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�åçþìå. Ñ�îðìóëüîâàíî ïî÷àòêîâî-êðàéîâó òà âiäïîâiäíó âàðiàöiéíó

çàäà÷ó, ÿêà ìîäåëþ¹ ïîøèðåííÿ òåïëà â ïðîöåñi �ðèêöiéíîãî çìiöíåííÿ

äåòàëi ðóõîìèì iìïóëüñíèì ïîâåðõíåâèì ïîòîêîì òåïëà. Íà ïiäñòàâi ðiâ-

íÿííÿ áàëàíñó åíåðãi¨ âñòàíîâëåíî óìîâè êîðåêòíîñòi âàðiàöiéíî¨ çàäà÷i.

Äèñêðåòèçàöiÿ îñòàííüî¨ ìåòîäîì ñêií÷åííèõ åëåìåíåòiâ äîïîâíåíà îäíî-

êðîêîâîþ ðåêóðåíòíîþ ñõåìîþ iíòåãðóâàííÿ â ÷àñi. Çíàéäåíî äîñòàòíi

óìîâè ñòiéêîñòi òà çáiæíîñòi öi¹¨ ñõåìè. Çàïðîïîíîâàíà ìåòîäèêà iëþñòðó-

¹òüñÿ ðåçóëüòàòàìè îá÷èñëþâàëüíèõ åêñïåðèìåíòiâ, âèêîíàíèõ ç âèêîðèñ-

òàííÿì ñåðåäîâèùà FreeFEM++.

Abstrat. This paper fouses on the proess of detail's fritional hardening

with a jagged tool. We state initial boundary value problem for heat ondu-

tion in detail under a dynami impulse heat soure and orrespondent varia-

tional formulation. Conditions for well-posedness of the latter were obtained

using the energy balane equation. Finite element spae semi-disretization

with subsequent one step reurrent time integration sheme were employed.

Su�ient onditions for shemes stability and onvergene were obtained. De-

sribed methodology is illustrated with the results of numerial experiments,

implemented using open soure environment FreeFEM++.

1. Introdution

Mahinery parts play an important role in the exploitation proess. They

ontat between themselves, with other objets and environment. As the main

loading of those proesses is taken by details surfae layers, those physial and

hemial properties are diretly linked to mahine's reliability [9℄.

Super�ial hardening of details results in inrease of durability, toughness and

the time of their exploitation. We explore the proess of super�ial hardening

with highly onentrated energy soure [11℄. This energy soure is generated

in the area of ontat between the tool and detail due to frition. During the

ontat this area is haraterized by high inrease in temperature and subse-

quently derease during its absene [5℄. As a result, a speial �white� layer with

qualitatively better physial and hemial properties is formed.

This paper onsiders the problem of heat transfer [2℄ in the workpiee being

proessed with serrated tool. This will enable us to test general approah to this

kind of problems and apply it to the problems of oupled thermo-mehanial

�elds [8℄.

Key words. Heat equation, �nite element method, mixed problem, impulse moving soure,

super�ial hardening.
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It should be mentioned that the problem of heat transfer in tehnologial

proesses related with hardening is atual and widely onsidered in tehnial

literature [7, 8℄.

Main feature of our problem is serration of the tool that produes regime

of frition. This property ontributes in introduing spei� features in the

formulation of initial-boundary value problem and needs additional theoretial

reasoning during the proof of orretness of its variational form.

So �rstly we formulate initial boundary value problem of heat transfer for

detail [2℄. Main soures of heat in- and out�ow are represented with boundary

onditions for heat �ux in the area of dynami ontat and heat exhange with

environment on the rest of details boundary. Then we formulate orrespondent

variational problem with further Galerkin spae semi-disretization. After a

little algebra we obtain appropriate Cauhy problem. Based on the properties

of the variation problem omponents we show the uniqueness of its solution.

On the next step we build energy equation and derive apriori estimates from

the upper limit of linear funtional. Consequently, orretness of semi-disrete

problem is shown. To �nish this whole proedure, we show the orretness of

variational problem. This is done on the foundation of the boundness of semi-

disrete approximations sequene and apriori estimate of linear funtional.

Finally, a time disretization is applied to the semi-disrete problem. Fur-

thermore, su�ient onditions for onvergene and stability of resulting one-

step time integration reurrent sheme are obtained.

