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�åçþìå. Â äàíié ñòàòòi ðîçðîáëåíî òåîðiþ ñòðóêòóðíèé ïåðåòâîðåíü

ñèñòåì çâè÷àéíèõ äè�åðåíöiàëüíèõ ðiâíÿíü (ÇÄ�) äðóãîãî ïîðÿäêó, ÿêi

çáåðiãàþòü âëàñòèâiñòü ñòiéêîñòi çà Ëÿïóíîâèì. Îñîáëèâó óâàãó ïðèäiëå-

íî òàêèì ïåðåòâîðåííÿì, ÿêi ïðèâîäÿòü çàäàíó ñèñòåìó ÇÄ� äî ñïåöiàëü-

íîãî ñèìåòðè÷íîãî âèäó, áiëüø çðó÷íîãî ïðè äîñëiäæåííi ñòiéêîñòi íóëüî-

âîãî ðîçâ'çêó òàêèõ ñèñòåì. Îêðåìî ðîçãëÿíóòî âèïàäêè àâòîíîìíèõ òà

íåàâòîíîìíèõ ñèñòåì. Îñíîâíà òåîðåìà äàíî¨ ñòàòòi ñóòò¹âî óçàãàëüíþ¹

âñi âiäîìi ðåçóëüòàòè â îáëàñòi ñòðóêòóðíèõ ïåðåòâîðåíü ñèñòåì ÇÄ� òà

ìîæå ðîçãëÿäàòèñÿ ÿê àíàëîã âiäîìî¨ òåîðåìè �ðóãiíà ïðî ñèñòåìè ïåð-

øîãî ïîðÿäêó. Çàçíà÷åíà òåîðåìà äîçâîëèëà íàì óçàãàëüíèòè 3-òþ òà 4-

òó òåîðåìè Êåëüâiíà-Òåòà-×åòà¹âà. Îäåðæàíi òåîðåòè÷íi ðåçóëüòàòè áóëè

óñïiøíî çàñòîñîâàíi ïðè äîñëiäæåííi ñòiéêîñòi îáåðòàëüíîãî ðóõó æîðñò-

êîãî òiëà ïiäâiøåíîãî íà ñòðóíi.

Abstrat. In the paper we have developed a theory of stability preserving

strutural transformations (SPST) of systems of seond-order ordinary di�er-

ential equations (ODEs), i.e., the transformations whih preserve the property

of Lyapunov stability. Speial attention is paid to those SPST, whih an re-

due a given system of ODEs to several speial symmetri forms that are more

approahable for the existing methods of stability investigation than the �non-

symmetri� ones. The autonomous and non-autonomous ases were disussed

separately. The main Theorem proved in the paper essentially generalizes all

the known theoretial results related to the SPST of systems of seond-order

ODEs and an be viewed as an analogous of the Erugin's theorem for the sys-

tems of seond-order ODEs. The Theorem allowed us to generalize the 3-rd

and 4-th Kelvin � Tait � Chetayev theorems. The obtained theoretial results

were suessfully applied to the stability investigation of the rotary motion of

a rigid body suspended on a string.

MSC 2010: 74H55, 34D20, 37N15

1. Introdution

It is well known that a great number of dynamial systems an be approxi-

mately desribed by the following system of seond-order ordinary di�erential

equations (ODEs):

J (t) ẍ (t) + (D (t) +G (t)) ẋ (t) + (P (t) + Π (t))x (t) =F (t,x (t)) ,

t ∈ [t0,∞)
(1)

Key words. Kelvin � Tait � Chetayev theorems, null solution, stability in the sense of Lya-

punov, Lyapunov's seond method for stability, Lyapunov transformation, Lyapunov matrix.
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where x (t) = col [x1 (t) , x2 (t) , . . . , xm (t)] is an unknown vetor-funtion.

From the physial point of view the matrix J (t) = JT (t) > 0 (the upper index

T denotes the operation of transposition) desribes the inertia harateristis

of a dynamial system; the matries D (t) = DT (t) , G (t) = −GT (t) , P (t) =
−P T (t) and Π(t) = ΠT (t) represent a dissipative, gyrosopi, non-onservative
positional and potential fores respetively; the vetor-funtion F (t,x (t))1 rep-
resents an external fores ating on the system.

Let us onsider a linear one-to-one mapping L−1(t), whih maps the unknown

vetor-funtion x(t) to some other m-dimensional unknown vetor-funtion

ξ(t). If the inverse mapping, L(t), is su�iently smooth then it an be viewed as

a strutural transformation

2

of system (1). Indeed, substituting vetor x(t) in
system (1) with expression L(t)ξ(t) we an get a transformed seond-order sys-

tem of ODEs with respet to the unknown vetor-funtion ξ(t). In the present

paper we on�ne ourselves to study only those transformations (or mappings)

L, whih do not hange the stability properties of the null solution of system

(1). We will all them the stability preserving strutural transformations.

By �stability properties� of a null solution we mean the properties of being

unstable, stable or asymptotially stable in the sense of Lyapunov.

De�nition 1. The null solution, x0(t) ≡ 0, of system (1) is alled stable

(in the sense of Lyapunov) if ∀ε > 0 there exists δ = δ(ε) > 0, suh that

‖xδ(t)‖ < ε, ∀t ∈ [t0,+∞), where xδ(t) represents any solution of system (1)

whih satis�es initial ondition ‖xδ(t0)‖ < δ.
The null solution is alled asymptotially stable (in the sense of Lyapunov)

if it is stable and lim
t→+∞

‖xδ(t)‖ = 0.

The null solution is alled unstable (in the sense of Lyapunov) if it is not

stable.

