)^{2} d \xi_{1}\right]^{\frac{1}{2}} \leq \\
\leq C^{2}\|y\|_{H^{1}\left(\Omega_{2}^{*}\right)}\|\tilde{y}\|_{H^{1}\left(\Omega_{2}^{*}\right)}, \quad C \neq 0 .
\end{gathered}
$$

In the above $f^{M}=\sup _{\Omega_{2}^{*}} f, f^{m}=\inf _{\Omega_{2}^{*}} f$. As a result, the continuity of the operator A is proven. Taking into account the continuity of the operator A, we can conclude

$$
\begin{gathered}
\left\langle S_{2} \varphi, \psi\right\rangle_{\Gamma_{I}} \leq \\
\leq C^{2}\left[\int_{-1}^{0}\left(\left(\frac{d \mathrm{v}_{1}}{d \xi_{1}}\right)^{2}+\left(\frac{d w}{d \xi_{1}}\right)^{2}+\left(\frac{d \gamma_{1}}{d \xi_{1}}\right)^{2}+\mathrm{v}_{1}^{2}+w^{2}+\gamma_{1}^{2}\right) d \Omega_{2}^{*}\right]^{\frac{1}{2}} \times \\
\times\left[\int_{-1}^{0}\left(\left(\frac{d \tilde{\mathrm{v}}_{1}}{d \xi_{1}}\right)^{2}+\left(\frac{d \tilde{w}}{d \xi_{1}}\right)^{2}+\left(\frac{d \tilde{\gamma}_{1}}{d \xi_{1}}\right)^{2}+\tilde{\mathrm{v}}_{1}^{2}+\tilde{w}^{2}+\tilde{\gamma}_{1}^{2}\right) d \Omega_{2}^{*}\right]^{\frac{1}{2}}, \quad C \neq 0 .
\end{gathered}
$$

Thus, one obtains

$$
\begin{gathered}
\left\langle S_{2} \varphi, \psi\right\rangle_{\Gamma_{I}} \leq \\
\leq C_{1}^{2}\left[\int_{-1}^{0}\left(\left(\frac{d w}{d \xi_{1}}\right)^{2}+\left(\frac{d \mathrm{v}_{1}}{d \xi_{1}}-\frac{h}{2} \frac{d \gamma_{1}}{d \xi_{1}}\right)^{2}+w^{2}+\left(\mathrm{v}_{1}-\frac{h}{2} \gamma_{1}\right)^{2}\right) d \Omega_{2}^{*}\right]^{\frac{1}{2}} \times \\
\times\left[\int_{-1}^{0}\left(\left(\frac{d \tilde{w}}{d \xi_{1}}\right)^{2}\left(\frac{d \tilde{\mathrm{v}}_{1}}{d \xi_{1}}-\frac{h}{2} \frac{d \tilde{\gamma}_{1}}{d \xi_{1}}\right)^{2}+\tilde{w}^{2}+\left(\tilde{\mathrm{v}}_{1}-\frac{h}{2} \tilde{\gamma}_{1}\right)^{2}\right) d \Omega_{2}^{*}\right]^{\frac{1}{2}}, \quad C_{1} \neq 0 .
\end{gathered}
$$

Let us consider now the local Steklov-Poincare operator S_{1}.

$$
\begin{gathered}
\left\langle S_{1} \varphi, \psi\right\rangle_{\Gamma_{I}}=\left\langle A_{1}\left(1-k_{1} \frac{h}{2}\right) G_{I} \sigma_{v v}(\varphi), \psi_{1}\right\rangle_{\Gamma_{I}}+ \\
+\left\langle A_{1}\left(1-k_{1} \frac{h}{2}\right) G_{I} \sigma_{v \tau}(\varphi), \psi_{2}\right\rangle_{\Gamma_{I}}
\end{gathered}
$$

It can be shown similarly to the case of linear elasticity that the operator S_{1} is coercive, symmetric, linear and continuous on $H^{1 / 2}\left(\Gamma_{I}\right)$ [3, 6]. From the equivalence of the $H^{1 / 2}\left(\Gamma_{I}\right)$ and $L_{2}\left(\Gamma_{I}\right)$ norms with the use of Friedrichs' inequality, we obtain, that the operator S_{1} is linear, continuous, symmetric and coercive on $H^{1}\left(\Gamma_{I}\right)$.

To conclude, the Steklov-Poincare operator S is linear, continuous, symmetric and coercive on $H^{1}\left(\Gamma_{I}\right)$ as the sum of the operators having such properties. By the Lax-Milgram lemma, our problem for the Steklov-Poincare operator has a unique solution on $H^{1}\left(\Gamma_{I}\right)$.

We remark that for the case of nonzero volume forces as well as nonzero boundary conditions, the proof can be carried out in a similar way.