Built numerial sheme was implemented with FreeFEM++ [4℄ using qua-

drati �nite element approximation. Rates of onvergene were veri�ed for the

simplest ase of our pratial problem that inludes one ontat and ontatless

periods. Afterwards sheme was applied to model the full proess. Resulting

data was analyzed and represented with graphs.

2. Statement of the problem

We assume that the workpiee is elasti body whih oupies the bounded

domain Ω in eulidian spae Ω ⊂ R
d(d = 1, 2, 3) with Lipshitz boundary Γ.

Let us denote by x = (x1, ..., xd) arbitrary point set of the losure Ω̄ = Ω ∪ Γ
and t is arbitrary moment in time from interval [0, T ], 0 < T < +∞.

Due to the appliation of internal heat soures f = {fi(x, t)}d
i=1 and surfae

heat �uxes q̂ = q̂(x, t) body temperature hanges. These hanges are relative

to given initial temperature �elds u0 = u0 (x) and will be denoted as u(x, t).
Also they satisfy the following heat equation:

ρcv
∂u

∂t
−∇.(λ∇u) = f in Ω × (0, T ], (1)

where ∇.(λ∇u) = div (λ∇u), ρ = ρ(x) > 0 is workpiee density, cv = cv (x) >
0 is its oe�ient of spei� heat apaity and λ = {λij(x)}d

i,j=1 represents

matrix of thermal ondutivity oe�ients that is symmetri and positively

de�ned:{
λkm(x) = λmk(x),

λkm(x)ξkξm ≥ λ0ξkξm, λ0 = const > 0, ∀ξk ∈ R in Ω,
(2)
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where Einstein summation notation applies.

Equation (1) is supplemented with boundary onditions for interation with

environment, in partiular for ontat with the tool:

−n.(λ∇u) = α(u− û)(1 − δ) + q̂δ on Γ × [0, T ], (3)

where û = û (x, t) is the temperature of environment, α = α (x, t) is heat

transfer oe�ient and n = {ni}d
i=1 , ni = cos (n, xi) are outer unit normal

vetor and respetively its omponents.We also introdue funtion δ(x, t) that
an aept two values: either 1 for all boundary points in the ontat area

between tool and detail during the ontat period, or 0 in all other ases.

Thereby we formulate the following initial boundary value problem:





given λ = {λij(x)}d
i,j=1, ρ = ρ(x), cv = cv(x),

u0 = u0(x), α = α(x, t), q̂ = q̂(x, t), f = f(x, t),

δ = δ(x, t), û = û(x, t);

find temperature field u = u(x, t), such that

ρcv
∂u
∂t −∇.(λ∇u) = ρcvf in Ω × (0, T ] ,

−n.(λ∇u) = α(u− û) (1 − δ) + q̂δ on Γ × [0, T ],

u|t=0 = u0 in Ω.

(4)

In addition, we suppose that the data of (4) satis�es the onditions





ρ, cv , λij ∈ L∞ (0, T ;L2 (Ω)
)
, u0 ∈ L2 (Ω) ,

f ∈ L2
(
0, T ;L2 (Ω)

)
, α, δ ∈ L∞ (0, T ;L2 (Γ)

)
,

û, q̂ ∈ L2
(
0, T ;L2 (Γ)

)
.

(5)

3. Variational formulation

To formulate a variational problem, let us introdue spaes of admissible

temperatures V = H1(Ω), onjugated spae V ′
and spaes H = L2(Ω).

Hereinafter we will use the following notation

u (t) = u (x, t) − function x→ u (x, t) ,

u′ (t) = ∂u/∂t− function x→ ∂u(x,t)
∂t .

Let us multiply heat equation of system (4) by arbitrary funtion v ∈ V
with suessive integration over Ω. After utilization of Green's formula and

boundary ondition (3) we obtain

0 =

∫

Ω

{
ρcvu

′(t) −∇.[λ∇u(t)] − f(t)
}
vdx =

∫

Ω
ρcvu

′(t)vdx

+

∫

Ω
(∇v).[λ∇u(t)]dx −

∫

Ω
f(t)vdx+

∫

Γ
α(t)u(t)[1 − δ(t)]vdγ

−
∫

Γ
α(t)û(t)[1 − δ(t)]vdγ −

∫

Γ
q̂(t)δ(t)vdγ.