As an example of stability preserving strutural transformations we an men-

tion the Lyapunov transformations (see [1, p. 117℄) though those are not the

only stability preserving transformations onsidered in the present paper (see

setion 2 for more detail).

De�nition 2 (see [1℄, p. 117). A square matrix L(t) will be alled a Lyapunov

matrix if it satis�es the following onditions :

1. L(t) has ontinuous derivative dL(t)
dt on some interval [t0,+∞);

2. matries L(t) and dL(t)
dt are bounded on the interval [t0,+∞);

3. there exists a onstant η suh that 0 < η < |det(L(t))|, ∀t ∈ [t0,∞).

A transformation x(t) = L(t)ξ(t) will be alled a Lyapunov transformation if

the matrix L(t) is a Lyapunov matrix.

The above lassi de�nition is useful only for the ase of �rst-order systems.

To adapt it for the ase of seond-order systems we will additionally require

that the Lyapunov matrix L(t) has ontinuous seond derivative on [t0,+∞).

1

We assume that ∀t1 ∈ [t0, +∞), lim
‖x‖→0

‖F (t1,x)‖/‖x‖ = 0.

2

In the next setion we will give a thorough de�nition of "strutural transformation" and

here we are going to give a general idea.
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As it was pointed out by V. N. Koshlyakov in [2℄, when the gyrosopi terms

in system (1) are periodi in t with some period τ > 0 then the formal ap-

pliation of the averaging method to the system ould result in the disarding

of gyrosopi strutures though this strutures had some stabilizing e�et on

the system before averaging. Thus, it is very desirable to have a theoretial

framework whih allows us to transform the initial system into a system that

possess the same stability properties and ontain no gyrosopi strutures. In

[2℄ the author has onsidered a ase when J(t) = a0E,
3 a0 > 0. He showed that

the transformation x(t) = L(t)ξ(t), with matrix L(t) that satis�es the Cauhy

problem L̇(t) = −(2a0)
−1G(t)L(t), L(t0) = E, will redue system (1) to a

system whih does not ontain gyrosopi strutures. He also proved that the

transformation mentioned above is a Lyapunov transformation, i.e., it preserves

stability properties of system (1). Furthermore, V. N. Koshlyakov showed that

in some real physial ases the redued system ould be so simple that its

general solution an be easily found expliitly.

However, V. N. Koshlyakov was not the �rst one who pointed out the pra-

tial bene�ts of using stability preserving transformations. Almost twenty �ve

years earlier D. L. Mingori did this.

In [3℄ D. L. Mingori has onsidered a ase when system (1) is autonomous,

that is,

Jẍ(t) + (D +G) ẋ(t) + (P + Π)x(t) = 04, (2)

where x = col [x1 (t) , x2 (t) , . . . , xm (t)] is an unknown vetor; here again the

matrix J = JT > 0 desribes the inertia harateristis of the dynamial system

and matries D = DT , G = −GT , Π = ΠT , P = −P T
represent a dissipa-

tive, gyrosopi, non-onservative positional and potential fores respetively.

D. L. Mingori proved that under some restritions imposed on the matrix o-

e�ients of system (2) there exists a Lyapunov transformation

x(t) = J− 1
2L(t)ξ(t) (3)

that an redue autonomous system (2) to another autonomous system

ξ̈ (t) + V ξ̇ (t) +Wξ (t) = 0 (4)

whih does not ontain nononservative positional strutures, i.e, W = W T
.

Sine the matrix L(t) is a Lyapunov matrix, the null solutions of systems (2)

and (4) are stable, asymptotially stable or unstable simultaneously. On the

other hand, beause of the symmetrial properties of system (4) the stability

investigation of its null solution is an easier task than the stability investigation

of the null solution of system (2).

Thereby in [3℄ D. L. Mingori had suggested an approah to the stability in-

vestigation of the seond-order systems of ODEs (2) whih onsists of reduing

the initial problem to the problem of stability investigation of the orrespond-

ing equivalent (in the sense of Lyapunov, see [1, p. 118℄) symmetri system

(4). He has shown that suh approah an be very useful and fruitful for the

3E denotes the identity matrix of orresponding order.

4

For the sake of simplisity the vetor funtion of external fores was not taken into aount.
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stability investigation in analytial mehanis. However, in [3℄ the author has

onsidered the ase when D > 0 only. Though in [4℄ the results of D. L. Mingori

were extended on the ase when D ≥ 0, the neessary and su�ient onditions

providing that a given non-symmetri seond-order system of ODEs is equiva-

lent in the sense of Lyapunov to some symmetri seond-order system remains

unknown: both papers [3℄ and [4℄ ontain the su�ient onditions only.

Later the neessary and su�ient onditions providing that the autonomous

system (2) an be redued to some other autonomous system (4) withW1 = W T
1

via substitution (3) were found in papers [5℄ and [6℄. However, the results of

these papers were obtained under additional assumptions that

G = HĜ,

dL (t)

dH
= 0,∀t ≥ 0, (5)

D > 0, det (G) 6= 0,

where H denotes a positive numerial parameter.

In some ases the parameter H an be a part of matrix Π. This will be the
ase when equation (2) desribes a perturbed motion of a gyrosopi systems

installed on the platform whih rotates around the vertial with the angular

veloity ω. Using assumptions (5) and assuming that Π = Π(0) +HΠ(H), where
matries Π(0),Π(H)

are independent on H, the neessary and su�ient ondi-

tions providing the reduibility of system (2) to some other system (4) with

W1 = W T
1 where obtained in [7℄.

