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�åçþìå. Ñ�îðìóëüîâàíî ïî÷àòêîâî-êðàéîâó òà âiäïîâiäíó âàðiàöiéíó

çàäà÷ó, ÿêà ìîäåëþ¹ ïîøèðåííÿ òåïëà â ïðîöåñi �ðèêöiéíîãî çìiöíåííÿ

äåòàëi ðóõîìèì iìïóëüñíèì ïîâåðõíåâèì ïîòîêîì òåïëà. Íà ïiäñòàâi ðiâ-

íÿííÿ áàëàíñó åíåðãi¨ âñòàíîâëåíî óìîâè êîðåêòíîñòi âàðiàöiéíî¨ çàäà÷i.

Äèñêðåòèçàöiÿ îñòàííüî¨ ìåòîäîì ñêií÷åííèõ åëåìåíåòiâ äîïîâíåíà îäíî-

êðîêîâîþ ðåêóðåíòíîþ ñõåìîþ iíòåãðóâàííÿ â ÷àñi. Çíàéäåíî äîñòàòíi

óìîâè ñòiéêîñòi òà çáiæíîñòi öi¹¨ ñõåìè. Çàïðîïîíîâàíà ìåòîäèêà iëþñòðó-

¹òüñÿ ðåçóëüòàòàìè îá÷èñëþâàëüíèõ åêñïåðèìåíòiâ, âèêîíàíèõ ç âèêîðèñ-

òàííÿì ñåðåäîâèùà FreeFEM++.

Abstra
t. This paper fo
uses on the pro
ess of detail's fri
tional hardening

with a jagged tool. We state initial boundary value problem for heat 
ondu
-

tion in detail under a dynami
 impulse heat sour
e and 
orrespondent varia-

tional formulation. Conditions for well-posedness of the latter were obtained

using the energy balan
e equation. Finite element spa
e semi-dis
retization

with subsequent one step re
urrent time integration s
heme were employed.

Su�
ient 
onditions for s
hemes stability and 
onvergen
e were obtained. De-

s
ribed methodology is illustrated with the results of numeri
al experiments,

implemented using open sour
e environment FreeFEM++.

1. Introdu
tion

Ma
hinery parts play an important role in the exploitation pro
ess. They


onta
t between themselves, with other obje
ts and environment. As the main

loading of those pro
esses is taken by details surfa
e layers, those physi
al and


hemi
al properties are dire
tly linked to ma
hine's reliability [9℄.

Super�
ial hardening of details results in in
rease of durability, toughness and

the time of their exploitation. We explore the pro
ess of super�
ial hardening

with highly 
on
entrated energy sour
e [11℄. This energy sour
e is generated

in the area of 
onta
t between the tool and detail due to fri
tion. During the


onta
t this area is 
hara
terized by high in
rease in temperature and subse-

quently de
rease during its absen
e [5℄. As a result, a spe
ial �white� layer with

qualitatively better physi
al and 
hemi
al properties is formed.

This paper 
onsiders the problem of heat transfer [2℄ in the workpie
e being

pro
essed with serrated tool. This will enable us to test general approa
h to this

kind of problems and apply it to the problems of 
oupled thermo-me
hani
al

�elds [8℄.

Key words. Heat equation, �nite element method, mixed problem, impulse moving sour
e,

super�
ial hardening.
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It should be mentioned that the problem of heat transfer in te
hnologi
al

pro
esses related with hardening is a
tual and widely 
onsidered in te
hni
al

literature [7, 8℄.

Main feature of our problem is serration of the tool that produ
es regime

of fri
tion. This property 
ontributes in introdu
ing spe
i�
 features in the

formulation of initial-boundary value problem and needs additional theoreti
al

reasoning during the proof of 
orre
tness of its variational form.

So �rstly we formulate initial boundary value problem of heat transfer for

detail [2℄. Main sour
es of heat in- and out�ow are represented with boundary


onditions for heat �ux in the area of dynami
 
onta
t and heat ex
hange with

environment on the rest of details boundary. Then we formulate 
orrespondent

variational problem with further Galerkin spa
e semi-dis
retization. After a

little algebra we obtain appropriate Cau
hy problem. Based on the properties

of the variation problem 
omponents we show the uniqueness of its solution.

On the next step we build energy equation and derive apriori estimates from

the upper limit of linear fun
tional. Consequently, 
orre
tness of semi-dis
rete

problem is shown. To �nish this whole pro
edure, we show the 
orre
tness of

variational problem. This is done on the foundation of the boundness of semi-

dis
rete approximations sequen
e and apriori estimate of linear fun
tional.

Finally, a time dis
retization is applied to the semi-dis
rete problem. Fur-

thermore, su�
ient 
onditions for 
onvergen
e and stability of resulting one-

step time integration re
urrent s
heme are obtained.