(6)

As the next step, we introdue the following bilinear forms
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s(u, v) =

∫

Ω
ρcvuvdx ∀u, v ∈ H, (7)

a(u, v) =

∫

Ω
(∇v).[λ∇u]dx+

∫

Γ
αu[1 − δ]vdγ ∀u, v ∈ V, (8)

and suh linear funtional

< l, v >=

∫

Ω
ρcvfvdx+

∫

Γ
[αû(1 − δ) + q̂δ]vdγ ∀v ∈ V. (9)

Thus the variatinal formulation of (4) an be represented in the following

manner:





find such heat distribution u(x, t) that

s(u′(t), v) + a(u(t), v) =< l(t), v > ∀v ∈ V, ∀t ∈ (0, T ] ,

s(u(0) − u0, v) = 0.

(10)

4. Properties of the variational problem omponents

From de�nition of bilinear forms we an state the following





symmetric continous bilinear form s (·, ·) defined by (3)

is H − elliptic and generates norm ‖u‖H = s
1
2 (u, u) ∀u ∈ H,

which is equivalent to ‖ · ‖0,Ω .

(11)

Seond bilinear form has more omplex struture that results is neessity of

additional on�rmation of its properties.

Theorem 1. Let onditions (5) and (2) are satis�ed.

Then bilinear form a(·, ·) de�ned by (8) is ontinuous and the following in-

equality holds

|a(u, v)| ≤ C
[
‖λ‖L∞(Ω) + ‖α‖L∞(Γ)

]
‖u‖H1(Ω)‖v‖H1(Ω).

Proof. Using Cauhy-Bunyakovsky-Shwarz inequality and trae theorem [10,

p. 72-73℄ we obtain

|a(u, v)| ≤ |
∫

Ω
(λ∇u) . (∇v) dx| + |

∫

Γ
αu(1 − δ)vdγ|

≤
∫

Ω
|λ∇u|.|∇v|dx+

∫

Γ
|αuv|dγ ≤ {

∫

Ω
|λ∇u|2dx

∫

Ω
|∇v|2dx}

1
2

+ {
∫

Γ
|αu|2|v|2dγ}

1
2 ≤ ‖λ∇u‖H‖∇v‖H + ‖αu‖L2(Γ)‖v‖L2(Γ)

≤ C
[
‖λ‖L∞(Ω) + ‖α‖L∞(Γ)

]
‖u‖H1(Ω)‖v‖H1(Ω), ∀u, v ∈ H1(Ω).

This means that a(·, ·) is bounded and as a result ontinuous. �
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Theorem 2. Let onditions (5) and (2) are satis�ed.

Bilinear form a(·, ·) de�ned by (8) is H1(Ω)− ellipti, moreover the following

inequality holds:

a(u, u) ≥ m0
min{1, CF }

2
‖u‖2

H1(Ω) .

Proof. The latter estimation an be obtained after utilization of Friedrihs in-

equality and the following transmutations

a(u, u) ≥ λmax

∫

Ω
(∇u)2dx+

∫

Γ
αu2(1 − δ)dγ

≥ min{λmax, α0}
[∫

Ω
(∇u)2dx+

∫

Γ
u2dγ

]

≥ min{λmax, α0}[12 (

∫

Ω
(∇u)2dx+

∫

Γ
u2dγ) + 1

2(

∫

Ω
(∇u)2dx+

∫

Γ
u2dγ)]

≥ m0

[
1
2

∫

Ω
(∇u)2dx+ CF

2

∫

Ω
u2dx

]
≥ m0

min{1, CF }
2

‖u‖2
H1(Ω) .

�

Corollary 1. Let onditions (5) and (2) are satis�ed then following statement

holds:





symmetrical continuous bilinear form a (·, ·) from (2.4)

is V − elliptic and generates norm ‖u‖V = a
1
2 (u, u) ∀u ∈ V,

which is equivalent to ‖ · ‖1,Ω.

(12)

Finally, let us derive the upper estimation of linear funtional (9). This

is done starting with appliation of Cauhy-Bunyakovsky-Shwarz inequality

and theorem [10, p. 72-73℄ about the trae of the funtion from H1(Ω) on the

boundary of Ω

|< l, v >| =

∣∣∣∣
∫

Ω
ρcvfvdx+

∫

Γ
αû(1 − δ)vdγ +

∫

Γ
q̂δvdγ

∣∣∣∣
≤ ||ρcv ||∞,Ω||f ||H ||v||H + ||α||∞,Γ||û||L2(Γ)||v||L2(Γ) + ||q̂||L2(Γ)||v||L2(Γ)

≤ [ ||ρcv ||2∞,Ω||f ||2H + ||α||2∞,Γ||û||2L2(Γ) + ||q̂||2L2(Γ)]
1/2

[||v||2H + 2||v||2L2(Γ)]
1/2

≤ Cmax{ ||ρcv ||∞,Ω, ||α||∞,Γ, 1}[||f ||2H + ||û||2L2(Γ) + ||q̂||2L2(Γ)]
1/2||v||V

∀v ∈ V.

