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�åçþìå. Âèâ÷à¹òüñÿ ïîñëiäîâíiñòü áiíàðíèõ ñòàòèñòè÷íèõ åêñïåðèìåíòiâ

ç íàïîëåãëèâîþ íåëiíiéíîþ ðåãðåñi¹þ òèïó �àéòà-Ôiøåðà, ÿêà çàäà¹òüñÿ

êóái÷íî¨ ïàðàáîëîþ, ùî ìà¹ òðè äiéñíèõ êîðåíi. Áóäó¹òüñÿ ñòîõàñòè÷íà

àïðîêñèìàöiÿ ïîñëiäîâíîñòi ñòàòèñòè÷íèõ åêñïåðèìåíòiâ ïðîöåñîì àâòî-

ðåãðåñi¨ ç íîðìàëüíèìè çáóðåííÿìè, à òàêîæ ñòîõàñòè÷íà àïðîêñèìàöiÿ

ïîñëiäîâíîñòi åêñïîíåíöiéíèõ ñòàòèñòè÷íèõ åêñïåðèìåíòiâ ïðîöåñîì àâòî-

ðåãðåñi¨, ÿêèé çàäà¹òüñÿ ïðîöåñîì ãåîìåòðè÷íîãî áðîóíiâñüêîãî ðóõó.

Abstra
t. We study a sequen
e of binary statisti
al experiments with per-

sistent non�linear regression with Wright�Fisher normalization [1℄, whi
h is

given by a 
ubi
 parabola, whi
h has three real roots. We 
onstru
t sto-


hasti
 approximation of re
urrent statisti
al experiments by autoregression

pro
ess with normal disturban
es, as well as sto
hasti
 approximation of ex-

ponential statisti
al experiments by exponential autoregression pro
ess with

normal disturban
es.

1. Introdu
tion

In our previous paper [1℄ there has been sear
hed a limit behavior of re
ur-

rent statisti
al experiments (SE) with persistent linear regression by in
reasing

sample volume N → ∞. An important role in the analysis of SE with persistent

linear regression plays the 
ontrol parameter a of the regression fun
tion whi
h

provides a steady state with equilibrium point and, at the same time , gives a

possibility of approximating the original re
urrent SE by normal autoregression

pro
ess, whi
h statisti
al analysis is signi�
antly easier.

In this paper, we study a similar problem for a sequen
e of SE with persistent

regression with an additional term whi
h determines the non-linear regression.

The initial assumptions about the binary nature [1℄, as well as non-linear re-

gression model with Wright�Fisher normalization [2℄ make a natural 
hoi
e for

the regression's nonlinear 
omponent as a 
ubi
 parabola, whi
h has three real

roots in the value interval −1 ≤ s ≤ +1 of the results of statisti
al experiments.

It is natural to assume that the non-linear 
omponent of the regression takes

the value 0 at the ends of the interval s = ±1, as well as at the equilibrium

point ρ of the linear regression.

Key words. Binary statisti
al experiment, persistent regression, stabilization, sto
hasti


approximation, exponential statisti
al experiment, exponential autoregression pro
ess.
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These 
onsiderations lead to the 
lear 
on
lusion that the non-linear 
ompo-

nent of the regression is as follows:

C0(s) = −g(1 − s2)(s− ρ) , |s| ≤ 1 , g > 0. (1)

2. Steady state regime

In this paper we 
onsider the sequen
e of the SE

SN (k) =
1

N

N∑

r=1

δr(k), k ≥ 0. (2)

with persistent non-linear regression:

E[SN (k + 1)|SN (k) = s] = C(s) , C(s) = s+ C0(s). (3)

The parameter g of non-linear regression signi�
antly 
hanges the dynami
s of

the re
urrent SE.

Remark 1. Setting the SE using the regression (2) - (3) means that the prob-

ability sample values are given by:

P{δr(k + 1) = ±1|SN (k) = s} =
1

2
[1 ± C(s)]. (4)

At the same time, there exist 
ontrol parameters g and ρ su
h that the 
ondition

(4) is 
orre
tly de�ned.

