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�åçþìå. Ó ïðåäñòàâëåíié ðîáîòi ìè äîñëiäæó¹ìî ðiçíi àñïåêòè ïîáóäîâè

íàáëèæåíèõ ñõåì äëÿ ðîçâ'ÿçóâàííÿ iíòåãðàëüíîãî ðiâíÿííÿ ïåðøîãî ðîäó

çi ñëàáêîþ îñîáëèâiñòþ â ÿäði, ÿêå ¹ õàðàêòåðíèì äëÿ òåîði¨ ïîòåíöiàëó. Ó

çâ'ÿçêó ç öèì ìè ïðèéìà¹ìî äî óâàãè ñóòò¹âî ïðîñòîðîâå �îðìóëþâàííÿ

ïî÷àòêîâî¨ ïðîáëåìè, à òàêîæ ñèíãóëÿðíó ïîâåäiíêó øóêàíîãî ðîçâ'ÿçêó

â îêîëi êîíòóðó ðîçiìêíåíî¨ ãðàíè÷íî¨ ïîâåðõíi. Ç ìåòîþ îòðèìàííÿ

ãàðàíòîâàíî¨ òî÷íîñòi ðåçóëüòàòó, âèêîðèñòîâóþ÷è âiäîìi çàãàëüíi iäå¨

ìåòîäîëîãi¨ àïîñòåðiîðíî¨ îöiíêè ïîõèáêè, ìè ïðîïîíó¹ìî òàêó ¨¨ âåðñiþ,

ùî ¹ ïðèäàòíîþ ñàìå äî ðîçãëÿäóâàíîãî iíòåãðàëüíîãî ðiâíÿííÿ.

Abstrat. In the artile we investigate di�erent aspets of approximate

shemes onstrution for the �rst kind integral equations being used in po-

tential theory. In this onnetion we take into onsideration substantially

spatial setting of the problem and spei� behavior of desired solution near

the ontour of unlosed boundary surfae. With a view to obtain guaran-

teed auray of results, using known general onept of a posteriori error

estimation methodology, we propose suh it version appliable preisely to

onsidered integral equation.

1. Introdution

The main objet of our analysis is di�erent aspets of approximate shemes

onstrution for the �rst kind integral equation solving. In addition, we have

to do with equations in the form as

(Aσ)(M) ≡
∫∫

S

σ(P ) |M − P |−1
dSP = U(M), M ∈ S, (1)

where in general ase S is an open Lipshitz surfae, M and P are the points of

Eulidean spae R
3
. The type (1) equations appear at the modelling of poten-

tial theory some boundary problems, in partiular, eletron optis. Ordinary

generalization of (1) is a permission that S is formed by the aggregate m of

surfaes, so that S :=
⋃m

i=1 Si. In this ase we interpret σ(P ) as a desired total

harge distribution density on S, that is σ(P ) := {σ(P ), P ∈ Si; i = 1, N}. It
is possible to researh operator equation (1) in various funtional spaes [4, 8℄.

However, it should be taken into aount the spei�ity of investigated physi-

al phenomenon. Thus, for example, the modelling of eletrostati �eld in the

Key words. Integral equation, axial symmetry, the olloation method, a posteriori error

estimation.
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substantially spatial setting foresees the aount of desired harge distribution

density σ(P ) behavior near the ontour of unlosed surfae S and lines of its

frature [7℄. In this ase we onsider that U(M), M ∈ S, is the given boundary

value of potential on an eletrode whih is atually modeled by a surfae S
(U(M) ≡ onst). As to numerial methods applied for initial problem solving

we an point out in priniple some approahes for integral equations approx-

imate shemes onstrution [1, 2, 6℄. In this onnetion, taking into aount

substantially spatial setting of the problem and spei� behavior of desired so-

lution, from pratial point of view, in the best way, mentioned above questions

were solved in [2℄.