This reasoning results in the following statement.

Theorem 3. Linear funtional < l, v > de�ned by (9) in ontinuous and sat-

is�es the following estimation

|< l, v >| ≤ z0[||f ||2H + ||û||2L2(Γ) + ||q̂||2L2(Γ)]
1/2||v||V ∀v ∈ V,

where z0 = Cmax{ ||ρcv ||∞,Ω, ||α||∞,Γ, 1}.
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5. Galerkin semi-disretization

To alulate approximate solutions of variational problem (10) we selet se-

quene of �nite element subspaes {Vh} ⊂ V suh that dimVh = N(h) = N →
+∞ and

⋃
h>0

Vh is omplete in V . Then for any h > 0 we gain the following

semi-disrete approximations of the variational problem (10)





given u0 ∈ V ; find uh(x, t) ∈ L2 (0, T ;Vh) such that

s(u′h(t), v) + a(uh(t), v) =< l(t), v > ∀t ∈ (0, T ] ,

s(uh(0) − u0, v) = 0 ∀v ∈ Vh.

(13)

Next we denote by {ϕi}N
i=1 the basis of the spae Vh. Consequently sought

solution of (13) will take form of the following linear ombination

uh(x, t) =
∑N

m=1
Um(t)ϕm(x) (14)

with unknown oe�ients U1(t), ..., UN (t). Substitution of (14) into (13) yeilds

suh problem





given u0 ∈ V ; finduh(x, t) ∈ L2 (0, T ;Vh) such that∑N
m=1 U

′
m(t)s(ϕm(x), v) +

∑N
m=1 Um(t)a(ϕm(x), v)

= < l(t), v > ∀t ∈ (0, T ] ,∑N
m=1 Um(0)s(ϕm(x), v) = s(u0, v) ∀v ∈ Vh.

(15)

This problem an be transformed into Cauhy problem after onsequent sub-

stitution of v = ϕi, i = 1, ..., N, into (15). As a result, we reeive the following

equations.

{
SU ′(t) +AU(t) = R(t) ∀t ∈ (0, T ],

SU(0) = S0.
(16)

Statements (11), (12) show that matries S and A are Gramians of lin-

early independent funtions {ϕi}N
i=1 respetively to salar produts s ( · , · ) and

a ( · , · ). Thus




symmetrical matrices

S = {s(ϕi, ϕj)}N
i,j=1, A = {a(ϕi, ϕj)}N

i,j=1

are positively defined.

(17)

Sine data of the problem (4) satis�es regularity onditions (5) and (17)

holds, Cauhy problem (16) has unique solution.

6. Energy equation

Speial kind of equation an be obtained from (13) after assuming that v =
uh (t): 




1
2

d
dt [s(uh(t), uh(t))] + a(uh(t), uh(t))

=< l(t), uh(t) > ∀t ∈ (0, T ],

s(uh(0), uh(0)) = s(u0, uh(0)).

(18)
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If we take into aount (11), (12), the latter system an be reformulated in

suh a manner {
1
2

d
dt ‖uh(t)‖2

H + ‖uh(t)‖2
V =< l(t), uh(t) >,

‖uh(0)‖2
H = s(u0, uh(0)).

(19)

The �rst equation of (19) an be integrated over [0, t] to get suh equality:

1

2
‖uh(t)‖2

H +

∫ t

0
‖uh(τ)‖2

V dτ =
1

2
‖uh(0)‖2

H +

∫ t

0
< l(τ), uh(τ) > dτ

∀t ∈ [0, T ].

(20)

It should be noted that the last equality is the basis for further proof of

well-posedness of (10). Futhermore, left part of (20) is natural (energy) norm

for this problem.