Built numeri
al s
heme was implemented with FreeFEM++ [4℄ using qua-

drati
 �nite element approximation. Rates of 
onvergen
e were veri�ed for the

simplest 
ase of our pra
ti
al problem that in
ludes one 
onta
t and 
onta
tless

periods. Afterwards s
heme was applied to model the full pro
ess. Resulting

data was analyzed and represented with graphs.

2. Statement of the problem

We assume that the workpie
e is elasti
 body whi
h o

upies the bounded

domain Ω in eu
lidian spa
e Ω ⊂ R
d(d = 1, 2, 3) with Lips
hitz boundary Γ.

Let us denote by x = (x1, ..., xd) arbitrary point set of the 
losure Ω̄ = Ω ∪ Γ
and t is arbitrary moment in time from interval [0, T ], 0 < T < +∞.

Due to the appli
ation of internal heat sour
es f = {fi(x, t)}d
i=1 and surfa
e

heat �uxes q̂ = q̂(x, t) body temperature 
hanges. These 
hanges are relative

to given initial temperature �elds u0 = u0 (x) and will be denoted as u(x, t).
Also they satisfy the following heat equation:

ρcv
∂u

∂t
−∇.(λ∇u) = f in Ω × (0, T ], (1)

where ∇.(λ∇u) = div (λ∇u), ρ = ρ(x) > 0 is workpie
e density, cv = cv (x) >
0 is its 
oe�
ient of spe
i�
 heat 
apa
ity and λ = {λij(x)}d

i,j=1 represents

matrix of thermal 
ondu
tivity 
oe�
ients that is symmetri
 and positively

de�ned:{
λkm(x) = λmk(x),

λkm(x)ξkξm ≥ λ0ξkξm, λ0 = const > 0, ∀ξk ∈ R in Ω,
(2)
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where Einstein summation notation applies.

Equation (1) is supplemented with boundary 
onditions for intera
tion with

environment, in parti
ular for 
onta
t with the tool:

−n.(λ∇u) = α(u− û)(1 − δ) + q̂δ on Γ × [0, T ], (3)

where û = û (x, t) is the temperature of environment, α = α (x, t) is heat

transfer 
oe�
ient and n = {ni}d
i=1 , ni = cos (n, xi) are outer unit normal

ve
tor and respe
tively its 
omponents.We also introdu
e fun
tion δ(x, t) that

an a

ept two values: either 1 for all boundary points in the 
onta
t area

between tool and detail during the 
onta
t period, or 0 in all other 
ases.

Thereby we formulate the following initial boundary value problem:





given λ = {λij(x)}d
i,j=1, ρ = ρ(x), cv = cv(x),

u0 = u0(x), α = α(x, t), q̂ = q̂(x, t), f = f(x, t),

δ = δ(x, t), û = û(x, t);

find temperature field u = u(x, t), such that

ρcv
∂u
∂t −∇.(λ∇u) = ρcvf in Ω × (0, T ] ,

−n.(λ∇u) = α(u− û) (1 − δ) + q̂δ on Γ × [0, T ],

u|t=0 = u0 in Ω.

(4)

In addition, we suppose that the data of (4) satis�es the 
onditions





ρ, cv , λij ∈ L∞ (0, T ;L2 (Ω)
)
, u0 ∈ L2 (Ω) ,

f ∈ L2
(
0, T ;L2 (Ω)

)
, α, δ ∈ L∞ (0, T ;L2 (Γ)

)
,

û, q̂ ∈ L2
(
0, T ;L2 (Γ)

)
.

(5)

3. Variational formulation

To formulate a variational problem, let us introdu
e spa
es of admissible

temperatures V = H1(Ω), 
onjugated spa
e V ′
and spa
es H = L2(Ω).

Hereinafter we will use the following notation

u (t) = u (x, t) − function x→ u (x, t) ,

u′ (t) = ∂u/∂t− function x→ ∂u(x,t)
∂t .

Let us multiply heat equation of system (4) by arbitrary fun
tion v ∈ V
with su

essive integration over Ω. After utilization of Green's formula and

boundary 
ondition (3) we obtain

0 =

∫

Ω

{
ρcvu

′(t) −∇.[λ∇u(t)] − f(t)
}
vdx =

∫

Ω
ρcvu

′(t)vdx

+

∫

Ω
(∇v).[λ∇u(t)]dx −

∫

Ω
f(t)vdx+

∫

Γ
α(t)u(t)[1 − δ(t)]vdγ

−
∫

Γ
α(t)û(t)[1 − δ(t)]vdγ −

∫

Γ
q̂(t)δ(t)vdγ.