2. Considered set of boundary surfaes and the ways

of their speifiation

At �rst, using parametri representation of S, we will onsider that

M :=
{
x(α0, β0), y(α0, β0), z(α0, β0); (α0, β0) ∈ D := (−1, 1)2

}
,

P :=
{
x(α, β), y(α, β), z(α, β); (α, β) ∈ D

}
.

At that time, integral equation (1) will be shown as

∫∫

D

σ(α, β)K(α, β; α0, β0)dαdβ = U(α0, β0), (α0, β0) ∈ D; (2)

where

K(α, β; α0, β0) :=
{

[x(α, β) − x(α0, β0)]
2 + [y(α, β) − y(α0, β0)]

2+

+[z(α, β) − z(α0, β0)]
2
}−1/2

J(α, β);

and J(α, β)dαdβ is an element of surfae S in loal oordinates (α, β) asso-

iated with S. Keeping in (2) notation for σ and U from (1), we will also

remark that from funtions x(α, β), y(α, β), and z(α, β), whih express the

Cartessian oordinates (x, y, z) of the points on a surfae S, it is required, at
least, ontinuous di�erentiability in D beause

J(α, β) :=
{
E(α, β)G(α, β) − F 2(α, β)

}1/2
;

and

E(α, β) :=
(
x′α
)2

+
(
y′α
)2

+
(
z′α
)2
,

G(α, β) :=
(
x′β
)2

+
(
y′β
)2

+
(
z′β
)2
,

F (α, β) := x′αx
′
β + y′αy

′
β + z′αz

′
β .

As an example, for arbitrary harged quadrangular plate presentation we

make use of the following equations:
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x(α, β) =
1

4

4∑

j=1

xj ϕj(α, β), ϕj(α, β) :=
(
1 + (−1)pα

)(
1 + (−1)qβ

)
,

y(α, β) =
1

4

4∑

j=1

yj ϕj(α, β), p :=
[j
2

]
+ 1, q :=

[j − 1

2

]
+ 1,

z(α, β) =
1

4

4∑

j=1

zj ϕj(α, β), (α, β) ∈ D;

where (xj , yj, zj) are oordinates of orresponding plate vertex. It is obvious

that we simulate this and similar plates with the help of double-sided in�nitely-

thin surfaes.

Addressing to suh type of boundary surfaes is explained by a possibility of

the use for the approximate solving (2) in this ase of numerially-analytial

methodology introdued by the authors [3℄.

Another example of parametri equations is related to the neessity of so-

alled �at diaphragms desriptions. The last ones are omponents of rather

ompliated and atual in pratie eletron-optial systems. The �gure 1 rep-

resents a projetion of a diaphragm on the plane z = onst. It is easy to notie

that in this ase the examined surfae S represents the ombination of eight

elements. In addition, eah of them is expressed by a �at urvilinear quadran-

gle. For every element a unique desription it is enough to �x eight points on

the orresponding ontours as shown at the �gure 1.

Fig. 1. A projetion of �at diaphragm on the plane z = onst

In this onnetion parametri equations have suh expression as
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x(α, β) =
1

4

4∑

j=1

xj ϕj(α, β),

y(α, β) =
1

4

4∑

j=1

yj ϕj(α, β), (α, β) ∈ D;

where

ϕ1(α, β) := (1 + α) (1 + β) (α + β − 1),

ϕ2(α, β) := (1 − α2) (1 + β), . . . ;

and xj, yj are oordinates of points Mi (i = 1, 8).

