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ON PRACTICAL ATTAINMENT OF PREASSIGNED
ACCURACY OF RESULTS IN THE PROCESS
OF NUMERICAL ANALYSIS OF SOME
TWO-DIMENSIONAL INTEGRAL EQUATIONS

YAROSLAV GARASYM, BORYs OSTUDIN

PE3IOME. V¥ mpescrasiieniit podoTi My HOCTIKYEMO Pi3HI acIeKTH mobymoBu
Ha6.HI/I)KeHI/IX CXeM IJId pOBB’ﬂ3yBaHH§[ iHTeraﬂbHOFO piBHﬂHHﬂ TepIIoro poay
31 c/1abKO0I0 OCOBIMBICTIO B I/, SKe € XapaKTEePHUM JJIs Teopil moreHriamy. Y
3B7H3Ky 3 UM MH HpHﬁMaeMO 0 yBaru CyTTEBO IIPOCTOPOBE d)OpMyJ'[IOBaHHH
TIOYATKOBOL l'IpO6.HeMI/I7 a TaKOXK CHUHTYJ/IADHY HOBe,I[iHKy 1Ty KaHOT' O pO3B79[3Ky
B OKOJIi KOHTYDPY PO3IMKHEHOI I'DAHMYHOI MOBEPXHi. 3 MeTOl OTpUMaHHS
TapaHTOBAHO! TOYHOCTI Pe3yJIbTAaTy, BUKOPUCTOBYIOUM BifOMi 3arajbHi imel
MEeTOIOJIOTIT AITOCTEPIOPHOT OIIHKK TTOXUOKM, MU TIPOTIOHYEMO TaKy ii Bepciro,
110 € IIPUJATHOIO CaMe 0 PO3TId1yBaHOTO iHTeI‘paJH)HOFO piBHHHHH.
ABsTRACT. In the article we investigate different aspects of approximate
schemes construction for the first kind integral equations being used in po-
tential theory. In this connection we take into consideration substantially
spatial setting of the problem and specific behavior of desired solution near
the contour of unclosed boundary surface. With a view to obtain guaran-
teed accuracy of results, using known general concept of a posteriori error
estimation methodology, we propose such it version applicable precisely to
considered integral equation.

1. INTRODUCTION
The main object of our analysis is different aspects of approximate schemes
construction for the first kind integral equation solving. In addition, we have
to do with equations in the form as

(Ac)(M) = // o(P)| M — P|"'dSp = U(M), M €S, (1)
S

where in general case S is an open Lipschitz surface, M and P are the points of
Euclidean space R3. The type (1) equations appear at the modelling of poten-
tial theory some boundary problems, in particular, electron optics. Ordinary
generalization of (1) is a permission that S is formed by the aggregate m of
surfaces, so that S :=J!"; S;. In this case we interpret o(P) as a desired total
charge distribution density on S, that is o(P) := {o(P), P € S;; i =1,N}. It
is possible to research operator equation (1) in various functional spaces [4, 8].
However, it should be taken into account the specificity of investigated physi-
cal phenomenon. Thus, for example, the modelling of electrostatic field in the
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substantially spatial setting foresees the account of desired charge distribution
density o(P) behavior near the contour of unclosed surface S and lines of its
fracture [7]. In this case we consider that U(M), M € S, is the given boundary
value of potential on an electrode which is actually modeled by a surface S
(U(M) = const). As to numerical methods applied for initial problem solving
we can point out in principle some approaches for integral equations approx-
imate schemes construction [1, 2, 6]. In this connection, taking into account
substantially spatial setting of the problem and specific behavior of desired so-
lution, from practical point of view, in the best way, mentioned above questions
were solved in [2].

2. CONSIDERED SET OF BOUNDARY SURFACES AND THE WAYS
OF THEIR SPECIFICATION
At first, using parametric representation of S, we will consider that

{ aOa 60 aOv 60)7 Z(Cma /80)7 (a07 60) €D := (_17 1)2}7
P I:{.%' Ck, ; y(aa /8)7 Z(aa 6)7 (aa 6) € ﬁ} :

At that time, integral equation (1) will be shown as

// o, B; ao, fo)dadf = Ulag, Bo), (a0, Bo) € D;  (2)

where

K (e, B; a0, f) = { [a(a, ) = 2(ao, o)]* + y(a, #) = ylao, fo)+

—-1/2

(e, B) = 2(a0, Bo)P} Tl B);

and J(«, #)dadf is an element of surface S in local coordinates («, () asso-
ciated with S. Keeping in (2) notation for ¢ and U from (1), we will also
remark that from functions z(a, ), y(«, ), and z(«, (), which express the
Cartessian coordinates (z, y, z) of the points on a surface S, it is required, at
least, continuous differentiability in D because