(6)

As the next step, we introdu
e the following bilinear forms
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s(u, v) =

∫

Ω
ρcvuvdx ∀u, v ∈ H, (7)

a(u, v) =

∫

Ω
(∇v).[λ∇u]dx+

∫

Γ
αu[1 − δ]vdγ ∀u, v ∈ V, (8)

and su
h linear fun
tional

< l, v >=

∫

Ω
ρcvfvdx+

∫

Γ
[αû(1 − δ) + q̂δ]vdγ ∀v ∈ V. (9)

Thus the variatinal formulation of (4) 
an be represented in the following

manner:





find such heat distribution u(x, t) that

s(u′(t), v) + a(u(t), v) =< l(t), v > ∀v ∈ V, ∀t ∈ (0, T ] ,

s(u(0) − u0, v) = 0.

(10)

4. Properties of the variational problem 
omponents

From de�nition of bilinear forms we 
an state the following





symmetric continous bilinear form s (·, ·) defined by (3)

is H − elliptic and generates norm ‖u‖H = s
1
2 (u, u) ∀u ∈ H,

which is equivalent to ‖ · ‖0,Ω .

(11)

Se
ond bilinear form has more 
omplex stru
ture that results is ne
essity of

additional 
on�rmation of its properties.

Theorem 1. Let 
onditions (5) and (2) are satis�ed.

Then bilinear form a(·, ·) de�ned by (8) is 
ontinuous and the following in-

equality holds

|a(u, v)| ≤ C
[
‖λ‖L∞(Ω) + ‖α‖L∞(Γ)

]
‖u‖H1(Ω)‖v‖H1(Ω).

Proof. Using Cau
hy-Bunyakovsky-S
hwarz inequality and tra
e theorem [10,

p. 72-73℄ we obtain

|a(u, v)| ≤ |
∫

Ω
(λ∇u) . (∇v) dx| + |

∫

Γ
αu(1 − δ)vdγ|

≤
∫

Ω
|λ∇u|.|∇v|dx+

∫

Γ
|αuv|dγ ≤ {

∫

Ω
|λ∇u|2dx

∫

Ω
|∇v|2dx}

1
2

+ {
∫

Γ
|αu|2|v|2dγ}

1
2 ≤ ‖λ∇u‖H‖∇v‖H + ‖αu‖L2(Γ)‖v‖L2(Γ)

≤ C
[
‖λ‖L∞(Ω) + ‖α‖L∞(Γ)

]
‖u‖H1(Ω)‖v‖H1(Ω), ∀u, v ∈ H1(Ω).

This means that a(·, ·) is bounded and as a result 
ontinuous. �
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Theorem 2. Let 
onditions (5) and (2) are satis�ed.

Bilinear form a(·, ·) de�ned by (8) is H1(Ω)− ellipti
, moreover the following

inequality holds:

a(u, u) ≥ m0
min{1, CF }

2
‖u‖2

H1(Ω) .

Proof. The latter estimation 
an be obtained after utilization of Friedri
hs in-

equality and the following transmutations

a(u, u) ≥ λmax

∫

Ω
(∇u)2dx+

∫

Γ
αu2(1 − δ)dγ

≥ min{λmax, α0}
[∫

Ω
(∇u)2dx+

∫

Γ
u2dγ

]

≥ min{λmax, α0}[12 (

∫

Ω
(∇u)2dx+

∫

Γ
u2dγ) + 1

2(

∫

Ω
(∇u)2dx+

∫

Γ
u2dγ)]

≥ m0

[
1
2

∫

Ω
(∇u)2dx+ CF

2

∫

Ω
u2dx

]
≥ m0

min{1, CF }
2

‖u‖2
H1(Ω) .

�

Corollary 1. Let 
onditions (5) and (2) are satis�ed then following statement

holds:





symmetrical continuous bilinear form a (·, ·) from (2.4)

is V − elliptic and generates norm ‖u‖V = a
1
2 (u, u) ∀u ∈ V,

which is equivalent to ‖ · ‖1,Ω.

(12)

Finally, let us derive the upper estimation of linear fun
tional (9). This

is done starting with appli
ation of Cau
hy-Bunyakovsky-S
hwarz inequality

and theorem [10, p. 72-73℄ about the tra
e of the fun
tion from H1(Ω) on the

boundary of Ω

|< l, v >| =

∣∣∣∣
∫

Ω
ρcvfvdx+

∫

Γ
αû(1 − δ)vdγ +

∫

Γ
q̂δvdγ

∣∣∣∣
≤ ||ρcv ||∞,Ω||f ||H ||v||H + ||α||∞,Γ||û||L2(Γ)||v||L2(Γ) + ||q̂||L2(Γ)||v||L2(Γ)

≤ [ ||ρcv ||2∞,Ω||f ||2H + ||α||2∞,Γ||û||2L2(Γ) + ||q̂||2L2(Γ)]
1/2

[||v||2H + 2||v||2L2(Γ)]
1/2

≤ Cmax{ ||ρcv ||∞,Ω, ||α||∞,Γ, 1}[||f ||2H + ||û||2L2(Γ) + ||q̂||2L2(Γ)]
1/2||v||V

∀v ∈ V.