One of the ommon features of the series of works [3, 4, 5, 6, 7, 8, 9℄ is that

their authors inluded the ommutation of the matries D and P into a set

of onditions whih provide the reduibility of system (2) to system (4) with

W1 = W T
1 . As it is show in Setion 4 (see Example 1) this ommutativity

ondition is not the neessary one

5

and in the present paper we �nally got rid

of it.

In the present paper without any additional assumptions we have obtained

the neessary and su�ient onditions (in terms of the matrix oe�ients)

providing that a given system of seond-order ODEs is equivalent in the sense of

Lyapunov to some other system of seond-order ODEs with symmetri matrix

oe�ients. We have onsidered both the autonomous and non-autonomous

ases. In the ase when the initial system is autonomous we require that the

redued system be autonomous too.

The paper is organized as follows.

In Setion 2 we introdue the notion of the strutural transformation of a sys-

tem of seond-order ODEs and give the de�nition of the Lk-equivalent systems

of seond-order ODEs. Using the notion of the Lk-equivalene we formulate

two symmetrization problems for the non-autonomous systems of seond-order

ODEs: the problem of Elimination of Gyrosopi Strutures (EGS problem) and

the problem of Elimination of Non-onservative Positional Strutures (ENPS

5

We mean the ase when there are no additional restritions as, for example, those that

were introdued in [5℄, [6℄, [7℄.
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problem). In the setion the neessary and su�ient onditions providing the

solvability of the both problems were obtained.

In Setion 3 we reformulate the EGS and ENPS problems for the ase of

the autonomous systems and introdue the notion of the L-equivalene of two
autonomous systems of seond-order ODEs. Theorem 6 proved in the setion

an be onsidered as an analogous of the Erugin's theorem (see [1, p. 121℄)

for the autonomous systems of seond-order ODEs. Some useful onsequenes

from Theorem 6 are stated in Setion 5. Among them there is a theorem whih

generalizes the theorems of Mingori (see [3℄) and M�uller (see [4℄).

In Setion 5 we disuss the question of the interonnetion between the no-

tions of the Lk-equivalene and equivalene in the sense of Lyapunov.

In Setion 6 we demonstrate how the using of strutural transformations

an failitate the stability investigation of the null solution of the autonomous

seond-order system of ODEs desribing the rotary motion of a rigid body

suspended on a string.

Setion 7 ontains several onlusions about the theoretial results presented

in the paper.

2. Stability preserving strutural transformations of the

non-autonomous systems of seond-order ODEs

Let us onsider the following system of seond-order ordinary di�erential

equations:

ẍ +A (t) ẋ +B (t)x = 0, (6)

where x = −→x (t) = [x1 (t) , . . . , xm (t)]T is an unknown vetor-funtion. By de-

fault, we assume that A (t) , B (t) are square matries of orderm whose elements

are ontinuous on [t0,+∞) funtions, i.e., A (t) , B (t) ∈Mm (C [t0,+∞)) . Also
we will use the notation Mm

(
Ci [t0,+∞)

)
, i = 1, 2 to denote the linear spaes

of square matries of order m whose elements belong to the funtional spae

Ci [t0,+∞) , i = 1, 2, and the notation Mm,n(R) will be used to denote the

spae of onstant real matries of dimension m× n.

De�nition 3. The strutural transformation of the seond-order system of

ordinary di�erential equations (6) is the transformation of unknown vetor x

whih an be expressed in the form

x = L (t) ξ, (7)

where ξ = [ξ1 (t) , . . . , ξm (t)]T is a new unknown vetor-funtion,

L (t) ∈Mm

(
C2 [t0,+∞)

)
, det (L (t)) 6= 0, ∀t ∈ [t0,+∞) .

Applying transformation (7) to system (6) we obtain the following system of

seond-order ordinary di�erential equations:

L (t) ξ̈ (t) +
(
2L̇ (t) +A (t)L (t)

)
ξ̇ (t) + (8)

+
(
L̈ (t) +A (t) L̇ (t) +B (t)L (t)

)
ξ (t) = 0,
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or , in more onvenient form,

ξ̈ + V (t) ξ̇ +W (t) ξ = 0, (9)

where

V (t) = L−1 (t)
(
2L̇ (t) +A (t)L (t)

)
,

W (t) = L−1 (t)
(
L̈ (t) +A (t) L̇ (t) +B (t)L (t)

)
.

(10)

Apparently we have that V (t) ,W (t) ∈ Mm (C [t0,+∞)) . Therefore, apply-
ing transformation (7) to system (6) with ontinuous on [t0,+∞) matrix o-

e�ients, we arrive at system (9) that also possesses ontinuous on [t0,+∞)
matrix oe�ients.

De�nition 4. We say that the system of seond-order ODEs (6)

is Lk-equivalent to system (9) (k ∈ {0, 1, 2}) if there exists a matrix L (t) ∈
Mm

(
C2 [t0,+∞)

)
satisfying onditions

1. |det (L (t))| > η > 0, ∀t ∈ [t0,+∞) ,

2. sup
t∈[t0,+∞)

∥∥∥∥
di

dti
L (t)

∥∥∥∥ < +∞, ∀i ∈ 0, k,

together with equalities (10). A matrix L (t) ∈ Mm

(
C2 [t0,+∞)

)
whih satis-

�es onditions 1, 2 for some k ∈ {0, 1, 2} is alled an Lk-matrix.

Aording to the de�nition given in [10, p. 353℄, a matrix L(t) ∈
Mm(C1[t0,+∞)) whih satis�es onditions 1, 2 for k = 0, is alled a regular

on [t0,+∞) matrix. Transformation (7), where L (t) is an L2-matrix an also

be referened to as a Lyapunov transformation of system of seond-order ODEs

(ompare with the de�nition of a Lyapunov transformation form [1, p. 117℄).

