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�åçþìå. Âèâ÷à¹òüñÿ ïîñëiäîâíiñòü áiíàðíèõ ñòàòèñòè÷íèõ åêñïåðèìåíòiâ

ç íàïîëåãëèâîþ íåëiíiéíîþ ðåãðåñi¹þ òèïó �àéòà-Ôiøåðà, ÿêà çàäà¹òüñÿ

êóái÷íî¨ ïàðàáîëîþ, ùî ìà¹ òðè äiéñíèõ êîðåíi. Áóäó¹òüñÿ ñòîõàñòè÷íà

àïðîêñèìàöiÿ ïîñëiäîâíîñòi ñòàòèñòè÷íèõ åêñïåðèìåíòiâ ïðîöåñîì àâòî-

ðåãðåñi¨ ç íîðìàëüíèìè çáóðåííÿìè, à òàêîæ ñòîõàñòè÷íà àïðîêñèìàöiÿ

ïîñëiäîâíîñòi åêñïîíåíöiéíèõ ñòàòèñòè÷íèõ åêñïåðèìåíòiâ ïðîöåñîì àâòî-

ðåãðåñi¨, ÿêèé çàäà¹òüñÿ ïðîöåñîì ãåîìåòðè÷íîãî áðîóíiâñüêîãî ðóõó.

Abstrat. We study a sequene of binary statistial experiments with per-

sistent non�linear regression with Wright�Fisher normalization [1℄, whih is

given by a ubi parabola, whih has three real roots. We onstrut sto-

hasti approximation of reurrent statistial experiments by autoregression

proess with normal disturbanes, as well as stohasti approximation of ex-

ponential statistial experiments by exponential autoregression proess with

normal disturbanes.

1. Introdution

In our previous paper [1℄ there has been searhed a limit behavior of reur-

rent statistial experiments (SE) with persistent linear regression by inreasing

sample volume N → ∞. An important role in the analysis of SE with persistent

linear regression plays the ontrol parameter a of the regression funtion whih

provides a steady state with equilibrium point and, at the same time , gives a

possibility of approximating the original reurrent SE by normal autoregression

proess, whih statistial analysis is signi�antly easier.

In this paper, we study a similar problem for a sequene of SE with persistent

regression with an additional term whih determines the non-linear regression.

The initial assumptions about the binary nature [1℄, as well as non-linear re-

gression model with Wright�Fisher normalization [2℄ make a natural hoie for

the regression's nonlinear omponent as a ubi parabola, whih has three real

roots in the value interval −1 ≤ s ≤ +1 of the results of statistial experiments.

It is natural to assume that the non-linear omponent of the regression takes

the value 0 at the ends of the interval s = ±1, as well as at the equilibrium

point ρ of the linear regression.

Key words. Binary statistial experiment, persistent regression, stabilization, stohasti

approximation, exponential statistial experiment, exponential autoregression proess.
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These onsiderations lead to the lear onlusion that the non-linear ompo-

nent of the regression is as follows:

C0(s) = −g(1 − s2)(s− ρ) , |s| ≤ 1 , g > 0. (1)

2. Steady state regime

In this paper we onsider the sequene of the SE

SN (k) =
1

N

N∑

r=1

δr(k), k ≥ 0. (2)

with persistent non-linear regression:

E[SN (k + 1)|SN (k) = s] = C(s) , C(s) = s+ C0(s). (3)

The parameter g of non-linear regression signi�antly hanges the dynamis of

the reurrent SE.

Remark 1. Setting the SE using the regression (2) - (3) means that the prob-

ability sample values are given by:

P{δr(k + 1) = ±1|SN (k) = s} =
1

2
[1 ± C(s)]. (4)

At the same time, there exist ontrol parameters g and ρ suh that the ondition

(4) is orretly de�ned.

The spei�ity of the binary SE is, in partiular, that the onditional variane

SE is simply alulated

D[SN (k + 1)|SN (k) = s] = B(s)/N , B(s) := 1 − C2(s). (5)

Now it is possible to verify the existene of the steady state (see [1, Theorem

1℄).