The spe
i�
ity of the binary SE is, in parti
ular, that the 
onditional varian
e

SE is simply 
al
ulated

D[SN (k + 1)|SN (k) = s] = B(s)/N , B(s) := 1 − C2(s). (5)

Now it is possible to verify the existen
e of the steady state (see [1, Theorem

1℄).

Theorem 1. Provided the initial 
ondition (
onvergen
e with probability 1)

SN(0) ⇒ ρ , N → ∞, (6)

there is the 
onvergen
e with probability 1

SN (k) ⇒ ρ , N → ∞, (7)

for ea
h �nite k > 0.

Proof of Theorem 1. We introdu
e a martingale as the sum of martingale dif-

feren
es:

µN (n) :=

n∑

k=0

[SN (k + 1) − E[SN (k + 1) |SN (k)]] (8)

or another, in view of the properties of persistent regression (3)

µN (n) =

n∑

k=0

[SN (k + 1) − C(SN (k)]. (9)
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The quadrati
 
hara
teristi
 of the martingale (8), 
onsidering (9), is given by

the sum:

〈µN 〉n :=

n∑

k=0

D[SN (k + 1) |SN (k)] =
1

N

n∑

k=0

B(SN (k)). (10)

Hen
e for any �xed n ≥ 0 the following 
onvergen
e takes pla
e (with prob-

ability 1):

〈µN 〉n ⇒ 0, N → ∞. (11)

This implies the 
onvergen
e with probability 1 of the martingales (8) for ea
h

�nite n ≥ 0
µN (n) ⇒ 0, N → ∞, n ≥ 0. (12)

In parti
ular when n = 0 we have

µN (0) = SN (1) − C(SN (0)) = SN(1) − ρ− [SN (0) − ρ] − C0(SN (0))

In this 
ase, by the 
ondition of Theorem 1

C0(SN (0)) ⇒ C0(ρ) = 0, N → ∞.

So there is the 
onvergen
e with probability 1:

SN (1) − ρ⇒ 0, N → ∞.

By indu
tion, we dedu
e that for every k ≥ 1 the 
onvergen
e (7) takes

pla
e. �

3. Sto
hasti
 approximation of statisti
al experiments

As in previous work [1℄ appears the problem of simpli�ed des
ription of the

re
urrent SE dynami
s by in
reasing sample volume N → ∞. The nonlinear


omponent of the regression fun
tion, whi
h has the fa
tor (s − ρ), preserves
the possibility of approximating SE by normal autoregression pro
ess.

Theorem 2. Under the 
onditions of Theorem 1 there takes pla
e the limit

relation (in probability):

√
N [SN (k + 1) − C(SN (k)] ⇒ σW (k + 1) , N → ∞ (13)

for ea
h �nite k ≥ 0.
The sequen
e of independent, normally distributed random variables W (k),

k ≥ 1 satis�es the normalization 
onditions :

EW (k) = 0 , DW (k) = 1 , k ≥ 1 , σ2 = 1 − ρ2. (14)

Proposition 1. The limit relation (13) is the basis to use the normal pro
ess

of autoregression

S̃N (k + 1) = C(S̃N (k)) +
σ√
N
W (k + 1) , k ≥ 0,

= S̃N (k) +C0(S̃N (k)) +
σ√
N
W (k + 1) , k ≥ 0,

(15)

as an approximation of the original SE (2)�(3) with nonlinear regression fun
-

tion (3).
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Remark 2. It is 
lear that the sto
hasti
 approximation in (15) is 
onsiderably

simpler than the original model (2)�(5) and at the same time, preserves the


ondition of persistent regression:

E[S̃N (k + 1) | S̃N (k)] = C(S̃N (k)), k ≥ 0. (16)

Proof of Theorem 2. We introdu
e a martingale as the sum of martingale dif-

feren
es:

µN (n) :=
√
N

n∑

k=0

[SN (k + 1) − C(SN (k))], n ≥ 0. (17)

Using the equilibrium state ρ (ñì. Òåîðåìó 1), and the relations (2), (3) and

(5), we get the following result.