Let us onsider the following symmetrization problems for the given system

of seond-order ODEs (6):

1. the problem of Elimination of Gyrosopi Strutures (EGS problem)

whih onsists in �nding an Lk-matrix L (t) (k = 0, 1, 2) together with
matries V (t) ,W (t) ∈ Mm (C [t0,+∞)) , V (t) = V T (t) , suh that

equalities (10) hold true ∀t ∈ [t0,+∞) ;
2. the problem of Elimination of Non-onservative Positional Strutures

(ENPS problem) whih onsists in �nding an Lk-matrix L (t) (k =
0, 1, 2) together with matries V (t) ,W (t) ∈ Mm (C [t0,+∞)) , W (t) =
W T (t) , suh that equalities (10) hold true ∀t ∈ [t0,+∞) .

If the matries L (t) , V (t) ,W (t) mentioned in items 1 and/or 2 exist then we

say that the EGS and/or ENPS problems for system (6) an be solved by means

of Lk-transformation.

Both symmetrization problems an be stated in terms of the Lk-equivalene

in the following way:

1. to �nd a system (9) with V (t) = V T (t) whih is Lk-equivalent to the

given system (6) (EGS problem);

2. to �nd a system (9) with W (t) = W T (t) whih is Lk-equivalent to the

given system (6) (ENPS problem).
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Let us �nd the neessary and su�ient onditions (in terms of matries

A (t) , B (t)) providing the solvability of the EGS and/or ENPS problems for

the given system (6), or, in other words, the neessary and su�ient onditions

providing that system (6) is Lk-equivalent to some system (9) with V (t) =
V T (t) and/or W (t) = W T (t) for some k = 0, 1, 2.

Supposing that the matrix oe�ient in front of the vetor-funtion ξ̇ in

system (9) is symmetri (i.e., there is no gyrosopi strutures), we arrive at the

following matrix di�erential equation with respet to the unknown Lk-matrix

L (t):

2
(
L̇ (t)LT (t) − L (t) L̇T (t)

)
+A (t)L (t)LT (t)−L (t)LT (t)AT (t) = 0. (11)

Similarly to that, assuming that the matrix oe�ient in front of the vetor-

funtion ξ in system (9) is symmetri (i.e., there is no non-onservative posi-

tional strutures) we arrive at the equation

L̈ (t)LT (t) − L (t) L̈T (t) +A (t) L̇ (t)LT (t)−

−L (t) L̇T (t)AT (t) +B (t)L (t)LT (t) − L (t)LT (t)BT (t) = 0.

(12)

It is easy to verify that there exists a unique pair of matries K(t), S(t),
suh that

L̇LT = L̇ (t)LT (t) = K (t)+S (t) , K (t) = −KT (t) , S (t) = ST (t) . (13)

If matrix L (t) is an Lk-matrix (k = 0, 1, 2) then matries K (t) and S (t) (13)
belongs to Mm(C1[t0,+∞)). It is easy to see that

d

dt

(
L (t)LT (t)

)
= L̇ (t)LT (t) + L (t) L̇T (t) = 2S (t) , (14)

and

L (t)LT (t) = 2

t∫

t0

S (ν) dν + S0, L (t0)L
T (t0) = S0 = ST

0 > 0. (15)

Taking into aount equalities (13), (15), we an rewrite equations (11) and

(12) in the form of

4K (t) +A (t)

(
2

t∫
t0

S (ν) dν + S0

)
−
(

2
t∫

t0

S (ν) dν + S0

)
AT (t) = 0

(16)

and

2K̇ (t) +A (t) (S (t) +K (t)) − (S (t) −K (t))AT (t)+

+B (t)

(
t∫

t0

2S (ν) dν + S0

)
−
(

t∫
t0

2S (ν) dν + S0

)
BT (t) = 0

(17)

respetively. What are the neessary and su�ient requirements whih have

to be imposed on the matries K (t) and S (t) to provide the existene of an

Lk-matrix L (t) whih satis�es equality (13)? The answer to this question is

given by the following theorem.
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Theorem 1. A regular on [t0,+∞) matrix L (t) whih satis�es equality (13)

exists if and only if the matries K (t) , S (t) belong to Mm (C [t0,+∞)) and

satisfy the following inequalities:

∣∣∣∣2
t∫

t0

Tr (S (ν)) dν + Tr (S0)

∣∣∣∣ ≤ µ2,∀t ∈ [t0,+∞) , (18)

det

(
2

t∫

t0

S (ν) dν + S0

)
≥ η2,∀t ∈ [t0,+∞) (19)

for some onstants µ > 0, η > 0 and real valued positive de�nite symmetri

matrix S0 ∈Mm (R) .

Proof. Neessity. Suppose that there exists a matrix L (t) whih belongs to

Mm

(
C1 [t0,+∞)

)
and satis�es equality (13) together with inequalities

‖L (t)‖F ≤ µ, ∀t ∈ [t0,+∞) 6, (20)

|det (L (t))| ≥ η, ∀t ∈ [t0,+∞) , (21)

for some onstants µ > 0, η > 0. It easy to see that the matries K (t) , S (t)
appearing in (13) belong to Mm (C [t0,+∞)) , and the neessity of onditions

(18), (19) immediately follows from (15). The neessity in the theorem is

proved.