Theorem 1. Provided the initial ondition (onvergene with probability 1)

SN(0) ⇒ ρ , N → ∞, (6)

there is the onvergene with probability 1

SN (k) ⇒ ρ , N → ∞, (7)

for eah �nite k > 0.

Proof of Theorem 1. We introdue a martingale as the sum of martingale dif-

ferenes:

µN (n) :=

n∑

k=0

[SN (k + 1) − E[SN (k + 1) |SN (k)]] (8)

or another, in view of the properties of persistent regression (3)

µN (n) =

n∑

k=0

[SN (k + 1) − C(SN (k)]. (9)
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The quadrati harateristi of the martingale (8), onsidering (9), is given by

the sum:

〈µN 〉n :=

n∑

k=0

D[SN (k + 1) |SN (k)] =
1

N

n∑

k=0

B(SN (k)). (10)

Hene for any �xed n ≥ 0 the following onvergene takes plae (with prob-

ability 1):

〈µN 〉n ⇒ 0, N → ∞. (11)

This implies the onvergene with probability 1 of the martingales (8) for eah

�nite n ≥ 0
µN (n) ⇒ 0, N → ∞, n ≥ 0. (12)

In partiular when n = 0 we have

µN (0) = SN (1) − C(SN (0)) = SN(1) − ρ− [SN (0) − ρ] − C0(SN (0))

In this ase, by the ondition of Theorem 1

C0(SN (0)) ⇒ C0(ρ) = 0, N → ∞.

So there is the onvergene with probability 1:

SN (1) − ρ⇒ 0, N → ∞.

By indution, we dedue that for every k ≥ 1 the onvergene (7) takes

plae. �

3. Stohasti approximation of statistial experiments

As in previous work [1℄ appears the problem of simpli�ed desription of the

reurrent SE dynamis by inreasing sample volume N → ∞. The nonlinear

omponent of the regression funtion, whih has the fator (s − ρ), preserves
the possibility of approximating SE by normal autoregression proess.

Theorem 2. Under the onditions of Theorem 1 there takes plae the limit

relation (in probability):

√
N [SN (k + 1) − C(SN (k)] ⇒ σW (k + 1) , N → ∞ (13)

for eah �nite k ≥ 0.
The sequene of independent, normally distributed random variables W (k),

k ≥ 1 satis�es the normalization onditions :

EW (k) = 0 , DW (k) = 1 , k ≥ 1 , σ2 = 1 − ρ2. (14)

Proposition 1. The limit relation (13) is the basis to use the normal proess

of autoregression

S̃N (k + 1) = C(S̃N (k)) +
σ√
N
W (k + 1) , k ≥ 0,

= S̃N (k) +C0(S̃N (k)) +
σ√
N
W (k + 1) , k ≥ 0,

(15)

as an approximation of the original SE (2)�(3) with nonlinear regression fun-

tion (3).
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Remark 2. It is lear that the stohasti approximation in (15) is onsiderably

simpler than the original model (2)�(5) and at the same time, preserves the

ondition of persistent regression:

E[S̃N (k + 1) | S̃N (k)] = C(S̃N (k)), k ≥ 0. (16)

Proof of Theorem 2. We introdue a martingale as the sum of martingale dif-

ferenes:

µN (n) :=
√
N

n∑

k=0

[SN (k + 1) − C(SN (k))], n ≥ 0. (17)

Using the equilibrium state ρ (ñì. Òåîðåìó 1), and the relations (2), (3) and

(5), we get the following result.