J(a, B) = { Ea, B) G(av, B) — F*(a, B) }'*
and
a,ﬂ = (2h)” + (o) + (2)",
G(e, (,/8) + (¥5)” + (=),

F(a, 5) Loy + Yol + 2025

As an example, for arbitrary charged quadrangular plate presentation we
make use of the following equations:
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Z 2050, B), pila, B) = (1+ (=1Pa) (14 (-1)78),

4 . .
1 j j—1
-] S P
14
Q, _ZZ/ZJ@] (o, B) € D;
7=1

where (x;, y;, 2j) are coordinates of corresponding plate vertex. It is obvious
that we simulate this and similar plates with the help of double-sided infinitely-
thin surfaces.

Addressing to such type of boundary surfaces is explained by a possibility of
the use for the approximate solving (2) in this case of numerically-analytical
methodology introduced by the authors [3].

Another example of parametric equations is related to the necessity of so-
called flat diaphragms descriptions. The last ones are components of rather
complicated and actual in practice electron-optical systems. The figure 1 rep-
resents a projection of a diaphragm on the plane z = const. It is easy to notice
that in this case the examined surface S represents the combination of eight
elements. In addition, each of them is expressed by a flat curvilinear quadran-
gle. For every element a unique description it is enough to fix eight points on
the corresponding contours as shown at the figure 1.
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Fia. 1. A projection of flat diaphragm on the plane z = const

In this connection parametric equations have such expression as
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4
v(a, )= 3 3 w5050 ),
j=1

4
v 5) = 13 uieila B), (o, ) € D:
j=1

where
e1(a, f) =1 +a)(1+p6)(a+8-1),
pa(a, B) == (1-a®)(1+0

and x;, y; are coordinates of points M; (i = 1,8).

(
)

g ey

3. GENERAL REMARCS CONCERNED WITH NUMERICAL ANALYSIS
OF TYPE (1) INTEGRAL EQUATIONS

Two-dimensional integral equation (2) was solved by the method of colloca-
tion with the use of piecewise-constant and bilinear approximation of desired
o(P). It is easy to see that (2) belongs to integral equations with weak sin-
gularity in the kernel. Therefore, in the process of (2) solving it is necessary
to calculate approximately some two-dimensional singular integrals of specific
class. In this connection the algorithms of such integrals calculation become
substantially complicated through the presence of certain weight functions. The
point is that the last ones represent precisely singular behavior of desired solu-
tion near the contour of open surface S.

The integral equations of type (1)-(2) were also examined in the context
of electrostatic field determination, in the case when the systems of charged
electrodes have rather complicated configuration. We will find out some details
of initial problem effective solution, based on the integral equations method,
in the substantially spatial setting, taking into account present symmetry at
geometry of unclosed surfaces-electrodes. The account of symmetry enables to
interpret initial problem as a task with finite order abelian group of symmetry.
It allows to reduce (2), set on all boundary surface, to the sequence N of
independent integral equations, set on one of their congruent constituents. Here
N is an order of established group of symmetry. It results in avoidance of
numerical instability of the systems of linear algebraic equations solving. With
the help of these systems the approximation of corresponding integral equations
is realized. In addition, their dimensions excessively increase. There is also a
possibility to create pre-conditions for parallelizing an algorithm of the basic
problem solving. Choosing a different number of processors, it allows to reach
maximal efficiency of their loading and increasing the speed of calculation.

4. SCHEME OF RESULTS REFINEMENT OBTAINED IN THE PROCESS
OF SPECIFIC MODEL TASK SOLVING
Mlustrating the expediency of the mentioned methodology application, we
will consider the problem of electrostatic field calculation of so-called plane-
parallel condenser (see Fig. 2).
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FiG. 2. Investigated plane-parallel condenser

In the course of initial problem mathematical modelling we will represent
the corresponding systems of electrodes as an combination of two open surfaces
which do not have common points, so that S := S;|JS2. It is easy to see
that surfaces .S; are bounded to the piecewise-smooth contours of finite length.
We consider this task as model one. The point is that the electrostatic field
reproduction under the conditions of essential difference of potentials on the
plates and step-by-step decrease of the distance between indicated plates is not
trivial problem. In this case the results of calculation are especially sensitive
with respect to variation of output date.

Returning to our integral equation let us assume that

Si={ (@ v, 2) € R?| (z, ) € [~a, o] x [, b}
2= (1) 1=T1,2; a,bh > 0}.