Su�ieny . Suppose that K (t) , S (t) ∈ Mm(C[t0,+∞)), K(t) = −KT (t),
S(t) = ST (t) and inequalities (18), (19) hold true for some onstants µ >
0, η > 0 and some positive de�nite symmetri matrix S0. Assuming that the

matrix L = L (t) satis�es equality (13) ∀t ∈ [t0,+∞) together with the initial

ondition

L (t0) = L0, L0L
T
0 = S0, (22)

we arrive at the onlusion that equality (15) together with inequality (18)

imply inequality (20) as well as inequality (19) implies inequality (21).

Let us prove that the solution L = L (t) to the Cauhy problem (13), (22)

supplemented with onditions (18), (19) exists and is unique on [t0, T ] for any
arbitrary T > t0. If we denote by λi, i = 1, 2, . . . ,m the asending ordered

eigenvalues of matrix S0, that is, 0 < λ1 ≤ λ2 ≤ . . . ≤ λm, then inequality (18)

implies that

λm ≤
m∑

i=1

λi = Tr (S0) ≤ µ2. (23)

Taking into aount inequality (23) we an obtain from inequality (19) the

estimate

λ1 =
det (S0)

λ2 . . . λm
≥ η2

µ2(m−1)

6

Here ‖A‖
F
denotes the Frobenius norm of matrix A, that is, ‖A‖

F
=
√

Tr(AAT ).
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whih leads us to the inequality

∥∥L−1
0

∥∥2

E
= Tr

(
S−1

0

)
≤ m

λ1
≤ mµ2(m−1)

η2
= κ2.

Sine det(L(t)) 6= 0, ∀t ∈ [t0,+∞), equality (13) an be rewritten in the form

of

L̇ = F (t, L) = (S (t) +K (t))
(
L−1

)T
. (24)

Now we intend to show that the matrix-valued funtion F (t, L) satis�es on-

ditions of the Piard-�Lindel�of theorem (see, for example, [11, p. 8℄) in the

retangle

P =

{
(t, L) ∈ R×Mm (R) : t0 ≤ t ≤ T,

∥∥∥∥L− L0

∥∥∥∥
E

≤ δ

κ
, 0 < δ < 1

}
. (25)

Taking into aount that the elements of matrix-funtions S (t) and K (t) are
ontinuous on [t0,+∞), it remains only to show that the matrix-valued funtion

F (t, L) is Lipshitz-ontinuous on P (25) with respet to its seond argument

L. This fat follows from the following inequalities, whih are valid for any

matries Li ∈Mm (R) , i = 1, 2, suh that ‖Li − L0‖E ≤ δ

κ
:

∥∥L−1
1 − L−1

2

∥∥
E

=
∥∥∥(L1 − L0 + L0)

−1 − (L2 − L0 + L0)
−1
∥∥∥

E
=

=
∥∥∥L−1

0

(
(L1 − L0)L

−1
0 +E

)−1 − L−1
0

(
(L2 − L0)L

−1
0 + E

)−1
∥∥∥

E
=

=

∥∥∥∥∥L
−1
0

( ∞∑

i=0

(−1)i
(
(L1 − L0)L

−1
0

)i
−

∞∑

i=0

(−1)i
(
(L2 − L0)L

−1
0

)i
)∥∥∥∥∥

E

=

=

∥∥∥∥∥L
−1
0

( ∞∑

i=1

(−1)i
((

(L1 − L0)L
−1
0

)i
−
(
(L2 − L0)L

−1
0

)i
))∥∥∥∥∥

E

≤

≤
∥∥L−1

0

∥∥
E

∞∑

i=1




i∑

j=1

‖L1 − L0‖i−j
E ‖L1 − L2‖E ‖L2 − L0‖j−1

E

∥∥L−1
0

∥∥i

E


 =

=
∥∥L−1

0

∥∥2

E
‖L1 − L2‖E

∞∑

i=1




i∑

j=1

‖L1 − L0‖i−j
E ‖L0 − L2‖j−1

E

∥∥L−1
0

∥∥i−1

E


 ≤

≤ ‖L1 − L2‖E κ
2

∞∑

i=1

iδi−1 =
κ2

(1 − δ)2
‖L1 − L2‖E . (26)

In the above formula we have used the equality (see, for example, [12, p. 113℄)

(A+ E)−1 =

∞∑

i=0

(−1)iAi, ∀A ∈Mm (R) , ‖A‖ < 1,

and the evident identity

An −Bn =
n∑

i=1

An−i (A−B)Bi−1, ∀A,B ∈Mm (R) , n = 1, 2, . . . .
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Using (26) we an estimate the norm of F (t, L) on the retangle P (25) in the

following way:

max
‖L−L0‖E≤ δ

κ

∥∥∥
(
L−1

)T∥∥∥
E

= max
‖L−L0‖E≤ δ

κ

∥∥L−1 − L−1
0 + L−1

0

∥∥
E
≤

≤ κ2

(1 − δ)2
max

‖L−L0‖E≤ δ
κ

‖L− L0‖E +
∥∥L−1

0

∥∥
E
≤ κδ

(1 − δ)2
+ κ,

max
(t,L)∈Π

‖F (t, L)‖E ≤ max
t∈[t0,T ]

‖K (t) + S (t)‖E max
‖L−L0‖E≤ δ

κ

∥∥∥
(
L−1

)T∥∥∥
E

= FP.

Thus, the onditions of the Piard�Lindel�of theorem are satis�ed and the

solution of the Cauhy problem (22), (24) exists at least on the interval Ih =

[t0, h] , where h = min

{
T,

δ

κFP

}
. If h = T then the theorem is proved. Oth-

erwise, if h < T then, applying the same reasoning as above to equation (24)

with the initial ondition Lh = L (h) , we arrive at the onlusion that the so-

lution to the Cauhy problem (22), (24) exists at least on the interval [t0, 2h] .
Apparently, after a �nite number of iterations we will prove that the solution

exists on [t0, T ] . From the arbitrariness of T it follows that the solution to the

Cauhy problem (22), (24) exists on [t0,+∞) . The theorem is proved.