This reasoning results in the following statement.

Theorem 3. Linear fun
tional < l, v > de�ned by (9) in 
ontinuous and sat-

is�es the following estimation

|< l, v >| ≤ z0[||f ||2H + ||û||2L2(Γ) + ||q̂||2L2(Γ)]
1/2||v||V ∀v ∈ V,

where z0 = Cmax{ ||ρcv ||∞,Ω, ||α||∞,Γ, 1}.
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5. Galerkin semi-dis
retization

To 
al
ulate approximate solutions of variational problem (10) we sele
t se-

quen
e of �nite element subspa
es {Vh} ⊂ V su
h that dimVh = N(h) = N →
+∞ and

⋃
h>0

Vh is 
omplete in V . Then for any h > 0 we gain the following

semi-dis
rete approximations of the variational problem (10)





given u0 ∈ V ; find uh(x, t) ∈ L2 (0, T ;Vh) such that

s(u′h(t), v) + a(uh(t), v) =< l(t), v > ∀t ∈ (0, T ] ,

s(uh(0) − u0, v) = 0 ∀v ∈ Vh.

(13)

Next we denote by {ϕi}N
i=1 the basis of the spa
e Vh. Consequently sought

solution of (13) will take form of the following linear 
ombination

uh(x, t) =
∑N

m=1
Um(t)ϕm(x) (14)

with unknown 
oe�
ients U1(t), ..., UN (t). Substitution of (14) into (13) yeilds

su
h problem





given u0 ∈ V ; finduh(x, t) ∈ L2 (0, T ;Vh) such that∑N
m=1 U

′
m(t)s(ϕm(x), v) +

∑N
m=1 Um(t)a(ϕm(x), v)

= < l(t), v > ∀t ∈ (0, T ] ,∑N
m=1 Um(0)s(ϕm(x), v) = s(u0, v) ∀v ∈ Vh.

(15)

This problem 
an be transformed into Cau
hy problem after 
onsequent sub-

stitution of v = ϕi, i = 1, ..., N, into (15). As a result, we re
eive the following

equations.

{
SU ′(t) +AU(t) = R(t) ∀t ∈ (0, T ],

SU(0) = S0.
(16)

Statements (11), (12) show that matri
es S and A are Gramians of lin-

early independent fun
tions {ϕi}N
i=1 respe
tively to s
alar produ
ts s ( · , · ) and

a ( · , · ). Thus




symmetrical matrices

S = {s(ϕi, ϕj)}N
i,j=1, A = {a(ϕi, ϕj)}N

i,j=1

are positively defined.

(17)

Sin
e data of the problem (4) satis�es regularity 
onditions (5) and (17)

holds, Cau
hy problem (16) has unique solution.

6. Energy equation

Spe
ial kind of equation 
an be obtained from (13) after assuming that v =
uh (t): 




1
2

d
dt [s(uh(t), uh(t))] + a(uh(t), uh(t))

=< l(t), uh(t) > ∀t ∈ (0, T ],

s(uh(0), uh(0)) = s(u0, uh(0)).

(18)
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If we take into a

ount (11), (12), the latter system 
an be reformulated in

su
h a manner {
1
2

d
dt ‖uh(t)‖2

H + ‖uh(t)‖2
V =< l(t), uh(t) >,

‖uh(0)‖2
H = s(u0, uh(0)).

(19)

The �rst equation of (19) 
an be integrated over [0, t] to get su
h equality:

1

2
‖uh(t)‖2

H +

∫ t

0
‖uh(τ)‖2

V dτ =
1

2
‖uh(0)‖2

H +

∫ t

0
< l(τ), uh(τ) > dτ

∀t ∈ [0, T ].

(20)

It should be noted that the last equality is the basis for further proof of

well-posedness of (10). Futhermore, left part of (20) is natural (energy) norm

for this problem.