Considering the geometric characteristics of total surface S let us represent the
last in the form of congruent constituents combination:

U (Us)

Taking into account such subdivision of S; (I = 1,2), integral equations (2), in
turn, can be formally represented as
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where o3 (P) is the projection of o(P) on Si;

[P =M™ = (@ = 20)* + (v — 90)* + (2 — 20)2] /%

M := (zo, yo, 20 = £h); (z,y), (zo, yo) € [—a, a] x [-b, b].
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F1a. 3. A projection of congruent component S11 on the plane
z = const together with the consequent step-by-step partition
into elements for the attainment of desired accuracy
of (4) solving

Then, applying in (3) trivial changes of variables, we realize the conversion
from integration over total surface S to integration over it congruent constituent
S11- In addition, let us note than the point of collocation M is placed also on
S11. As a result, we have obtained in fact the system of eight linear integral
equations with respect to unknown density o;(z, y) (j = 1,8), according to
chosen group of symmetry of surface S

8
> [ orte ) Grissiiaten v s o, o, ) dady = UML) G =T). ()
J=1 AL
Here A; := [0, a] x [0, b];
M; = ((—1)r_1x0, (—1)* Ly, (—1)p_1h) € Spgs
in this case i := 4(p—1)+2(r—1)+s, and ¢ := 2(r — 1) + s with p, r, s = 1,2.

The point of integration is

P o= (=1 e, (1) y, (—1)'7h) € S
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in this case j :=4(I—1)+2(n—1)+m, and k := 2(n—1) +m with n, m = 1,2
(see Fig. 2); and finally,

Gl’i—j‘—i‘l(x’ Y, ha Zo, Yo, ZO) = |P - Mi|_1'

Now the procedure of splitting (4) into eight independent integral equations
may be applied. But, at first, we will observe that the choice of symmetry
group with an order of eight is exhaustive from the point of view of electrodes
systems design. Another advantage is a possibility to take into account a priori
information about desired solution behavior only along a free part of congruent
component Sp; contour. Under these conditions, ignoring the weight function
mentioned above, it is possible to use one of the effective methods of accuracy
control of the received results. In addition, the correction of required function
is carried out by use of special a posteriori error estimation and provided by
net condensing in the neighborhood of Sy; singular points.

TABL. 1. The value of potential at verified points

x Y z Uz, y, 2)
0.9510 0.9510 0.5000 999.1812
0.8590 0.8590 0.5000 999.9378
1.0000 1.0000 0.4990 780.6304
0.9900 0.9900 0.4990 979.5774
0.9500 0.9500 0.4990 995.8487
0.9000 0.9000 0.4990 996.2100
0.7000 0.7000 0.4990 997.7024
0.5000 0.5000 0.4990 997.9232
0.3000 0.3000 0.4990 997.9784
0.0000 0.0000 0.4990 997.9939
0.0000 0.0000 0.4000 799.4128
0.0000 0.0000 0.2000 399.0503
0.0000 0.0000 0.1000 199.4134
1.0000 1.0000 0.4900 731.5166
1.0000 1.0000 0.4800 688.9154
1.0000 1.0000 0.4000 492.6562
1.0000 1.0000 0.2000 219.5428
1.0000 1.0000 0.1000 107.6509

Using known general concept of a posteriori error estimation methodology
[5], we propose such it version applicable precisely to integral equation of type
(1). Let on(P) is a solution which belongs to chosen approximation space.
This solution, taking into consideration it integral representation, generates
approximate value of potential in an arbitrary point M of interelectrodes space

Un(M) = (Aop,)(M).
At that time, error function ey is defined with the help of such formula

ey = Ao — Aoy, = A(o — o) = Aeg;
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where e, is the solution of such integral equation
(Aeg)(M) = Uy — (Aop)(M), M € 5;

here Uy is the given value of potential on S. The behavior of this solution
is irregular only in the neighborhood of unclosed surface S contour. That is
why, we reproduce ey only over element D€ which appears in the process of
S partition and where ey may be obtained maximal value. We consider such
element as "extremal". Then, it is necessary to verify the condition of the
accessibility of preassigned accuracy

€5l Lo (D)

V 1ol ey + a2, o)

If the last condition is not realized, then, it is necessary to repeat stated above
procedure, using more dense net, as it was shown at the figure 3. We repeat
the described procedure so many times that it needs to obtain the guaranteed
accuracy of equation (1) solving.

The considered numerical scheme was applied to solve one typical problem.
Computations were realized with the use of some parameters: a = 1, b = 1,
h = 0.5, U; = 1000, Uy = —1000, TOL = 0.1%. The solution of this problem
was shows with the help of the Table1 at some points. In this case the number
of iteration to attain preassigned accuracy is 5.

100% < TOL.
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