7. Apriori estimates and well-posendess of variational problem

Now we an apply Cauhy-Shwarz inequality to the right part of (20) to

alulate suh an estimate∣∣∣∣
∫ t

0
< l(τ), uh(τ) > dτ

∣∣∣∣ ≤
∫ t

0
||l(τ)||∗||uh(τ)||V dτ

≤ 1
2

∫ t

0
[ ||l(τ)||2∗ + ||uh(τ)||2V ] dτ

(21)

Hene, utilizing equation (20) and inequality (21), we obtain

1
2 ‖uh(t)‖2

H +

∫ t

0
‖uh(τ)‖2

V dτ ≤ 1
2 ‖uh(0)‖2

H + 1
2

∫ t

0
[ ||l(τ)||2∗ + ||uh(τ)||2V ] dτ

whih an be rewritten into

‖uh(t)‖2
H +

∫ t

0
‖uh(τ)‖2

V dτ ≤ ‖uh(0)‖2
H +

∫ t

0
||l(τ)||2∗ dτ ∀t ∈ [0, T ]. (22)

Consequently this states that

{
semi− discrete Galerkin approximations {uh}
form a bounded set in spaceL∞ (0, T ;H) ∩ L2 (0, T ;V ) .

(23)

This also states the stability of semi-disrete approximations.

Theorem 4. Given �xed h > 0 and {ϕi}N
i=1, the basis of Vh. Then semi-

disrete problem (13) allows a unique solution uh ∈ L∞ (0, T ;H)∩L2 (0, T ;V )
that is uniquely de�ned by Cauhy problem (16) and deomposition (14). More-

over inequality (22) holds.

Corollary 2. For eah h > 0 the semi-disrete problem (13) is well-posed.

Theorem 5. Given u0 ∈ H, l ∈ L2 (0, T ;V ′) . Then variational problem (3.6)

has unique solution u ∈ L∞ (0, T ;H) ∩ L2 (0, T ;V ) and u′ ∈ L2 (0, T ;V ′) .
Furthermore (l, u0) → u is ontinuous mapping from L2 (0, T ;V ′) × H into

L2 (0, T ;V ′) ∩ L∞ (0, T ;H).
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Proofs of these theorems an be found e.g. in [12, pp. 44-45℄.

8. One-step time integration reurrent sheme

To onstrut a numerial sheme for solving a variational problem (10) we

also need to disretize problem (13) in time. To aomplish this we use proje-

tion method. In this setion we will omit index h for simpliity of notation.

Let us divide time interval [0, T ] into P subintervals [tk, tk+1], k = 0, .., P −1,
with the onstant length ∆t = tk+1 − tk > 0. On every time step [tk, tk+1],
k = 0, ..., P −1, solution uh(t) ∈ Vh of (13) will be approximated by polynomial

funtion u∆t (t) suh that

u∆t (t) = [1 − ω(tj , t)]u
j + ω(tj , t)u

j+1,

ω(tj, t) = (t− tj)/∆t, t ∈ [tj, tj+1], j = 0, ..., P − 1.
(24)

The latter funtion an be rewritten in the following manner:

u∆t(t) = uj + ∆tω(tj, t)
uj+1−uj

∆t

= 1
2(uj+1 + uj) + ∆t(ω(tj, t) − 1

2)uj+1−uj

∆t

= uj+1/2 + ∆t(ω(tj, t) − 1
2)u̇j+1/2, u̇j+1/2 = (uj+1 − uj)/∆t.

(25)

Linear funtional will be approximated with pieewise-onstant funtions:

l∆t(t) = lj+1/2 = l(tj+1/2), tj+1/2 = tj + 1
2∆t. (26)

Summing assumptions (25) and (26) and onsequent substitution into (13)

yields:





find u̇j+1/2, uj+1 ∈ Vh such that

s(u̇j+1/2, v) + ∆tω(tj, t)a(u̇
j+1/2, v)

=< lj+1/2, v > −a(uj, v),

uj+1 = uj + ∆tu̇j+1/2, ∀v ∈ Vh, ∀t ∈ [tj, tj+1],

s(u0 − u(0), v) = 0, j = 0, ..., P − 1.

(27)

The next phase is onstrution of projetive equations. Here we denote by

(·, ·) a salar produt in spae L2((tj , tj+1)) and hoose in it funtion ξ(t) suh
that

(ξ, 1) =

∫ tj+1

tj

ξ(t)dt = 1.