7. Apriori estimates and well-posendess of variational problem

Now we 
an apply Cau
hy-Shwarz inequality to the right part of (20) to


al
ulate su
h an estimate∣∣∣∣
∫ t

0
< l(τ), uh(τ) > dτ

∣∣∣∣ ≤
∫ t

0
||l(τ)||∗||uh(τ)||V dτ

≤ 1
2

∫ t

0
[ ||l(τ)||2∗ + ||uh(τ)||2V ] dτ

(21)

Hen
e, utilizing equation (20) and inequality (21), we obtain

1
2 ‖uh(t)‖2

H +

∫ t

0
‖uh(τ)‖2

V dτ ≤ 1
2 ‖uh(0)‖2

H + 1
2

∫ t

0
[ ||l(τ)||2∗ + ||uh(τ)||2V ] dτ

whi
h 
an be rewritten into

‖uh(t)‖2
H +

∫ t

0
‖uh(τ)‖2

V dτ ≤ ‖uh(0)‖2
H +

∫ t

0
||l(τ)||2∗ dτ ∀t ∈ [0, T ]. (22)

Consequently this states that

{
semi− discrete Galerkin approximations {uh}
form a bounded set in spaceL∞ (0, T ;H) ∩ L2 (0, T ;V ) .

(23)

This also states the stability of semi-dis
rete approximations.

Theorem 4. Given �xed h > 0 and {ϕi}N
i=1, the basis of Vh. Then semi-

dis
rete problem (13) allows a unique solution uh ∈ L∞ (0, T ;H)∩L2 (0, T ;V )
that is uniquely de�ned by Cau
hy problem (16) and de
omposition (14). More-

over inequality (22) holds.

Corollary 2. For ea
h h > 0 the semi-dis
rete problem (13) is well-posed.

Theorem 5. Given u0 ∈ H, l ∈ L2 (0, T ;V ′) . Then variational problem (3.6)

has unique solution u ∈ L∞ (0, T ;H) ∩ L2 (0, T ;V ) and u′ ∈ L2 (0, T ;V ′) .
Furthermore (l, u0) → u is 
ontinuous mapping from L2 (0, T ;V ′) × H into

L2 (0, T ;V ′) ∩ L∞ (0, T ;H).
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Proofs of these theorems 
an be found e.g. in [12, pp. 44-45℄.

8. One-step time integration re
urrent s
heme

To 
onstru
t a numeri
al s
heme for solving a variational problem (10) we

also need to dis
retize problem (13) in time. To a

omplish this we use proje
-

tion method. In this se
tion we will omit index h for simpli
ity of notation.

Let us divide time interval [0, T ] into P subintervals [tk, tk+1], k = 0, .., P −1,
with the 
onstant length ∆t = tk+1 − tk > 0. On every time step [tk, tk+1],
k = 0, ..., P −1, solution uh(t) ∈ Vh of (13) will be approximated by polynomial

fun
tion u∆t (t) su
h that

u∆t (t) = [1 − ω(tj , t)]u
j + ω(tj , t)u

j+1,

ω(tj, t) = (t− tj)/∆t, t ∈ [tj, tj+1], j = 0, ..., P − 1.
(24)

The latter fun
tion 
an be rewritten in the following manner:

u∆t(t) = uj + ∆tω(tj, t)
uj+1−uj

∆t

= 1
2(uj+1 + uj) + ∆t(ω(tj, t) − 1

2)uj+1−uj

∆t

= uj+1/2 + ∆t(ω(tj, t) − 1
2)u̇j+1/2, u̇j+1/2 = (uj+1 − uj)/∆t.

(25)

Linear fun
tional will be approximated with pie
ewise-
onstant fun
tions:

l∆t(t) = lj+1/2 = l(tj+1/2), tj+1/2 = tj + 1
2∆t. (26)

Summing assumptions (25) and (26) and 
onsequent substitution into (13)

yields:





find u̇j+1/2, uj+1 ∈ Vh such that

s(u̇j+1/2, v) + ∆tω(tj, t)a(u̇
j+1/2, v)

=< lj+1/2, v > −a(uj, v),

uj+1 = uj + ∆tu̇j+1/2, ∀v ∈ Vh, ∀t ∈ [tj, tj+1],

s(u0 − u(0), v) = 0, j = 0, ..., P − 1.

(27)

The next phase is 
onstru
tion of proje
tive equations. Here we denote by

(·, ·) a s
alar produ
t in spa
e L2((tj , tj+1)) and 
hoose in it fun
tion ξ(t) su
h
that

(ξ, 1) =

∫ tj+1

tj

ξ(t)dt = 1.

We introdu
e notation θ = (ω, ξ) and assume that (27) is orthogonal to

fun
tion ξ(t) with respe
t to s
alar produ
t (·, ·) or in other terms:

s(u̇j+1/2, v) + ∆tθa(u̇j+1/2, v) =< lj+1/2, v > −a(uj , v),

∀v ∈ Vh, j = 0, ..., P − 1, ∀θ ∈ [0, 1] .
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As a result we 
an denote the following one-step time-integration re
urrent

s
heme (hereinafter denoted as ORS):





given θ ∈ [0, 1] , u0; find u̇j+1/2, uj+1 ∈ Vh such that

s(u̇j+1/2, v) + ∆tθa(u̇j+1/2, v) =< lj+1/2, v > −a(uj , v),

uj+1 = uj + ∆tu̇j+1/2 ∀v ∈ Vh,

s(u0 − u(0), v) = 0 j = 0, ..., P − 1.

