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�åçþìå. Ó ïðåäñòàâëåíié ðîáîòi ìè äîñëiäæó¹ìî ðiçíi àñïåêòè ïîáóäîâè

íàáëèæåíèõ ñõåì äëÿ ðîçâ'ÿçóâàííÿ iíòåãðàëüíîãî ðiâíÿííÿ ïåðøîãî ðîäó

çi ñëàáêîþ îñîáëèâiñòþ â ÿäði, ÿêå ¹ õàðàêòåðíèì äëÿ òåîði¨ ïîòåíöiàëó. Ó

çâ'ÿçêó ç öèì ìè ïðèéìà¹ìî äî óâàãè ñóòò¹âî ïðîñòîðîâå �îðìóëþâàííÿ

ïî÷àòêîâî¨ ïðîáëåìè, à òàêîæ ñèíãóëÿðíó ïîâåäiíêó øóêàíîãî ðîçâ'ÿçêó

â îêîëi êîíòóðó ðîçiìêíåíî¨ ãðàíè÷íî¨ ïîâåðõíi. Ç ìåòîþ îòðèìàííÿ

ãàðàíòîâàíî¨ òî÷íîñòi ðåçóëüòàòó, âèêîðèñòîâóþ÷è âiäîìi çàãàëüíi iäå¨

ìåòîäîëîãi¨ àïîñòåðiîðíî¨ îöiíêè ïîõèáêè, ìè ïðîïîíó¹ìî òàêó ¨¨ âåðñiþ,

ùî ¹ ïðèäàòíîþ ñàìå äî ðîçãëÿäóâàíîãî iíòåãðàëüíîãî ðiâíÿííÿ.

Abstra
t. In the arti
le we investigate di�erent aspe
ts of approximate

s
hemes 
onstru
tion for the �rst kind integral equations being used in po-

tential theory. In this 
onne
tion we take into 
onsideration substantially

spatial setting of the problem and spe
i�
 behavior of desired solution near

the 
ontour of un
losed boundary surfa
e. With a view to obtain guaran-

teed a

ura
y of results, using known general 
on
ept of a posteriori error

estimation methodology, we propose su
h it version appli
able pre
isely to


onsidered integral equation.

1. Introdu
tion

The main obje
t of our analysis is di�erent aspe
ts of approximate s
hemes


onstru
tion for the �rst kind integral equation solving. In addition, we have

to do with equations in the form as

(Aσ)(M) ≡
∫∫

S

σ(P ) |M − P |−1
dSP = U(M), M ∈ S, (1)

where in general 
ase S is an open Lips
hitz surfa
e, M and P are the points of

Eu
lidean spa
e R
3
. The type (1) equations appear at the modelling of poten-

tial theory some boundary problems, in parti
ular, ele
tron opti
s. Ordinary

generalization of (1) is a permission that S is formed by the aggregate m of

surfa
es, so that S :=
⋃m

i=1 Si. In this 
ase we interpret σ(P ) as a desired total


harge distribution density on S, that is σ(P ) := {σ(P ), P ∈ Si; i = 1, N}. It
is possible to resear
h operator equation (1) in various fun
tional spa
es [4, 8℄.

However, it should be taken into a

ount the spe
i�
ity of investigated physi-


al phenomenon. Thus, for example, the modelling of ele
trostati
 �eld in the

Key words. Integral equation, axial symmetry, the 
ollo
ation method, a posteriori error

estimation.
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substantially spatial setting foresees the a

ount of desired 
harge distribution

density σ(P ) behavior near the 
ontour of un
losed surfa
e S and lines of its

fra
ture [7℄. In this 
ase we 
onsider that U(M), M ∈ S, is the given boundary

value of potential on an ele
trode whi
h is a
tually modeled by a surfa
e S
(U(M) ≡ 
onst). As to numeri
al methods applied for initial problem solving

we 
an point out in prin
iple some approa
hes for integral equations approx-

imate s
hemes 
onstru
tion [1, 2, 6℄. In this 
onne
tion, taking into a

ount

substantially spatial setting of the problem and spe
i�
 behavior of desired so-

lution, from pra
ti
al point of view, in the best way, mentioned above questions

were solved in [2℄.