It is not hard to verify that the matrix K (t) +S (t) where K (t) = −KT (t),
S (t) = ST (t) is bounded on [t0,+∞] and/or belongs to Mm(Ck[t0,+∞)) if

and only if both of the two matries K(t) and S(t) are bounded on [t0,+∞)
and/or belong to Mm(Ck[t0,+∞)). Taking this fat into aount and using

Theorem 1 we an make several onlusions stated below.

Corollary 3. An Lk-matrix L (t) (k = 1, 2) satisfying equality (13) exists if

and only if K (t) , S (t) ∈ Mm

(
C1 [t0,+∞)

)
and the following onditions hold

true:

1. there exist onstants µ > 0, η > 0 and matrix S0 ∈Mm (R) , S0 = ST
0 > 0

satisfying inequalities (18), (19);

2. sup
t∈[t0,+∞)

∥∥∥∥
di

dti
K (t)

∥∥∥∥+ sup
t∈[t0,+∞)

∥∥∥∥
di

dti
S (t)

∥∥∥∥ < +∞, ∀i ∈ 0, k − 1.

Equation (16) and Corollary 3 imply the following theorem.

Theorem 2. The given system of seond-order ODEs (6) with A (t) ∈
Mm

(
C1 [t0,+∞)

)
is Lk-equivalent (k = 0, 1, 2) to some system (9) with

V (t) = V T (t) if and only if there exist the symmetri matries S (t) ∈
Mm

(
C1 [t0,+∞)

)
, S0 ∈ Mm (R) , S0 > 0 whih de�ne the skew-symmetri

matrix K (t)

4K (t) = Λ (t)AT (t) −A (t) Λ (t) , Λ (t) = 2

t∫

t0

S (ν) dν + S0, (27)

and satisfy onditions

1. (18), (19) for some onstants µ > 0, η > 0;
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2. sup
t∈[t0,+∞)

∥∥∥∥
di

dti
K (t)

∥∥∥∥+ sup
t∈[t0,+∞)

∥∥∥∥
di

dti
S (t)

∥∥∥∥ < +∞, ∀i ∈ 0, k − 1, (k 6= 0)7.

From Theorem 2 we obtain the following orollary.

Corollary 4. The given system of seond-order ODEs (6) with A (t) ∈
Mm

(
C1 [t0,+∞)

)
is always L0-equivalent to some system (9) with V (t) =

V T (t) .

From equation (17) and Corollary 3 we an easily obtain the theorem whih

gives the neessary and su�ient onditions for solvability of the ENPS prob-

lem.

Theorem 3. The given system of seond-order ODEs (6) is Lk-equivalent (k =
0, 1, 2) to some system (9) with W (t) = W T (t) if and only if there exist the

symmetri matries S (t) ∈ Mm

(
C1 [t0,+∞)

)
, S0 ∈ Mm (R) , S0 > 0 and the

skew-symmetri matrix K (t) whih satis�es the matrix di�erential equation

2K̇ (t) +A (t)K (t) +K (t)AT (t) +A (t)S (t)

−S (t)AT (t) +B (t) Λ (t) − Λ (t)BT (t) = 0,

Λ (t) = 2
t∫

t0

S (ν) dν + S0,

(28)

and onditions 1, 2 of Theorem 2.

It is worth to emphasize that for any initial ondition K (t0) = K0 = −KT
0 ∈

Mm (R) the solution K (t) to the matrix di�erential equation (28) is a skew-

symmetri matrix. Indeed, if we sum up equation (28) with the transposed

equation (28) we obtain the Cauhy problem

2Ṅ (t) +A (t)N (t) +N (t)AT (t) = 0,

N (t) = K (t) +KT (t) , N (0) = 0.
(29)

It is easy to see that the onditions of the Piard-�Lindel�of theorem for the

Cauhy problem (29) are ful�lled and its solution N(t) exists and is unique on

[t0,+∞) . Therefore, the problem has the trivial solution only, that is, N (t) =
0, ∀t ∈ [t0,+∞) and K (t) = −KT (t) , ∀t ∈ [t0,+∞) . Suh onlusion an

also be obtained from the analysis of the analytial expression for the general

solution K (t) of equation (28) (see, for example, [13, p. 188℄).

From Theorem 3 we an easily obtain the orollary.

Corollary 5. The given system of seond-order ODEs (6) is always

L0-equivalent to some other system (9) with W (t) = W T (t) .

Combining Theorems 4 and 2 we arrive at the following one.

7

In the ase when k = 0 ondition 2 should be negleted.
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Theorem 4. The given system of seond-order ODEs (6) with A (t) ∈
Mm

(
C1 [t0,+∞)

)
is Lk-equivalent (k = 0, 1, 2) to some system (9) with V (t) =

V T (t) , W (t) = W T (t) if and only if there exist the symmetri matries S (t) ∈
Mm

(
C1 [t0,+∞)

)
, S0 ∈ Mm (R) , S0 > 0 whih de�ne the skew-symmetri

matrix K (t) (27) and satisfy onditions 1, 2 of Theorem 2 together with equality

Λ (t)MT (t) = M (t)Λ (t) , ∀t ∈ [t0,+∞) ,

M (t) =
1

2

d

dt
A (t) +

1

4
A2 (t) −B (t) , Λ (t) = 2

t∫
t0

S (ν) dν + S0.
(30)

Condition (30) an be obtained as a result of substitution of the matrix K (t)
from equation (28) by its expression from (27).