(28)

Taking into a

ount the H− and V−ellipti
ity of bilinear forms s ( · , · ) and
a ( · , · ) and also Lax-Milgram-Vyshyk lemma [1℄, ORS (28) is uniquely solved

with respe
t to u0, u̇j+1/2
and uj+1

.

In su
h manner, pie
ewise-linear approximation uh∆t (t) ∈ Vh of (13) solution

uh (t) ∈ Vh is uniquely determined after appli
ation of s
heme (28).

Stability and 
onvergen
e of ORS must also be 
onsidered.

Theorem 6. If data of variational problem (10) ful�ll (4), the ORS s
heme

(28) with parameters ∆t and θ is:

1. un
onditionally ( with respe
t to 
hosen ∆t) stable in spa
es H and V ,
when θ ≥ 1

2 ;

2. stable in spa
es H and V , when parameter ∆t meets inequality:

∆t ≤ 2

α (1 − 2θ)
.

Theorem 7. Let the solution uh (t) of problem (12) is su
h that uh
′′′ ∈

C (0, T ;V ) and let uh∆t (t) is his pie
ewise-linear approximation, obtained with

appli
ation of un
onditionally stable s
heme (28) with parameter θ ≥ 1
2 .

Then the sequen
e uh∆t, with respe
t to enery norm

‖u‖2
T = 1

2 ‖u(T )‖2
H0(Ω) +

∫ T

0
‖∇u(t)‖2

H0(Ω) dt,


onverges to u, when ∆t→ 0 and h→ 0.

Proofs of theorems 6, 7 and analisys of spa
e and temporal error 
onvergen
e

rates 
an be found e.g. in [12℄.

9. Validation of numeri
al s
heme

Sheme (28) 
an be implemented in the majority of spe
ialized environments.

So for testing of numeri
al s
heme we used a free, open sour
e environment

FreeFEM++, with quadrati
 triangular �nite elements, due to simpli
ity of

problem des
ription, ability to work with resulting matri
es and near optimal

exe
ution speed [4℄.

Taking into a

ount that the analyti
al solution of problem (4) is not known,

we will only examine a posteriori rates of 
onvergen
e of �nite element s
heme.

Our two-dimensional model problem will be formed as (4) with the following


hara
teristi
s:

l = 41 · 10−4 [m], b = 55 · 10−5 [m], T = 56 · 10−5 [s], xc = 0 [m],

tc = 48 · 10−5 [s],
⌢

q = 8.2 · 106 [W/m2], ρ = 7850 [kg/m3],
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cV = 466 [J/(kg ·K)], λ = 41 [W/(m ·K)], α = 500 [W/(m2 ·K)],

vh = 4 [m/s], vd = 60 [m/s], nz = 24, lc = 3 · 10−3 [m].

where l is the length and b is thi
kness of workpie
e. Given that Ω = (0, l) ×
(0, b) we 
an 
on
retize fun
tion δ(x, t) from (4) in the following manner :

δ(x, t) =

{
1, x ∈ γ(t), t ∈ [tk−1, tk], t− tk <= tc,

0, t− tk > tc,
k = 1, .., N,

where γ(t) = {(x1, x2) : x1 ∈ [vht− lc/2 + xc, vht + lc/2 + xc], x2 = b} is area

of dynami
 
onta
t, tk is the initial time of k 
onta
t, tc is time of single tooth


onta
t, lc is length of 
onta
t zone, xc represents the initial displa
ement of

the 
onta
ts area and vh represents the velo
ity of 
onta
t zone.

For veri�
ation of approximate solutions a

ura
y we will evaluate rates of


onvergen
e separately for spa
e and time dis
retization in the following norms

(as in [13℄) :

‖u‖2
Hm(Ω) = ‖u‖2

m =
∑

|α1+α2|≤m

∫

Ω
(

∂α1+α2

∂x1
α1∂x2

α2
u)

2

dx,

‖u‖2
T = 1

2 ‖u(T )‖2
H0(Ω) +

∫ T

0
‖∇u(t)‖2

H0(Ω) dt.

(29)

Introdu
tion of these norms enables us to 
al
ulate the following indi
ators

of 
onvergen
e rates:

pm
∆t(u) = log2

∥∥u∆t − u∆t/2

∥∥
m∥∥u∆t/2 − u∆t/4

∥∥
m

, p∆t(u) = log2

∥∥u∆t − u∆t/2

∥∥
T∥∥u∆t/2 − u∆t/4

∥∥
T

,

pm
h (u) = log2

∥∥uh − uh/2

∥∥
m∥∥uh/2 − uh/4

∥∥
m

, ph(u) = log2

∥∥uh − uh/2

∥∥
T∥∥uh/2 − uh/4

∥∥
T

.