Lemma 1. The martingale (17) has the following asymptoti
 representation:

µN (n) =
n∑

k=0

[ζN (k + 1) − b0ζN (k)] +
1√
N

n∑

k=0

ζ2
N (k)R(SN (k)) , n ≥ 0. (18)

Here

ζN (k) :=
√
N [SN (k) − ρ], k ≥ 0,

R(s) = g(s+ ρ) , b0 := 1 − gσ2 , σ2 = 1 − ρ2.
(19)

A

ording to Theorem 1 and relation (19), the nonlinear term in (19) 
on-

verges (in probability) to zero as N → ∞ for ea
h �nite n ≥ 0. Now the normal

approximation of martingale (17) - (19) is realized in the same manner as in

[1℄. First, we 
ompute the quadrati
 
hara
teristi
 of martingale (17)

〈µN 〉n =

n∑

k=0

B(SN (k)) , B(S) := 1 − C2(s) , n ≥ 0. (20)

Then, a

ording to Theorem 1, there is a limit (with probability 1)

〈µN 〉n ⇒ (n+ 1)σ2 , N → ∞ , n ≥ 0. (21)

However, a

ording to the 
entral limit theorem, the primary (linear) martin-

gale portion (18) 
onverges (in probability) to the sum of normally distributed

random variables.

The 
onvergen
e of the quadrati
 
hara
teristi
s (21) implies the 
onvergen
e

in probability of martingale-di�eren
es

µ0
N (n) :=

n∑

k=0

[ζN (k + 1) − (1 − gσ2)ζN (k)] ⇒ σ

n∑

k=0

W (k + 1). (22)

The limit normally distributed random variables W (k) , k ≥ 1 are mutually

independent with

EW (k) = 0 , EW 2(k) = 1 , k ≥ 1

be
ause the limit dispersion of martingale (21) is equal too sum of dispersions

of martingale-di�eren
es.
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The 
onvergen
e of the original martingale (17) means that there is the


onvergen
e (in probability) :

√
N [SN (k + 1) − C(SN (k))] ⇒ σW (k + 1), N → ∞ (23)

for ea
h �nite k ≥ 0. The proof of Theorem 2 in 
omplete. �

Corollary 1. The 
onvergen
e of the linear 
omponent of the martingale (18)

implies the 
onvergen
e (in probability)

ζN (k + 1) − (1 − gσ2)ζN (k) ⇒ σW (k + 1) , N → ∞. (24)

Proposition 2. The 
onvergen
e (24) serves as the basis to use approximation,

in the neighborhood of the equilibrium point ρ, of the original statisti
al experi-

ments with persistent regression (2) by the new pro
ess of normal autoregression

with linear regression fun
tion:

S̃0
N (k + 1) − ρ = (1 − gσ2)[S̃0

N (k) − ρ] +
σ√
N
W (k + 1), (25)

so that

S̃0
N (k + 1) = (1 − gσ2)S̃0

N (k) + gσ2ρ+
σ√
N
W (k + 1). (26)

The sto
hasti
 approximation by the normal pro
ess of autoregression (25)

- (26) (Proposition 2) for the linear regression fun
tion

C̃(s) = s− gσ2(s− ρ) (27)

has a stationary distribution, whi
h is given by the density of the normal dis-

tribution (see [2, item 5℄)

ρ(s) =
1

(σ̃2/N)
√

2π
exp[−(s− ρ)2/2σ̃2/N ]. (28)

σ̃2 = σ2/(1 − gσ2). (29)

4. Exponential statisti
al experiments: steady-state behavior

In many appli
ations in biology [2, 6℄ and e
onomi
s [7℄ important role is

played symmetri
 exponential statisti
s

ΠN (λ, k) :=

N∏

r=1

[1 + λδr(k)] , k ≥ 0. (30)

For example, if the sample values δr(k) , 1 ≤ r ≤ N , k ≥ 0 de�ne

su

ess rates δr(k)) = +1 or failure ones δr(k)) = −1 , then (31) sets the total

value of the interest rate in the k-th experiment. The parameter λ > 0 
an be


onsidered as a dis
ount fa
tor.

We 
onsider exponential statisti
al experiments (ESE) (30) in the series

s
heme with in
reasing sample size N → ∞.
The property of persistent regression (3) is 
onverted to the following form:

E[ΠN (λ, k + 1)|SN (k)] = [1 + λC(SN (k))]N . (31)
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Now we introdu
e the exponential martingale

µe
N (λ, k + 1) = ΠN (λ, k + 1)/ΠN (λ, k) , k ≥ 0. (32)

ΠN (λ, k) := [1 + λC(SN (k))]N , k ≥ 0. (33)

Its martingale property is obvious:

E[µe
N (λ, k + 1)|SN (k)] = 1 , k ≥ 0.