Remark 1. Suppose that the onditions of at least one of the Theorems 2, 3 or

4 are ful�lled. Then eah suitable Lk-matrix L (t) an be found as the solution

to the matrix di�erential equation (13) supplemented with an initial ondition

L(t0) = L0 where L0 is an arbitrary matrix formMm(R), suh that L0L
T
0 = S0.

Additionally to that, the matrix oe�ients of the respetive symmetrized system

(9) an be found via formulas (10).

3. Stability preserving strutural transformations of the

autonomous systems of seond-order ODEs

Let us onsider the two systems of seond-order ordinary di�erential equa-

tions

ẍ +Aẋ +Bx = 0, A,B ∈Mm (R) , (31)

ξ̈ + V ξ̇ +Wξ = 0, V,W ∈Mm (R) . (32)

De�nition 5. We say that the given autonomous system (31) is L-equivalent
to system (32) if there exists a regular on [0,+∞) matrix L (t) (see de�nition
on p. 40) whih satis�es equalities

8

V = L−1 (t)
(
2L̇ (t) +AL (t)

)
,

W = L−1 (t)
(
L̈ (t) +AL̇ (t) +BL (t)

)
, ∀t ∈ [0,+∞) .

(33)

From the �rst equality of (33) we an easily obtain

L (2t) = exp (−At)C exp (V t) , C ∈Mm (R) . (34)

It is easy to see that if the matrix L (t) (34) is regular on [0,+∞) then it is

an Lk-matrix for k = 0, 1, 2. Hene, we an see that the notion of the Lk-

equivalene (k = 0, 1, 2) for two autonomous systems aording to de�nition 4

is tantamount to the notion of the L-equivalene aording to de�nition 5.

In this setion we onsider the following symmetrization problems for the

autonomous systems of seond-order ODEs (31):

8

Without loss of generality and for the sake of simpliity, in this setion we onsider the

segment [0, +∞) instead of [t0, +∞).
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1. to �nd an autonomous system (32) with V = V T
whih is L-equivalent

to the given system (31) (ompare with the EGS problem);

2. to �nd an autonomous system (32) with W = W T
whih is L-equivalent

to the given system (31) (ompare with the ENPS problem).

Let us �nd the neessary and su�ient requirements whih have to be im-

posed on matries A,B to provide the solvability of the EGS and/or ENPS

problems for autonomous system (31).

To proeed with this task we have to introdue several onvenient notations.

We will use the notation [A,B] to desribe a ommutator of two square matries

A and B, that is,

[A,B] = AB −BA.

Also, we will use the notation {A1A2 . . . An} to desribe a superposition of

ommutators, that is,

{A1A2} = [A1, A2], {A1A2 . . . An} = [{A1A2 . . . An−1}, An].

It is easy to ensure that the ommutators obey the following properties:

[AB,C] = [A,C]B, ∀A,B,C ∈Mm(R) : [B,C] = 0, (35)

[[A,B] , C] = [A, [B,C]] , ∀A,B,C ∈Mm(R) : [A,C] = 0. (36)

It is a well known fat that every matrix A ∈ Mm(R) an be expressed in the

form of

A = TA diag
[
λ1 (A)E(p1) +H(p1), . . . , λr (A)E(pr) +H(pr)

]
T−1

A , (37)

where

λk (A) = αk (A) + i βk (A) , αk (A) , βk (A) ∈ R, (38)

k = 1, 2, . . . , r denote the eigenvalues of matrix A; E(pk)
denotes the identity

matrix; all the elements of square matrix H(pk)
are zero exept those in the �rst

superdiagonal whih are equal to 1. The orders of square matries E(pk)
and

H(pk)
are equal to the power pk of the k-th elementary devisor of matrix A. The

matrix TA denotes some nonsingular matrix fromMm(R) (see, for example, [12,

p. 152℄).

Aording to formulas (37) and (38) we de�ne

AR = TA diag
[
α1 (A)E(p1) +H(p1), . . . , αr (A)E(pr) +H(pr)

]
T−1

A ,

AI = TA diag
[
i β1 (A)E(p1), . . . , i βr (A)E(pr)

]
T−1

A ,

(39)

then

A = AR +AI , ARAI = AIAR. (40)

Using the notion of real Jordan anonial form of a real matrix (see [14, p.

184℄) it is not hard to prove that if A ∈Mm (R) then AR, AI ∈Mm (R) .
Let us onsider a Jordan matrix (see, for example, [14, p. 150℄)

JR = diag [J1 (λ1) , . . . , Js (λs)] , (41)
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where Ji (λi) denotes a Jordan blok of size mi orresponding to the eigenvalue

λi ∈ R, i = 1, . . . , s. For the de�niteness we will use the assumption that

λi > λj, i < j,
s∑

i=1

mi = m. (42)

In the above formula mi denotes an algebrai multipliity of the eigenvalue λi

of matrix JR (see [14, p. 58℄). The following lemma holds true.

Lemma 1. Suppose that the matrix L(t) is de�ned by the formula

L(t) = exp (−JRt)Q exp (JRt) , t ≥ 0, (43)

where Q ∈Mm (R) . Matrix L(t) (43) is a regular on [0,+∞) matrix if and only

if the matrix Q possesses the following struture:

Q =




Q11 Q12 . . . Q1s

O21 Q22 . . . Q2s

. . . . . . . . . . . .
Os1 Os2 . . . Qss


 , (44)

where matries Qij ∈Mmimj
(R) satisfy the onditions

det (Qii) 6= 0,
[
J

(R)
i , Qii

]
= 0 (45)

and Oij denotes a zero-matrix of dimension mi ×mj, i, j = 1, 2, . . . , s.