(30)

10. Convergen
e of spatial approximations

We use sequen
e of uniformly re�ned triangulations Th of isos
eles triangles

to determine 
onvergen
e rates with respe
t to spa
e variables, where Th =
{K}, hK = diamK =

√
2 b

N , where N is the number of divisions of smaller side

b of Ω . Results are obtained at time T with time step ∆t = T
224 = 2, 5·10−7 [s].

For analysis of 
onvergen
e we utilize norms (29) and the following indi
ators

of absolute and relative errors

emh (u) =
∥∥uh − uh/2

∥∥
m
, εmh (u) =

∥∥uh − uh/2

∥∥
m∥∥uh/2

∥∥
m

× 100%,

eh(u) =
∥∥uh − uh/2

∥∥
T
, εh(u) =

∥∥uh − uh/2

∥∥
T∥∥uh/2

∥∥
T

× 100%.

(31)

Given that we use quadrati
 �nite element approximations, theoreti
ally

rates of 
onvergen
e for given spa
es are p0
h(u) = 3, p1

h(u) = 2 and

ph(u) = 1. A
quired results indi
ate ability of ORS to 
onverge with required

rates. It should be noted that appli
ation of norm ‖·‖T gives ability to prote
t
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Tabl. 1. Convergen
e of spa
ial approximations in norms (29)

N e0
h
(u) · 10−3 e1

h
(u) eh(u) p0

h
(u) p1

h
(u) ph(u) ε0

h
(u) ε1

h
(u) εh(u)

1/7 4, 22 158, 08 5, 15 1, 49 0, 47 0, 45 0, 92 39, 74 39, 77

1/14 1, 94 122, 18 2, 71 1, 12 0, 37 0, 92 0, 42 31, 06 20, 77

1/28 0, 41 31, 88 1, 18 2, 23 1, 94 1, 20 0, 09 8, 08 9, 02

1/56 0, 04 7, 30 0, 48 3, 30 2, 13 1, 29 0, 01 1, 85 3, 70

against a

idental measurements in �well-suited� time and represents a

umu-

lation of spe
ial dis
retization error during pre
eding period.

11. Convergen
e in time

To verify 
onvergen
e in time we �x spa
e mesh with initial parameters

256 × 64 and examine the nature of a posteriori rates of 
onvergen
e during

su

essive re�nement of time step ∆t = T/P .
We also use the following indi
ators for this analysis:

em∆t(u) =
∥∥u∆t − u∆t/2

∥∥
m
, εm∆t(u) =

∥∥u∆t − u∆t/2

∥∥
m∥∥u∆t/2

∥∥
m

× 100%,

e∆t(u) =
∥∥u∆t − u∆t/2

∥∥
T
, ε∆t(u) =

∥∥u∆t − u∆t/2

∥∥
T∥∥u∆t/2

∥∥
T

× 100%.

(32)

Tabl. 2. Convergen
e in time of solution in terms of norms (29)

P e0
∆t

(u) · 10−3 e1
∆t

(u) e∆t(u) p0
∆t

(u) p1
∆t

(u) p∆t(u) ε0
∆t

(u) ε1
∆t

(u) ε∆t(u)

56 2, 73 453, 85 6, 38 1, 99 1, 53 0, 74 0, 59 102, 82 46, 78

112 0, 69 157, 31 3, 81 1, 31 0, 81 0, 83 0, 15 38, 56 28, 67

224 0, 28 89, 71 2, 14 2, 03 1, 80 1, 01 0, 06 22, 71 16, 33

448 0, 07 25, 76 1, 06 1, 62 5, 91 1, 09 0, 01 6, 53 8, 12

Based on these results we state that s
heme (28) a
hieves theoreti
al rates

of 
onvergen
e in time. As we use Crank-Ni
olson s
heme for time integration

p0
∆t(u), p

1
∆t(u) must be greater or equal to 2 and p∆t(u) this number is 1.

A
quired numeri
al results indi
ate the 
orre
tness of used ORS s
heme and

its potential for pra
ti
al utilization.

12. Numeri
al experiments

As our paper also 
on
erns pra
ti
al experiment we modeled the pro
ess of

fri
tional hardening for detail with su
h parameters:

l = 44 · 10−4 [m], b = 65 · 10−5 [m]

Workpie
e is made of steel (Stal-45) whi
h has the following properties:

ρ = 7850 [kg/m3], cV = 466 [J/(kg ·K)], λ = 41 [W/(m ·K)].