Let Q, Q_{1} and Q_{2} be the corresponding preconditioners in the domain decomposition algorithm [6]. It is known, that in the case of Dirichlet-Neumann iterations these preconditioners can be expressed through S_{1} and S_{2} as [6]

$$
\begin{gather*}
Q=Q_{1}+Q_{2} \\
\left\langle Q_{1} \varphi, \psi\right\rangle_{\Gamma_{I}}=\left\langle S_{1} \varphi, \psi\right\rangle_{\Gamma_{I}} \tag{10}\\
\left\langle Q_{2} \varphi, \psi\right\rangle_{\Gamma_{I}}=\left\langle S_{2} \varphi, \psi\right\rangle_{\Gamma_{I}}
\end{gather*}
$$

Since the Steklov-Poincare operators S_{1} and S_{2} are linear, continuous, symmetric and coercive on $H^{1}\left(\Gamma_{I}\right)$, we conclude that the operators Q, Q_{1} and Q_{2} also possess these properties.

Therefore, by the convergence of the Dirichlet-Neumann iterations, the following method is convergent for $0<\theta<\theta_{\max }$:

$$
\varphi^{k+1}=\varphi^{k}+\theta Q_{2}^{-1}\left(G-Q \varphi^{k}\right), \quad k=0,1,2, \ldots
$$

where G is the right-hand side of the equation $Q \varphi=G$.
It is worth mentioning that all the properties of the continuous operators can be transferred to the corresponding discrete operators, and in the case of quasi-uniform mesh, these properties also hold for the discrete operators [6].

4. Numerical example

In this section we consider a rectangular object lying in Ω that consists of a concrete main part in Ω_{1} with a thin steel cover Ω_{2} attached to its top. The physical dimensions are as follows: $x_{1}^{b}=0.05, x_{2}^{b}=0.05, x_{1}^{e}=1.05$, $x_{2}^{e}=0.55, h=0.02$. The physical parameters for the main part are $\nu=0.33$, $E=25000 M P a$, for the shell $-\nu=0.33, E=200000 M P a$. The body is kept
fixed on both sides and subjected to the load on the bottom of $p=1 \mathrm{MPa} / \mathrm{m}^{2}$ (see Fig. 2) with zero load on top.

Fig. 2. Numerical Example

Fig. 3. Displacements in x_{2} direction on the interface
The solution on each iteration in the main part is done by BEM with linear basis functions with the Galerkin method applied to integral representation formula [1]

$$
\frac{1}{2} u_{i}=\int_{\Gamma}\left(F_{i j}(x, y) t_{j}(y)\right) d \Gamma+\int_{\Gamma}\left(G_{i j}(x, y) u_{j}(y)\right) d \Gamma, \quad i=1,2,
$$

where $F_{i j}$ and $G_{i j}$ are the Green's function and the co-normal derivative of Green's function respectively; $t_{i}=\sigma_{i j} n_{j}$ are the tractions.

The solution in Ω_{2} is seeked as the linear combination of bubble basis functions which are defined on each element by

$$
\begin{gathered}
\Phi_{0}(\xi)=\frac{1-\xi}{2}, \quad \Phi_{1}(\xi)=\frac{1+\xi}{2} \\
\Phi_{j}(\xi)=\sqrt{\frac{2 j-1}{2}} \int_{-1}^{\xi} P_{j-1}(t) d t, \quad j=2,3 \ldots
\end{gathered}
$$

where $P_{j}(\xi)$ are the Legendre polynomials. The solution in both domains is then combined using the iterative algorithm (10).

For our example we choose 96 equally spaced boundary elements. The relaxation parameter θ is taken to be equal 0.00225

In Fig. 3 the displacement in x_{2} direction along the interface is shown. The displacement achieves its maximum in the middle point A of the interface.

Bibliography

1. Brebbia C. A. Boundary Element Techniques / C. A. Brebbia, J. C. Telles, L. C. Wrobel.Heidelberg: Springer-Verlag, 1984.
2. Dyyak I. D-adaptive mathematical model of solid body with thin coating / I. Dyyak, Ya. Savula // Mathematical studies.- 1997.- Vol. 7, № 1.- P. 103-109 (in Ukrainian).
3. Hsiao G. C. Boundary integral equations / G. C. Hsiao, W. L. Wendland.- Heidelberg: Springer-Verlag, 2008.
4. Krevs V. On the application of domain decomposition method to the problem of heat transfer for the bodies with thin layer / V. Krevs, Ya. Savula //Visnyk Lviv. Universytetu. Seriya mech.-math.- 1996.- № 44 (in Ukrainian).
5. Pelekh B. Generalized shell theory / B. Pelekh.- Lviv, 1978 (in Ukrainian).
6. Quarteroni A. Domain decomposition methods for partial differential equations / A. Quarteroni, A. Valli.- Oxford, 1999.
7. Sulym H. The foundations of the mathematical theory of thermoelastic equilibrium for deformable solid bodies with thin inclusions / H. Sulym.- Lviv, 2007 (in Ukrainian).
8. Vynnytska L. The stress-strain state of elastic body with thin inclusion / L. Vynnytska, Ya. Savula // Ph-math. modelling and information technologies.- 2008.- № 7.- P. 21-29 (in Ukrainian).

Ivan Dyyak, Yarema Savula, Andriy Styahar, Ivan Franko National University of Lviv, 1, Universytets'ka Str., Lviv, 79000, Ukraine

[^0]: ${ }^{\dagger}$ Key words. Elasticity theory, boundary element method, finite element method, domain decomposition.