3. General remars onerned with numerial analysis

of type (1) integral equations

Two-dimensional integral equation (2) was solved by the method of olloa-

tion with the use of pieewise-onstant and bilinear approximation of desired

σ(P ). It is easy to see that (2) belongs to integral equations with weak sin-

gularity in the kernel. Therefore, in the proess of (2) solving it is neessary

to alulate approximately some two-dimensional singular integrals of spei�

lass. In this onnetion the algorithms of suh integrals alulation beome

substantially ompliated through the presene of ertain weight funtions. The

point is that the last ones represent preisely singular behavior of desired solu-

tion near the ontour of open surfae S.
The integral equations of type (1)-(2) were also examined in the ontext

of eletrostati �eld determination, in the ase when the systems of harged

eletrodes have rather ompliated on�guration. We will �nd out some details

of initial problem e�etive solution, based on the integral equations method,

in the substantially spatial setting, taking into aount present symmetry at

geometry of unlosed surfaes-eletrodes. The aount of symmetry enables to

interpret initial problem as a task with �nite order abelian group of symmetry.

It allows to redue (2), set on all boundary surfae, to the sequene N of

independent integral equations, set on one of their ongruent onstituents. Here

N is an order of established group of symmetry. It results in avoidane of

numerial instability of the systems of linear algebrai equations solving. With

the help of these systems the approximation of orresponding integral equations

is realized. In addition, their dimensions exessively inrease. There is also a

possibility to reate pre-onditions for parallelizing an algorithm of the basi

problem solving. Choosing a di�erent number of proessors, it allows to reah

maximal e�ieny of their loading and inreasing the speed of alulation.

4. Sheme of results refinement obtained in the proess

of speifi model task solving

Illustrating the expedieny of the mentioned methodology appliation, we

will onsider the problem of eletrostati �eld alulation of so-alled plane-

parallel ondenser (see Fig. 2).
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Fig. 2. Investigated plane-parallel ondenser

In the ourse of initial problem mathematial modelling we will represent

the orresponding systems of eletrodes as an ombination of two open surfaes

whih do not have ommon points, so that S := S1
⋃
S2. It is easy to see

that surfaes Si are bounded to the pieewise-smooth ontours of �nite length.

We onsider this task as model one. The point is that the eletrostati �eld

reprodution under the onditions of essential di�erene of potentials on the

plates and step-by-step derease of the distane between indiated plates is not

trivial problem. In this ase the results of alulation are espeially sensitive

with respet to variation of output date.

Returning to our integral equation let us assume that

Sl :=
{

(x, y, z) ∈ R
3
∣∣∣ (x, y) ∈ [−a, a] × [−b, b];

z = (−1)l−1h; l = 1, 2; a, b, h > 0
}
.

Considering the geometri harateristis of total surfae S let us represent the

last in the form of ongruent onstituents ombination:

S =

2⋃

l=1

(
4⋃

k=1

Slk

)
.

Taking into aount suh subdivision of Sl (l = 1, 2), integral equations (2), in
turn, an be formally represented as

2∑

l=1

4∑

k=1

∫

Slk

σlk(P ) |P −M |−1
dSP =

= U(M) =





U1, M ∈ S1;

U2, M ∈ S2;

(3)
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where σlk(P ) is the projetion of σ(P ) on Slk;

|P −M |−1 =
[
(x− x0)

2 + (y − y0)
2 + (z − z0)

2
]−1/2

;

M := (x0, y0, z0 = ±h); (x, y), (x0, y0) ∈ [−a, a] × [−b, b].

Fig. 3. A projetion of ongruent omponent S11 on the plane

z = onst together with the onsequent step-by-step partition

into elements for the attainment of desired auray

of (4) solving

Then, applying in (3) trivial hanges of variables, we realize the onversion

from integration over total surfae S to integration over it ongruent onstituent

S11. In addition, let us note than the point of olloation M is plaed also on

S11. As a result, we have obtained in fat the system of eight linear integral

equations with respet to unknown density σj(x, y) (j = 1, 8), aording to

hosen group of symmetry of surfae S:

8∑

j=1

∫∫

∆1

σj(x, y)G| i−j |+1(x, y, h; x0, y0, z0)dxdy = U(Mi) (i = 1, 8). (4)

Here ∆1 := [0, a] × [0, b];