Lemma 1. The martingale (17) has the following asymptoti representation:

µN (n) =
n∑

k=0

[ζN (k + 1) − b0ζN (k)] +
1√
N

n∑

k=0

ζ2
N (k)R(SN (k)) , n ≥ 0. (18)

Here

ζN (k) :=
√
N [SN (k) − ρ], k ≥ 0,

R(s) = g(s+ ρ) , b0 := 1 − gσ2 , σ2 = 1 − ρ2.
(19)

Aording to Theorem 1 and relation (19), the nonlinear term in (19) on-

verges (in probability) to zero as N → ∞ for eah �nite n ≥ 0. Now the normal

approximation of martingale (17) - (19) is realized in the same manner as in

[1℄. First, we ompute the quadrati harateristi of martingale (17)

〈µN 〉n =

n∑

k=0

B(SN (k)) , B(S) := 1 − C2(s) , n ≥ 0. (20)

Then, aording to Theorem 1, there is a limit (with probability 1)

〈µN 〉n ⇒ (n+ 1)σ2 , N → ∞ , n ≥ 0. (21)

However, aording to the entral limit theorem, the primary (linear) martin-

gale portion (18) onverges (in probability) to the sum of normally distributed

random variables.

The onvergene of the quadrati harateristis (21) implies the onvergene

in probability of martingale-di�erenes

µ0
N (n) :=

n∑

k=0

[ζN (k + 1) − (1 − gσ2)ζN (k)] ⇒ σ

n∑

k=0

W (k + 1). (22)

The limit normally distributed random variables W (k) , k ≥ 1 are mutually

independent with

EW (k) = 0 , EW 2(k) = 1 , k ≥ 1

beause the limit dispersion of martingale (21) is equal too sum of dispersions

of martingale-di�erenes.
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The onvergene of the original martingale (17) means that there is the

onvergene (in probability) :

√
N [SN (k + 1) − C(SN (k))] ⇒ σW (k + 1), N → ∞ (23)

for eah �nite k ≥ 0. The proof of Theorem 2 in omplete. �

Corollary 1. The onvergene of the linear omponent of the martingale (18)

implies the onvergene (in probability)

ζN (k + 1) − (1 − gσ2)ζN (k) ⇒ σW (k + 1) , N → ∞. (24)

Proposition 2. The onvergene (24) serves as the basis to use approximation,

in the neighborhood of the equilibrium point ρ, of the original statistial experi-

ments with persistent regression (2) by the new proess of normal autoregression

with linear regression funtion:

S̃0
N (k + 1) − ρ = (1 − gσ2)[S̃0

N (k) − ρ] +
σ√
N
W (k + 1), (25)

so that

S̃0
N (k + 1) = (1 − gσ2)S̃0

N (k) + gσ2ρ+
σ√
N
W (k + 1). (26)

The stohasti approximation by the normal proess of autoregression (25)

- (26) (Proposition 2) for the linear regression funtion

C̃(s) = s− gσ2(s− ρ) (27)

has a stationary distribution, whih is given by the density of the normal dis-

tribution (see [2, item 5℄)

ρ(s) =
1

(σ̃2/N)
√

2π
exp[−(s− ρ)2/2σ̃2/N ]. (28)

σ̃2 = σ2/(1 − gσ2). (29)

4. Exponential statistial experiments: steady-state behavior

In many appliations in biology [2, 6℄ and eonomis [7℄ important role is

played symmetri exponential statistis

ΠN (λ, k) :=

N∏

r=1

[1 + λδr(k)] , k ≥ 0. (30)

For example, if the sample values δr(k) , 1 ≤ r ≤ N , k ≥ 0 de�ne

suess rates δr(k)) = +1 or failure ones δr(k)) = −1 , then (31) sets the total

value of the interest rate in the k-th experiment. The parameter λ > 0 an be

onsidered as a disount fator.

We onsider exponential statistial experiments (ESE) (30) in the series

sheme with inreasing sample size N → ∞.
The property of persistent regression (3) is onverted to the following form:

E[ΠN (λ, k + 1)|SN (k)] = [1 + λC(SN (k))]N . (31)
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Now we introdue the exponential martingale

µe
N (λ, k + 1) = ΠN (λ, k + 1)/ΠN (λ, k) , k ≥ 0. (32)

ΠN (λ, k) := [1 + λC(SN (k))]N , k ≥ 0. (33)

Its martingale property is obvious:

E[µe
N (λ, k + 1)|SN (k)] = 1 , k ≥ 0.