We introdue notation θ = (ω, ξ) and assume that (27) is orthogonal to

funtion ξ(t) with respet to salar produt (·, ·) or in other terms:

s(u̇j+1/2, v) + ∆tθa(u̇j+1/2, v) =< lj+1/2, v > −a(uj , v),

∀v ∈ Vh, j = 0, ..., P − 1, ∀θ ∈ [0, 1] .
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As a result we an denote the following one-step time-integration reurrent

sheme (hereinafter denoted as ORS):





given θ ∈ [0, 1] , u0; find u̇j+1/2, uj+1 ∈ Vh such that

s(u̇j+1/2, v) + ∆tθa(u̇j+1/2, v) =< lj+1/2, v > −a(uj , v),

uj+1 = uj + ∆tu̇j+1/2 ∀v ∈ Vh,

s(u0 − u(0), v) = 0 j = 0, ..., P − 1.

(28)

Taking into aount the H− and V−elliptiity of bilinear forms s ( · , · ) and
a ( · , · ) and also Lax-Milgram-Vyshyk lemma [1℄, ORS (28) is uniquely solved

with respet to u0, u̇j+1/2
and uj+1

.

In suh manner, pieewise-linear approximation uh∆t (t) ∈ Vh of (13) solution

uh (t) ∈ Vh is uniquely determined after appliation of sheme (28).

Stability and onvergene of ORS must also be onsidered.

Theorem 6. If data of variational problem (10) ful�ll (4), the ORS sheme

(28) with parameters ∆t and θ is:

1. unonditionally ( with respet to hosen ∆t) stable in spaes H and V ,
when θ ≥ 1

2 ;

2. stable in spaes H and V , when parameter ∆t meets inequality:

∆t ≤ 2

α (1 − 2θ)
.

Theorem 7. Let the solution uh (t) of problem (12) is suh that uh
′′′ ∈

C (0, T ;V ) and let uh∆t (t) is his pieewise-linear approximation, obtained with

appliation of unonditionally stable sheme (28) with parameter θ ≥ 1
2 .

Then the sequene uh∆t, with respet to enery norm

‖u‖2
T = 1

2 ‖u(T )‖2
H0(Ω) +

∫ T

0
‖∇u(t)‖2

H0(Ω) dt,

onverges to u, when ∆t→ 0 and h→ 0.

Proofs of theorems 6, 7 and analisys of spae and temporal error onvergene

rates an be found e.g. in [12℄.

9. Validation of numerial sheme

Sheme (28) an be implemented in the majority of speialized environments.

So for testing of numerial sheme we used a free, open soure environment

FreeFEM++, with quadrati triangular �nite elements, due to simpliity of

problem desription, ability to work with resulting matries and near optimal

exeution speed [4℄.

Taking into aount that the analytial solution of problem (4) is not known,

we will only examine a posteriori rates of onvergene of �nite element sheme.

Our two-dimensional model problem will be formed as (4) with the following

harateristis:

l = 41 · 10−4 [m], b = 55 · 10−5 [m], T = 56 · 10−5 [s], xc = 0 [m],

tc = 48 · 10−5 [s],
⌢

q = 8.2 · 106 [W/m2], ρ = 7850 [kg/m3],
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cV = 466 [J/(kg ·K)], λ = 41 [W/(m ·K)], α = 500 [W/(m2 ·K)],

vh = 4 [m/s], vd = 60 [m/s], nz = 24, lc = 3 · 10−3 [m].

where l is the length and b is thikness of workpiee. Given that Ω = (0, l) ×
(0, b) we an onretize funtion δ(x, t) from (4) in the following manner :

δ(x, t) =

{
1, x ∈ γ(t), t ∈ [tk−1, tk], t− tk <= tc,

0, t− tk > tc,
k = 1, .., N,

where γ(t) = {(x1, x2) : x1 ∈ [vht− lc/2 + xc, vht + lc/2 + xc], x2 = b} is area

of dynami ontat, tk is the initial time of k ontat, tc is time of single tooth

ontat, lc is length of ontat zone, xc represents the initial displaement of

the ontats area and vh represents the veloity of ontat zone.

For veri�ation of approximate solutions auray we will evaluate rates of

onvergene separately for spae and time disretization in the following norms

(as in [13℄) :

‖u‖2
Hm(Ω) = ‖u‖2

m =
∑

|α1+α2|≤m

∫

Ω
(

∂α1+α2

∂x1
α1∂x2

α2
u)

2

dx,

‖u‖2
T = 1

2 ‖u(T )‖2
H0(Ω) +

∫ T

0
‖∇u(t)‖2

H0(Ω) dt.