2. Considered set of boundary surfa
es and the ways

of their spe
ifi
ation

At �rst, using parametri
 representation of S, we will 
onsider that

M :=
{
x(α0, β0), y(α0, β0), z(α0, β0); (α0, β0) ∈ D := (−1, 1)2

}
,

P :=
{
x(α, β), y(α, β), z(α, β); (α, β) ∈ D

}
.

At that time, integral equation (1) will be shown as

∫∫

D

σ(α, β)K(α, β; α0, β0)dαdβ = U(α0, β0), (α0, β0) ∈ D; (2)

where

K(α, β; α0, β0) :=
{

[x(α, β) − x(α0, β0)]
2 + [y(α, β) − y(α0, β0)]

2+

+[z(α, β) − z(α0, β0)]
2
}−1/2

J(α, β);

and J(α, β)dαdβ is an element of surfa
e S in lo
al 
oordinates (α, β) asso-


iated with S. Keeping in (2) notation for σ and U from (1), we will also

remark that from fun
tions x(α, β), y(α, β), and z(α, β), whi
h express the

Cartessian 
oordinates (x, y, z) of the points on a surfa
e S, it is required, at
least, 
ontinuous di�erentiability in D be
ause

J(α, β) :=
{
E(α, β)G(α, β) − F 2(α, β)

}1/2
;

and

E(α, β) :=
(
x′α
)2

+
(
y′α
)2

+
(
z′α
)2
,

G(α, β) :=
(
x′β
)2

+
(
y′β
)2

+
(
z′β
)2
,

F (α, β) := x′αx
′
β + y′αy

′
β + z′αz

′
β .

As an example, for arbitrary 
harged quadrangular plate presentation we

make use of the following equations:
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x(α, β) =
1

4

4∑

j=1

xj ϕj(α, β), ϕj(α, β) :=
(
1 + (−1)pα

)(
1 + (−1)qβ

)
,

y(α, β) =
1

4

4∑

j=1

yj ϕj(α, β), p :=
[j
2

]
+ 1, q :=

[j − 1

2

]
+ 1,

z(α, β) =
1

4

4∑

j=1

zj ϕj(α, β), (α, β) ∈ D;

where (xj , yj, zj) are 
oordinates of 
orresponding plate vertex. It is obvious

that we simulate this and similar plates with the help of double-sided in�nitely-

thin surfa
es.

Addressing to su
h type of boundary surfa
es is explained by a possibility of

the use for the approximate solving (2) in this 
ase of numeri
ally-analyti
al

methodology introdu
ed by the authors [3℄.

Another example of parametri
 equations is related to the ne
essity of so-


alled �at diaphragms des
riptions. The last ones are 
omponents of rather


ompli
ated and a
tual in pra
ti
e ele
tron-opti
al systems. The �gure 1 rep-

resents a proje
tion of a diaphragm on the plane z = 
onst. It is easy to noti
e

that in this 
ase the examined surfa
e S represents the 
ombination of eight

elements. In addition, ea
h of them is expressed by a �at 
urvilinear quadran-

gle. For every element a unique des
ription it is enough to �x eight points on

the 
orresponding 
ontours as shown at the �gure 1.

Fig. 1. A proje
tion of �at diaphragm on the plane z = 
onst

In this 
onne
tion parametri
 equations have su
h expression as
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x(α, β) =
1

4

4∑

j=1

xj ϕj(α, β),

y(α, β) =
1

4

4∑

j=1

yj ϕj(α, β), (α, β) ∈ D;

where

ϕ1(α, β) := (1 + α) (1 + β) (α + β − 1),

ϕ2(α, β) := (1 − α2) (1 + β), . . . ;

and xj, yj are 
oordinates of points Mi (i = 1, 8).