Steady state of SE is established by the following

Theorem 3. By the ondition of onvergene with probability 1 of the SE initial

values

SN (0) ⇒ ρ = p/(1 − a) , N → ∞, (34)

there is the onvergene in probability of ESE (31)

P · lim
N→∞

ΠN (λ/N, k) = exp(λρ) , k ≥ 0, (35)

and also the onvergene in probability of onditional expetations (32), (34)

P · lim
N→∞

ΠN (λ/N, k) = exp(λρ) , k ≥ 0. (36)

Corollary 2. Under the ondition (35) the following onvergene takes plae:

P · lim
N→∞

µe
N (λ/N, k) = 1. (37)

Proof of Theorem 3. We use the approximation formula of Le Cam in the

following form:

Lemma 2. (ñð. [5, Lemma 6.3.1℄) Assume that the onvergene in probability

takes plae:

max
1≤r≤N

|δr(k + 1)| ⇒ 0 , N → ∞ , k ≥ 0. (38)

Then there takes plae the onvergene in probability

P · lim
N→∞

{
N∑

r=1

ln[1 + λδr(k + 1)/N ] − λSN (k + 1)} = 0. (39)

The ondition (38) is obviously satis�ed for binary random variables δr(k +
1), 1 ≤ r ≤ N, k ≥ 0, taking two values ±1. In addition, by Theorem 1

SN (k + 1) ⇒ ρ , N → ∞.

Hene the onvergene (40) is equivalent to the onvergene:

P · lim
N→∞

{
N∑

r=1

ln[1 + λδr(k + 1)/N ] = λρ. (40)

We now use the obvious identity

∏
= exp ln

∏
.
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The onvergene (36) is equivalent to the onvergene in (40). Even easier to

establish the onvergene (37) using the relation

C(SN (k)) ⇒ ρ , N → ∞, k ≥ 0.

Theorem 3 is proved. The Corollary 1 is obvious.

5. Exponential statistial experiments: approximation by the

normal proess of autoregression

The exponential statistial experiments (ESE) (31) with onditional ex-

petation (32) are onsidered in the sheme of series with series parameter

λN = λ/
√
N :

ΠN (λ/
√
N, k + 1) =

N∏

r=1

[1 + λδr(k + 1)/
√
N ] , k ≥ 0. (41)

However, the averaging of ESE in given by the relation:

ΠN (λ/
√
N, k) = [1 + λC(SN (k))/

√
N ]N , k ≥ 0. (42)

So that the orresponding exponential martingale has the form:

µe
N (λN , k + 1) := ΠN (λN , k + 1)/ΠN (λN , k) , k ≥ 0. (43)

The fundamental importane for the of ESE approximation has the following

Theorem 4. (ESE approximation) Under the onditions of Theorem 3 we have

the onvergene in probability

P · lim
N→∞

µe
N (λ/

√
N, k + 1) = exp[λσW (k + 1) − λ2σ2/2] , k ≥ 0, (44)

Remark 3. The exponential martingale in the series sheme (44), given by

ESE (41), onverges (as N → ∞) to exponential normal martingale. It is

obvious that

E exp[λσW (k + 1) − λ2σ2/2] = 1 , k ≥ 0. (45)

Proof of Theorem 4. As in the proof of Theorem 3, we use Lemma approxi-

mation of Le Cam and the obvious identity Π = exp ln Π.