(29)

Introdution of these norms enables us to alulate the following indiators

of onvergene rates:

pm
∆t(u) = log2

∥∥u∆t − u∆t/2

∥∥
m∥∥u∆t/2 − u∆t/4

∥∥
m

, p∆t(u) = log2

∥∥u∆t − u∆t/2

∥∥
T∥∥u∆t/2 − u∆t/4

∥∥
T

,

pm
h (u) = log2

∥∥uh − uh/2

∥∥
m∥∥uh/2 − uh/4

∥∥
m

, ph(u) = log2

∥∥uh − uh/2

∥∥
T∥∥uh/2 − uh/4

∥∥
T

.

(30)

10. Convergene of spatial approximations

We use sequene of uniformly re�ned triangulations Th of isoseles triangles

to determine onvergene rates with respet to spae variables, where Th =
{K}, hK = diamK =

√
2 b

N , where N is the number of divisions of smaller side

b of Ω . Results are obtained at time T with time step ∆t = T
224 = 2, 5·10−7 [s].

For analysis of onvergene we utilize norms (29) and the following indiators

of absolute and relative errors

emh (u) =
∥∥uh − uh/2

∥∥
m
, εmh (u) =

∥∥uh − uh/2

∥∥
m∥∥uh/2

∥∥
m

× 100%,

eh(u) =
∥∥uh − uh/2

∥∥
T
, εh(u) =

∥∥uh − uh/2

∥∥
T∥∥uh/2

∥∥
T

× 100%.

(31)

Given that we use quadrati �nite element approximations, theoretially

rates of onvergene for given spaes are p0
h(u) = 3, p1

h(u) = 2 and

ph(u) = 1. Aquired results indiate ability of ORS to onverge with required

rates. It should be noted that appliation of norm ‖·‖T gives ability to protet
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Tabl. 1. Convergene of spaial approximations in norms (29)

N e0
h
(u) · 10−3 e1

h
(u) eh(u) p0

h
(u) p1

h
(u) ph(u) ε0

h
(u) ε1

h
(u) εh(u)

1/7 4, 22 158, 08 5, 15 1, 49 0, 47 0, 45 0, 92 39, 74 39, 77

1/14 1, 94 122, 18 2, 71 1, 12 0, 37 0, 92 0, 42 31, 06 20, 77

1/28 0, 41 31, 88 1, 18 2, 23 1, 94 1, 20 0, 09 8, 08 9, 02

1/56 0, 04 7, 30 0, 48 3, 30 2, 13 1, 29 0, 01 1, 85 3, 70

against aidental measurements in �well-suited� time and represents aumu-

lation of speial disretization error during preeding period.

11. Convergene in time

To verify onvergene in time we �x spae mesh with initial parameters

256 × 64 and examine the nature of a posteriori rates of onvergene during

suessive re�nement of time step ∆t = T/P .
We also use the following indiators for this analysis:

em∆t(u) =
∥∥u∆t − u∆t/2

∥∥
m
, εm∆t(u) =

∥∥u∆t − u∆t/2

∥∥
m∥∥u∆t/2

∥∥
m

× 100%,

e∆t(u) =
∥∥u∆t − u∆t/2

∥∥
T
, ε∆t(u) =

∥∥u∆t − u∆t/2

∥∥
T∥∥u∆t/2

∥∥
T

× 100%.

(32)

Tabl. 2. Convergene in time of solution in terms of norms (29)

P e0
∆t

(u) · 10−3 e1
∆t

(u) e∆t(u) p0
∆t

(u) p1
∆t

(u) p∆t(u) ε0
∆t

(u) ε1
∆t

(u) ε∆t(u)

56 2, 73 453, 85 6, 38 1, 99 1, 53 0, 74 0, 59 102, 82 46, 78

112 0, 69 157, 31 3, 81 1, 31 0, 81 0, 83 0, 15 38, 56 28, 67

224 0, 28 89, 71 2, 14 2, 03 1, 80 1, 01 0, 06 22, 71 16, 33

448 0, 07 25, 76 1, 06 1, 62 5, 91 1, 09 0, 01 6, 53 8, 12

Based on these results we state that sheme (28) ahieves theoretial rates

of onvergene in time. As we use Crank-Niolson sheme for time integration

p0
∆t(u), p

1
∆t(u) must be greater or equal to 2 and p∆t(u) this number is 1.

Aquired numerial results indiate the orretness of used ORS sheme and

its potential for pratial utilization.