In the initial time it is heated to the temperature of û = 293 [◦, K]. It is

rigidly �xed on the table that moves with linear speed vh = 4 [m/s]. Points on
tools surfa
e 
ir
ulate with speed vd = 60 [m/s]. Tool-workpie
e intera
tion
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reates a 
onta
t zone lc = 3 · 10−3 [m] in length 
ausing a heat sour
e with

the power of

⌢

q = 8.2 · 107 [W/m2] to be generated. Due to serration of tool's

surfa
e 
onta
t (and subsequently heat sour
e) has a spe
ial periodi
 regime.

Also we assume that one 
onta
t lasts for tc = 48 · 10−5 [s], one 
onta
tless

period is tp = 8 · 10−5 [s] and xc = −1.5 lc [m].
To 
omplete the des
ription of te
hnologi
al pro
ess we should mention that

the 
ooling liquid is supplied to the 
onta
t area. The heat transfer 
oe�
ient

between workpie
e and 
oolant is α = 500 [W/(m2 ·K)]. We also 
onsider time

T = 280 · 10−5 [s] that 
overs full pro
essing of the workpie
e. In the initial

moment of time the tool is situated aside of the detail. As experiment begins

it starts to move in the dire
tion of detail.

As a result of numeri
al experiment, the following graphi
s of temperature

distribution were obtained ( Fig. 1). They represent state of temperature �eld

in di�erent times so one 
an see the dynami
s of the pro
ess.

Fig. 1. Distribution of temperature after 
onta
t with the se
-

ond, third and fourth tooth of the tool (respe
tively �rst, se
ond

and third �gure from the top). Conta
t area is depi
ted with a

re
tangle

Also spe
ial attention was drawn to evolution of maximal temperature that


learly shows the in�uen
e of serration of tool's surfa
e into te
hnologi
al pro-


ess (Fig. 2).

Latter 
hara
teristi
 is aggregative and in
omplete without full knowledge of

the pla
e where this maximum o

urs. As the maximum is rea
hed on 
onta
t

surfa
e we supply �gures to show the evolution on temperature pro�le on it

(Fig. 3). Also to be noted that stripes in the ba
kground of these �gures

represent the area of dynami
 
onta
t in 
orresponding points in time.

These �gures shed a light on singularities of the temperature pro�le evolution

on the 
onta
t surfa
e. First �gure shows the last moment of the �rst 
onta
t.

Figure b illustrates temperature de
rease and 
reation of unheated area. Then

se
ond tooth starts to a
t and �nishes with surfa
e heated to temperature as



NUMERICAL MODELLING OF TEMPERATURE FIELDS ... 15

Fig. 2. Evolution of maximal temperature during the experi-

ment with highlighted 
onta
tless intervals


an be seen of �gure d. The following �gures demonstrate further evolution of

heat pro�le on the surfa
e.

These �gures reveal interesting singularities of examined problem. Illustra-

tions depi
t that the speed of heat 
ondu
tion is less than the speed of 
onta
t

area. If we write down the 
orresponding ration in dimensionless form, we

obtain the Pe
let number for a spe
i�
 problem [11, p.12℄:

Pe = vh · ld · (λ/cV ρ)−1 ≈ 4 · 0, 003
1,121 · 10-5 ≈ 1070

Given the magnitude of this 
hara
teristi
 (singularly unperturbed problems

have Pe < 10) we 
an state that this problem is singularly perturbed.

13. Con
lusions

In the pro
ess of resear
h the initial boundary value problem for the heat


ondu
tion pro
ess in workpie
e during fri
tion hardening was stated. Su
-


essively we formulated 
orrespondent variational problem and proved its wel-

posendess. With utilization of Poin
are-Freidri
h's inequality a V -ellipti
ity of

bilinear form with term from boundary 
ondition for heat ex
hange with envi-

ronment was proven. This gave opportunity to extend known result (e.g. [12,

pp. 29-62℄) to our problem.

Modeling of the fri
tional hardening with a jagged tool brings in some dif-

�
ulties related to its mathemati
al model. They show themselves in form of

mixed boundary 
onditions. Moreover due to magnitude of Pe
let number,

investigated problem is singularly perturbed. This fa
t will also 
ontribute
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a) b)


) d)

e) f)

g) h)

i)

Fig. 3. The distribution of temperature on the 
onta
t sur-

fa
e at a) 0.00048 s, b) 0.00055875 s, 
) 0.000625 s, d) 0.00104

s, e) 0.00111875 s, f) 0.001185 s, g) 0.0016 s, h) 0.00168 s,

i) 0.001745 s. (
onta
t area is represented with a stripe)
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di�
ulties that would need to be over
ome using appropriate methods (e.g.

apriori mesh re�nement in 
onta
t area [6℄).
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