Steady state of SE is established by the following

Theorem 3. By the 
ondition of 
onvergen
e with probability 1 of the SE initial

values

SN (0) ⇒ ρ = p/(1 − a) , N → ∞, (34)

there is the 
onvergen
e in probability of ESE (31)

P · lim
N→∞

ΠN (λ/N, k) = exp(λρ) , k ≥ 0, (35)

and also the 
onvergen
e in probability of 
onditional expe
tations (32), (34)

P · lim
N→∞

ΠN (λ/N, k) = exp(λρ) , k ≥ 0. (36)

Corollary 2. Under the 
ondition (35) the following 
onvergen
e takes pla
e:

P · lim
N→∞

µe
N (λ/N, k) = 1. (37)

Proof of Theorem 3. We use the approximation formula of Le Cam in the

following form:

Lemma 2. (ñð. [5, Lemma 6.3.1℄) Assume that the 
onvergen
e in probability

takes pla
e:

max
1≤r≤N

|δr(k + 1)| ⇒ 0 , N → ∞ , k ≥ 0. (38)

Then there takes pla
e the 
onvergen
e in probability

P · lim
N→∞

{
N∑

r=1

ln[1 + λδr(k + 1)/N ] − λSN (k + 1)} = 0. (39)

The 
ondition (38) is obviously satis�ed for binary random variables δr(k +
1), 1 ≤ r ≤ N, k ≥ 0, taking two values ±1. In addition, by Theorem 1

SN (k + 1) ⇒ ρ , N → ∞.

Hen
e the 
onvergen
e (40) is equivalent to the 
onvergen
e:

P · lim
N→∞

{
N∑

r=1

ln[1 + λδr(k + 1)/N ] = λρ. (40)

We now use the obvious identity

∏
= exp ln

∏
.
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The 
onvergen
e (36) is equivalent to the 
onvergen
e in (40). Even easier to

establish the 
onvergen
e (37) using the relation

C(SN (k)) ⇒ ρ , N → ∞, k ≥ 0.

Theorem 3 is proved. The Corollary 1 is obvious.

5. Exponential statisti
al experiments: approximation by the

normal pro
ess of autoregression

The exponential statisti
al experiments (ESE) (31) with 
onditional ex-

pe
tation (32) are 
onsidered in the s
heme of series with series parameter

λN = λ/
√
N :

ΠN (λ/
√
N, k + 1) =

N∏

r=1

[1 + λδr(k + 1)/
√
N ] , k ≥ 0. (41)

However, the averaging of ESE in given by the relation:

ΠN (λ/
√
N, k) = [1 + λC(SN (k))/

√
N ]N , k ≥ 0. (42)

So that the 
orresponding exponential martingale has the form:

µe
N (λN , k + 1) := ΠN (λN , k + 1)/ΠN (λN , k) , k ≥ 0. (43)

The fundamental importan
e for the of ESE approximation has the following

Theorem 4. (ESE approximation) Under the 
onditions of Theorem 3 we have

the 
onvergen
e in probability

P · lim
N→∞

µe
N (λ/

√
N, k + 1) = exp[λσW (k + 1) − λ2σ2/2] , k ≥ 0, (44)

Remark 3. The exponential martingale in the series s
heme (44), given by

ESE (41), 
onverges (as N → ∞) to exponential normal martingale. It is

obvious that

E exp[λσW (k + 1) − λ2σ2/2] = 1 , k ≥ 0. (45)

Proof of Theorem 4. As in the proof of Theorem 3, we use Lemma approxi-

mation of Le Cam and the obvious identity Π = exp ln Π.