Lemma 3. (Le Cam approximation [5, Lemma 6.3.1℄) Assume that the on-

vergene in probability takes plae

max
1≤r≤N

|δr(k + 1)/N | ⇒ 0 , N → ∞,

and also the sums

VN (k) :=
1

N

N∑

r=1

(δr(k))
2

are bounded in probability. Then there takes plae the onvergene in probability

P · lim
N→∞

N∑

r=1

ln[1 + λδr(k)/
√
N ] − λ

√
NSN (k) + λ2VN (k)/2 = 0. (46)
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Note that in our ase VN (k) = 1. So the onvergene in Lemma 3 has the

following form:

P · lim
N→∞

N∑

r=1

ln[1 + λδr(k)/
√
N ] − λ

√
NSN (k) = −λ2/2. (47)

Note that ESE (42) is represented in the form:

ΠN (λ/
√
N, k + 1) = exp

N∑

r=1

ln[1 + λδr(k + 1)/
√
N ] , k ≥ 0. (48)

So that the onvergene (48) means

P · lim
N→∞

ΠN (λ/
√
N, k+1) exp[−λ

√
NSN (k+1)] = exp[−λ2/2] , k ≥ 0. (49)

Similarly, the onditions of Lemma 3 provide the onvergene in probability

(by N → ∞) of the averaged ESE:

P · lim
N→∞

ΠN (λ/
√
N, k) exp[−λ

√
NC(SN (k))] = exp[−λ2ρ2/2] , k ≥ 0. (50)

We should use the Theorem 1, aording to whih

C(SN (k)) ⇒ C(ρ) = ρ = p/(1 − a) , N → ∞ , k ≥ 0.

Now we introdued the entered ESE:

Π0
N (λ/

√
N, k + 1) := ΠN (λ/

√
N, k + 1) exp[−λ

√
NSN (k + 1)] , k ≥ 0, (51)

Π0
N (λ/

√
N, k) := ΠN (λ/

√
N, k) exp[−λ

√
NC(SN (k))] , k ≥ 0. (52)

By Theorem 2, there is onvergene (in probability):

√
N [SN (k + 1) − C(SN(k))] ⇒ σW (k + 1), N → ∞ , k ≥ 0. (53)

So that the exponential martingale (44) is represented in the following form:

µe
N (λ/

√
N,k + 1) =

[
Π0

N (λ/
√
N, k + 1) / Π0

N (λ/
√
N, k)

]
×

× exp{λ
√
N [SN (k + 1) −C(SN (k))]} , k ≥ 0.

(54)

Using the the relations (50) - (53), taking into aount the relations σ2 = 1−ρ2
,

we get the assertion (45).

Theorem 4 is proved. ✷

We now rewrite the approximations (51) and (45) in the original series sheme

with the series parameter λN = λ/N :

ΠN (λ/N, k) exp[−λC(SN (k))] = exp(λ2ρ2/2N)eRN , k ≥ 0, (55)

µe
N (λ/N, k + 1) = exp[λ(σ/

√
N)W (k + 1) − λ2σ2/2N ]eRN . (56)

Here the residual term RN = o(1/N), n→ ∞.
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Hene the normalized ESE (31) admit the following approximation:

ΠN (λ/N, k + 1) = exp[λC(SN (k)) − λ2ρ2/2N ]×
× exp[λ(σ/

√
N)W (k + 1) − λ2σ2/2N ]eRN .

(57)

The approximation of the ESE (57) serves as a basis the following statement.

Proposition 3. The exponential statistial experiments (31) an be approxi-

mated by an exponential proess of autoregression

Π̃N (λ/N, k + 1) :=
N∏

r=1

[1 + λδ̃r(k + 1)/N ] =

= exp[λC(S̃N (k)) − λ2ρ2/2N ] · exp[λ(σ/
√
N)W (k + 1) − λ2σ2/2N ],

(58)

Here by de�nition

S̃N (k) :=
1

N

N∑

r=1

δ̃r(k), k ≥ 0.

Remark 4. An important basis for the appliation of approximation (58) is the

fat that the onditional expetations asymptotially oinides with the regres-

sion funtion (onditional expetation) of the original ESE (30), namely (f.

(58)):

E

[
N∏

r=1

[1 + λδ̃r(k + 1)/N ]|S̃N (k)

]
= exp[λC(S̃N (k)) − λ2ρ2/2N ]eRN . (59)
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