Mi :=
(
(−1)r−1x0, (−1)s−1y0, (−1)p−1h

)
∈ Spq;

in this ase i := 4(p− 1)+2(r− 1)+ s, and q := 2(r− 1)+ s with p, r, s = 1, 2.
The point of integration is

P :=
(
(−1)n−1x, (−1)m−1y, (−1)l−1h

)
∈ Slk;
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in this ase j := 4(l−1)+2(n−1)+m, and k := 2(n−1)+m with n, m = 1, 2
(see Fig. 2); and �nally,

G| i−j |+1(x, y, h; x0, y0, z0) := |P −Mi|−1.

Now the proedure of splitting (4) into eight independent integral equations

may be applied. But, at �rst, we will observe that the hoie of symmetry

group with an order of eight is exhaustive from the point of view of eletrodes

systems design. Another advantage is a possibility to take into aount a priori

information about desired solution behavior only along a free part of ongruent

omponent S11 ontour. Under these onditions, ignoring the weight funtion

mentioned above, it is possible to use one of the e�etive methods of auray

ontrol of the reeived results. In addition, the orretion of required funtion

is arried out by use of speial a posteriori error estimation and provided by

net ondensing in the neighborhood of S11 singular points.

Tabl. 1. The value of potential at veri�ed points

x y z U(x, y, z)
0.9510 0.9510 0.5000 999.1812

0.8590 0.8590 0.5000 999.9378

1.0000 1.0000 0.4990 780.6304

0.9900 0.9900 0.4990 979.5774

0.9500 0.9500 0.4990 995.8487

0.9000 0.9000 0.4990 996.2100

0.7000 0.7000 0.4990 997.7024

0.5000 0.5000 0.4990 997.9232

0.3000 0.3000 0.4990 997.9784

0.0000 0.0000 0.4990 997.9939

0.0000 0.0000 0.4000 799.4128

0.0000 0.0000 0.2000 399.0503

0.0000 0.0000 0.1000 199.4134

1.0000 1.0000 0.4900 731.5166

1.0000 1.0000 0.4800 688.9154

1.0000 1.0000 0.4000 492.6562

1.0000 1.0000 0.2000 219.5428

1.0000 1.0000 0.1000 107.6509

Using known general onept of a posteriori error estimation methodology

[5℄, we propose suh it version appliable preisely to integral equation of type

(1). Let σh(P ) is a solution whih belongs to hosen approximation spae.

This solution, taking into onsideration it integral representation, generates

approximate value of potential in an arbitrary point M of intereletrodes spae

Uh(M) = (Aσh)(M).

At that time, error funtion eU is de�ned with the help of suh formula

eU = Aσ −Aσh = A(σ − σh) = Aeσ;
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where eσ is the solution of suh integral equation

(Aeσ)(M) = U0 − (Aσh)(M), M ∈ S;

here U0 is the given value of potential on S. The behavior of this solution

is irregular only in the neighborhood of unlosed surfae S ontour. That is

why, we reprodue eU only over element De
whih appears in the proess of

S partition and where eU may be obtained maximal value. We onsider suh

element as "extremal". Then, it is neessary to verify the ondition of the

aessibility of preassigned auray

‖ eσ‖L2(De)√
‖σh‖2

L2(De) + ‖ eσ‖2
L2(De)

100% ≤ TOL.

If the last ondition is not realized, then, it is neessary to repeat stated above

proedure, using more dense net, as it was shown at the �gure 3. We repeat

the desribed proedure so many times that it needs to obtain the guaranteed

auray of equation (1) solving.

The onsidered numerial sheme was applied to solve one typial problem.

Computations were realized with the use of some parameters: a = 1, b = 1,
h = 0.5, U1 = 1000, U2 = −1000, TOL = 0.1%. The solution of this problem

was shows with the help of the Table 1 at some points. In this ase the number

of iteration to attain preassigned auray is 5.
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