12. Numerial experiments

As our paper also onerns pratial experiment we modeled the proess of

fritional hardening for detail with suh parameters:

l = 44 · 10−4 [m], b = 65 · 10−5 [m]

Workpiee is made of steel (Stal-45) whih has the following properties:

ρ = 7850 [kg/m3], cV = 466 [J/(kg ·K)], λ = 41 [W/(m ·K)].

In the initial time it is heated to the temperature of û = 293 [◦, K]. It is

rigidly �xed on the table that moves with linear speed vh = 4 [m/s]. Points on
tools surfae irulate with speed vd = 60 [m/s]. Tool-workpiee interation
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reates a ontat zone lc = 3 · 10−3 [m] in length ausing a heat soure with

the power of

⌢

q = 8.2 · 107 [W/m2] to be generated. Due to serration of tool's

surfae ontat (and subsequently heat soure) has a speial periodi regime.

Also we assume that one ontat lasts for tc = 48 · 10−5 [s], one ontatless

period is tp = 8 · 10−5 [s] and xc = −1.5 lc [m].
To omplete the desription of tehnologial proess we should mention that

the ooling liquid is supplied to the ontat area. The heat transfer oe�ient

between workpiee and oolant is α = 500 [W/(m2 ·K)]. We also onsider time

T = 280 · 10−5 [s] that overs full proessing of the workpiee. In the initial

moment of time the tool is situated aside of the detail. As experiment begins

it starts to move in the diretion of detail.

As a result of numerial experiment, the following graphis of temperature

distribution were obtained ( Fig. 1). They represent state of temperature �eld

in di�erent times so one an see the dynamis of the proess.

Fig. 1. Distribution of temperature after ontat with the se-

ond, third and fourth tooth of the tool (respetively �rst, seond

and third �gure from the top). Contat area is depited with a

retangle

Also speial attention was drawn to evolution of maximal temperature that

learly shows the in�uene of serration of tool's surfae into tehnologial pro-

ess (Fig. 2).

Latter harateristi is aggregative and inomplete without full knowledge of

the plae where this maximum ours. As the maximum is reahed on ontat

surfae we supply �gures to show the evolution on temperature pro�le on it

(Fig. 3). Also to be noted that stripes in the bakground of these �gures

represent the area of dynami ontat in orresponding points in time.

These �gures shed a light on singularities of the temperature pro�le evolution

on the ontat surfae. First �gure shows the last moment of the �rst ontat.

Figure b illustrates temperature derease and reation of unheated area. Then

seond tooth starts to at and �nishes with surfae heated to temperature as
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Fig. 2. Evolution of maximal temperature during the experi-

ment with highlighted ontatless intervals

an be seen of �gure d. The following �gures demonstrate further evolution of

heat pro�le on the surfae.

These �gures reveal interesting singularities of examined problem. Illustra-

tions depit that the speed of heat ondution is less than the speed of ontat

area. If we write down the orresponding ration in dimensionless form, we

obtain the Pelet number for a spei� problem [11, p.12℄:

Pe = vh · ld · (λ/cV ρ)−1 ≈ 4 · 0, 003
1,121 · 10-5 ≈ 1070

Given the magnitude of this harateristi (singularly unperturbed problems

have Pe < 10) we an state that this problem is singularly perturbed.

13. Conlusions

In the proess of researh the initial boundary value problem for the heat

ondution proess in workpiee during frition hardening was stated. Su-

essively we formulated orrespondent variational problem and proved its wel-

posendess. With utilization of Poinare-Freidrih's inequality a V -elliptiity of

bilinear form with term from boundary ondition for heat exhange with envi-

ronment was proven. This gave opportunity to extend known result (e.g. [12,

pp. 29-62℄) to our problem.

Modeling of the fritional hardening with a jagged tool brings in some dif-

�ulties related to its mathematial model. They show themselves in form of

mixed boundary onditions. Moreover due to magnitude of Pelet number,

investigated problem is singularly perturbed. This fat will also ontribute
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a) b)

) d)

e) f)

g) h)

i)

Fig. 3. The distribution of temperature on the ontat sur-

fae at a) 0.00048 s, b) 0.00055875 s, ) 0.000625 s, d) 0.00104

s, e) 0.00111875 s, f) 0.001185 s, g) 0.0016 s, h) 0.00168 s,

i) 0.001745 s. (ontat area is represented with a stripe)
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di�ulties that would need to be overome using appropriate methods (e.g.

apriori mesh re�nement in ontat area [6℄).
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