Lemma 3. (Le Cam approximation [5, Lemma 6.3.1℄) Assume that the 
on-

vergen
e in probability takes pla
e

max
1≤r≤N

|δr(k + 1)/N | ⇒ 0 , N → ∞,

and also the sums

VN (k) :=
1

N

N∑

r=1

(δr(k))
2

are bounded in probability. Then there takes pla
e the 
onvergen
e in probability

P · lim
N→∞

N∑

r=1

ln[1 + λδr(k)/
√
N ] − λ

√
NSN (k) + λ2VN (k)/2 = 0. (46)
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Note that in our 
ase VN (k) = 1. So the 
onvergen
e in Lemma 3 has the

following form:

P · lim
N→∞

N∑

r=1

ln[1 + λδr(k)/
√
N ] − λ

√
NSN (k) = −λ2/2. (47)

Note that ESE (42) is represented in the form:

ΠN (λ/
√
N, k + 1) = exp

N∑

r=1

ln[1 + λδr(k + 1)/
√
N ] , k ≥ 0. (48)

So that the 
onvergen
e (48) means

P · lim
N→∞

ΠN (λ/
√
N, k+1) exp[−λ

√
NSN (k+1)] = exp[−λ2/2] , k ≥ 0. (49)

Similarly, the 
onditions of Lemma 3 provide the 
onvergen
e in probability

(by N → ∞) of the averaged ESE:

P · lim
N→∞

ΠN (λ/
√
N, k) exp[−λ

√
NC(SN (k))] = exp[−λ2ρ2/2] , k ≥ 0. (50)

We should use the Theorem 1, a

ording to whi
h

C(SN (k)) ⇒ C(ρ) = ρ = p/(1 − a) , N → ∞ , k ≥ 0.

Now we introdu
ed the 
entered ESE:

Π0
N (λ/

√
N, k + 1) := ΠN (λ/

√
N, k + 1) exp[−λ

√
NSN (k + 1)] , k ≥ 0, (51)

Π0
N (λ/

√
N, k) := ΠN (λ/

√
N, k) exp[−λ

√
NC(SN (k))] , k ≥ 0. (52)

By Theorem 2, there is 
onvergen
e (in probability):

√
N [SN (k + 1) − C(SN(k))] ⇒ σW (k + 1), N → ∞ , k ≥ 0. (53)

So that the exponential martingale (44) is represented in the following form:

µe
N (λ/

√
N,k + 1) =

[
Π0

N (λ/
√
N, k + 1) / Π0

N (λ/
√
N, k)

]
×

× exp{λ
√
N [SN (k + 1) −C(SN (k))]} , k ≥ 0.

(54)

Using the the relations (50) - (53), taking into a

ount the relations σ2 = 1−ρ2
,

we get the assertion (45).

Theorem 4 is proved. ✷

We now rewrite the approximations (51) and (45) in the original series s
heme

with the series parameter λN = λ/N :

ΠN (λ/N, k) exp[−λC(SN (k))] = exp(λ2ρ2/2N)eRN , k ≥ 0, (55)

µe
N (λ/N, k + 1) = exp[λ(σ/

√
N)W (k + 1) − λ2σ2/2N ]eRN . (56)

Here the residual term RN = o(1/N), n→ ∞.
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Hen
e the normalized ESE (31) admit the following approximation:

ΠN (λ/N, k + 1) = exp[λC(SN (k)) − λ2ρ2/2N ]×
× exp[λ(σ/

√
N)W (k + 1) − λ2σ2/2N ]eRN .

(57)

The approximation of the ESE (57) serves as a basis the following statement.

Proposition 3. The exponential statisti
al experiments (31) 
an be approxi-

mated by an exponential pro
ess of autoregression

Π̃N (λ/N, k + 1) :=
N∏

r=1

[1 + λδ̃r(k + 1)/N ] =

= exp[λC(S̃N (k)) − λ2ρ2/2N ] · exp[λ(σ/
√
N)W (k + 1) − λ2σ2/2N ],

(58)

Here by de�nition

S̃N (k) :=
1

N

N∑

r=1

δ̃r(k), k ≥ 0.

Remark 4. An important basis for the appli
ation of approximation (58) is the

fa
t that the 
onditional expe
tations asymptoti
ally 
oin
ides with the regres-

sion fun
tion (
onditional expe
tation) of the original ESE (30), namely (
f.

(58)):

E

[
N∏

r=1

[1 + λδ̃r(k + 1)/N ]|S̃N (k)

]
= exp[λC(S̃N (k)) − λ2ρ2/2N ]eRN . (59)
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