3. General remar
s 
on
erned with numeri
al analysis

of type (1) integral equations

Two-dimensional integral equation (2) was solved by the method of 
ollo
a-

tion with the use of pie
ewise-
onstant and bilinear approximation of desired

σ(P ). It is easy to see that (2) belongs to integral equations with weak sin-

gularity in the kernel. Therefore, in the pro
ess of (2) solving it is ne
essary

to 
al
ulate approximately some two-dimensional singular integrals of spe
i�



lass. In this 
onne
tion the algorithms of su
h integrals 
al
ulation be
ome

substantially 
ompli
ated through the presen
e of 
ertain weight fun
tions. The

point is that the last ones represent pre
isely singular behavior of desired solu-

tion near the 
ontour of open surfa
e S.
The integral equations of type (1)-(2) were also examined in the 
ontext

of ele
trostati
 �eld determination, in the 
ase when the systems of 
harged

ele
trodes have rather 
ompli
ated 
on�guration. We will �nd out some details

of initial problem e�e
tive solution, based on the integral equations method,

in the substantially spatial setting, taking into a

ount present symmetry at

geometry of un
losed surfa
es-ele
trodes. The a

ount of symmetry enables to

interpret initial problem as a task with �nite order abelian group of symmetry.

It allows to redu
e (2), set on all boundary surfa
e, to the sequen
e N of

independent integral equations, set on one of their 
ongruent 
onstituents. Here

N is an order of established group of symmetry. It results in avoidan
e of

numeri
al instability of the systems of linear algebrai
 equations solving. With

the help of these systems the approximation of 
orresponding integral equations

is realized. In addition, their dimensions ex
essively in
rease. There is also a

possibility to 
reate pre-
onditions for parallelizing an algorithm of the basi


problem solving. Choosing a di�erent number of pro
essors, it allows to rea
h

maximal e�
ien
y of their loading and in
reasing the speed of 
al
ulation.

4. S
heme of results refinement obtained in the pro
ess

of spe
ifi
 model task solving

Illustrating the expedien
y of the mentioned methodology appli
ation, we

will 
onsider the problem of ele
trostati
 �eld 
al
ulation of so-
alled plane-

parallel 
ondenser (see Fig. 2).
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Fig. 2. Investigated plane-parallel 
ondenser

In the 
ourse of initial problem mathemati
al modelling we will represent

the 
orresponding systems of ele
trodes as an 
ombination of two open surfa
es

whi
h do not have 
ommon points, so that S := S1
⋃
S2. It is easy to see

that surfa
es Si are bounded to the pie
ewise-smooth 
ontours of �nite length.

We 
onsider this task as model one. The point is that the ele
trostati
 �eld

reprodu
tion under the 
onditions of essential di�eren
e of potentials on the

plates and step-by-step de
rease of the distan
e between indi
ated plates is not

trivial problem. In this 
ase the results of 
al
ulation are espe
ially sensitive

with respe
t to variation of output date.

Returning to our integral equation let us assume that

Sl :=
{

(x, y, z) ∈ R
3
∣∣∣ (x, y) ∈ [−a, a] × [−b, b];

z = (−1)l−1h; l = 1, 2; a, b, h > 0
}
.

Considering the geometri
 
hara
teristi
s of total surfa
e S let us represent the

last in the form of 
ongruent 
onstituents 
ombination:

S =

2⋃

l=1

(
4⋃

k=1

Slk

)
.

Taking into a

ount su
h subdivision of Sl (l = 1, 2), integral equations (2), in
turn, 
an be formally represented as

2∑

l=1

4∑

k=1

∫

Slk

σlk(P ) |P −M |−1
dSP =

= U(M) =





U1, M ∈ S1;

U2, M ∈ S2;

(3)
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where σlk(P ) is the proje
tion of σ(P ) on Slk;

|P −M |−1 =
[
(x− x0)

2 + (y − y0)
2 + (z − z0)

2
]−1/2

;

M := (x0, y0, z0 = ±h); (x, y), (x0, y0) ∈ [−a, a] × [−b, b].

Fig. 3. A proje
tion of 
ongruent 
omponent S11 on the plane

z = 
onst together with the 
onsequent step-by-step partition

into elements for the attainment of desired a

ura
y

of (4) solving

Then, applying in (3) trivial 
hanges of variables, we realize the 
onversion

from integration over total surfa
e S to integration over it 
ongruent 
onstituent

S11. In addition, let us note than the point of 
ollo
ation M is pla
ed also on

S11. As a result, we have obtained in fa
t the system of eight linear integral

equations with respe
t to unknown density σj(x, y) (j = 1, 8), a

ording to


hosen group of symmetry of surfa
e S:

8∑

j=1

∫∫

∆1

σj(x, y)G| i−j |+1(x, y, h; x0, y0, z0)dxdy = U(Mi) (i = 1, 8). (4)

Here ∆1 := [0, a] × [0, b];

Mi :=
(
(−1)r−1x0, (−1)s−1y0, (−1)p−1h

)
∈ Spq;

in this 
ase i := 4(p− 1)+2(r− 1)+ s, and q := 2(r− 1)+ s with p, r, s = 1, 2.
The point of integration is

P :=
(
(−1)n−1x, (−1)m−1y, (−1)l−1h

)
∈ Slk;
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in this 
ase j := 4(l−1)+2(n−1)+m, and k := 2(n−1)+m with n, m = 1, 2
(see Fig. 2); and �nally,

G| i−j |+1(x, y, h; x0, y0, z0) := |P −Mi|−1.

Now the pro
edure of splitting (4) into eight independent integral equations

may be applied. But, at �rst, we will observe that the 
hoi
e of symmetry

group with an order of eight is exhaustive from the point of view of ele
trodes

systems design. Another advantage is a possibility to take into a

ount a priori

information about desired solution behavior only along a free part of 
ongruent


omponent S11 
ontour. Under these 
onditions, ignoring the weight fun
tion

mentioned above, it is possible to use one of the e�e
tive methods of a

ura
y


ontrol of the re
eived results. In addition, the 
orre
tion of required fun
tion

is 
arried out by use of spe
ial a posteriori error estimation and provided by

net 
ondensing in the neighborhood of S11 singular points.

Tabl. 1. The value of potential at veri�ed points

x y z U(x, y, z)
0.9510 0.9510 0.5000 999.1812

0.8590 0.8590 0.5000 999.9378

1.0000 1.0000 0.4990 780.6304

0.9900 0.9900 0.4990 979.5774

0.9500 0.9500 0.4990 995.8487

0.9000 0.9000 0.4990 996.2100

0.7000 0.7000 0.4990 997.7024

0.5000 0.5000 0.4990 997.9232

0.3000 0.3000 0.4990 997.9784

0.0000 0.0000 0.4990 997.9939

0.0000 0.0000 0.4000 799.4128

0.0000 0.0000 0.2000 399.0503

0.0000 0.0000 0.1000 199.4134

1.0000 1.0000 0.4900 731.5166

1.0000 1.0000 0.4800 688.9154

1.0000 1.0000 0.4000 492.6562

1.0000 1.0000 0.2000 219.5428

1.0000 1.0000 0.1000 107.6509

Using known general 
on
ept of a posteriori error estimation methodology

[5℄, we propose su
h it version appli
able pre
isely to integral equation of type

(1). Let σh(P ) is a solution whi
h belongs to 
hosen approximation spa
e.

This solution, taking into 
onsideration it integral representation, generates

approximate value of potential in an arbitrary point M of interele
trodes spa
e

Uh(M) = (Aσh)(M).

At that time, error fun
tion eU is de�ned with the help of su
h formula

eU = Aσ −Aσh = A(σ − σh) = Aeσ;
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where eσ is the solution of su
h integral equation

(Aeσ)(M) = U0 − (Aσh)(M), M ∈ S;

here U0 is the given value of potential on S. The behavior of this solution

is irregular only in the neighborhood of un
losed surfa
e S 
ontour. That is

why, we reprodu
e eU only over element De
whi
h appears in the pro
ess of

S partition and where eU may be obtained maximal value. We 
onsider su
h

element as "extremal". Then, it is ne
essary to verify the 
ondition of the

a

essibility of preassigned a

ura
y

‖ eσ‖L2(De)√
‖σh‖2

L2(De) + ‖ eσ‖2
L2(De)

100% ≤ TOL.

If the last 
ondition is not realized, then, it is ne
essary to repeat stated above

pro
edure, using more dense net, as it was shown at the �gure 3. We repeat

the des
ribed pro
edure so many times that it needs to obtain the guaranteed

a

ura
y of equation (1) solving.

The 
onsidered numeri
al s
heme was applied to solve one typi
al problem.

Computations were realized with the use of some parameters: a = 1, b = 1,
h = 0.5, U1 = 1000, U2 = −1000, TOL = 0.1%. The solution of this problem

was shows with the help of the Table 1 at some points. In this 
ase the number

of iteration to attain preassigned a

ura
y is 5.
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