Proof. Without loss of generality, we onsider the ase when s = 2, that is,
when the matrix JR has only two di�erent eigenvalues λ1, λ2 ∈ R, λ1 > λ2 of

the algebrai multipliities m1 ≥ 0 and m2 ≥ 0 respetively, m1 +m2 = m. Let

us denote

G1 = J1 (0) , G2 = J2 (0) . (46)

From formula (41), taking into aount notation (46), we obtain (see [12, p.

157℄)

exp (JRt) =diag

[
eλ1t

m1∑

i=0

1

i!
tiGi

1, e
λ2t

m2∑

i=0

1

i!
tiGi

2

]
,

exp (−JRt) = (exp (JRt))
−1 =

=diag

[
e−λ1t

m1∑

i=0

(−t)i
i!

Gi
1, e

−λ2t
m2∑

i=0

(−t)i
i!

Gi
2

]
.

(47)

Neessity. Assume that the matrix L (t) (43) is a regular on [0,+∞) matrix.

Taking into aount formulas (47) we obtain
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L (t) = exp (−JRt)

[
Q11 Q12

Q21 Q22

]
exp (JRt) =

[
L11 (t) L12 (t)
L21 (t) L22 (t)

]
,

L11 (t) =

(
m1∑
i=0

(−t)i

i! Gi
1

)
Q11

(
m1∑
i=0

ti

i!G
i
1

)
,

L12 (t) = e(λ2−λ1)t

(
m1∑
i=0

(−t)i

i! Gi
1

)
Q12

(
m2∑
i=0

ti

i!G
i
2

)
,

L21 (t) = e(λ1−λ2)t

(
m2∑
i=0

(−t)i

i! Gi
2

)
Q21

(
m1∑
i=0

ti

i!G
i
1

)
,

L22 (t) =

(
m2∑
i=0

(−t)i

i! Gi
2

)
Q22

(
m2∑
i=0

ti

i!G
i
2

)
.

(48)

Sine the matries

mj∑
i=0

(±t)i

i! Gi
j , j = 1, 2 are nonsingular, it is easy to see that

the matrix L (t) (43) has unbounded norm on [0,∞) unless Q21 = O21 and

matries L11 (t) , L22 (t) , whose elements are polynomials of t, are onstant.

The latter fat implies that

L11 (t) = Q11, L22 (t) = Q22. (49)

Partiulary, from equalities (49) it follows that det (Qjj) 6= 0, j = 1, 2. Taking
into aount the equalities

( mj∑

i=0

(−t)i
i!

Gi
j

)
=

( mj∑

i=0

(t)i

i!
Gi

j

)−1

, j = 1, 2,

from (48) and (49) we obtain

Qjj

(mj∑

i=0

(t)i

i!
Gi

j

)
=

(mj∑

i=0

(t)i

i!
Gi

j

)
Qjj, j = 1, 2, ∀t ≥ 0. (50)

Equalities (50) imply that [Gj , Qjj] = 0, j = 1, 2, and we immediately arrive at

the onlusion about neessity of ommutativity equalities in (45). The proof

of the neessity is omplete.

Su�ieny. Assume that the matrix Q has a struture desribed in (44),

that is,

Q =

[
Q11 Q12

O21 Q22

]
,

and onditions (45) holds true. Then, taking into aount equalities (47), we

get

L (t) = exp (−JRt)

[
Q11 Q12

O21 Q22

]
exp (JRt) =

[
Q11 L12 (t)
O21 Q22

]
,

L12 (t) = e(λ2−λ1)t

(
m1∑
i=0

(−t)i

i! Gi
1

)
Q12

(
m2∑
i=0

ti

i!G
i
2

)
.

(51)
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Conditions (45) together with assumption (42) imply that the matrix L (t)
(51) is regular on [0,+∞). Hene, the su�ieny is proved and the Theorem is

proved.

Lemma 2. Suppose that A, V, C ∈ Mm (R) . If the matrix L(t), de�ned by

formula

L(t) = exp (−At)C exp (V t) , t ≥ 0, (52)

is regular on [0,+∞) then the spetra of matries A and V has the same real

part (see de�nition in [15, p. 145℄ ), that is, there exists a nonsingular matrix

C1 ∈Mm (R), suh that

VR = C−1
1 ARC1.

Proof. From the ommutativity of matries AI and AR (40) it follows that

L(t) = exp (−AIt) exp (−ARt)C exp (VRt) exp (VIt) . (53)

Taking into aount the de�nitions of matries AI and VI and equality (53) we

arrive at the onlusion that the matrix L (t) is regular on [0,+∞) if and only

if the matrix

L1(t) = exp (−ARt)C exp (VRt)

is regular on [0,+∞). On the other hand, it is easy to see that the matrix L1(t)
represents the general solution to the matrix di�erential equation (supposing

that C represents an arbitrary matrix from spae Mm (R))

d

dt
L1 (t) = L1 (t)VR −ARL1 (t) . (54)

In [12, pp. 121�125℄ it was proved that equation (54) possesses a solution L1 (t)
that is a regular on [0,+∞) matrix if and only if the matries AR and VR has

the same set of elementary devisors. It is known (see [14, p. 185℄) that if the

matries AR, VR ∈ Mm (R) has the same set of elementary devisors then they

are similar, furthermore, the similarity matrix C1 an be hosen from the spae

Mm (R) . This ompletes the proof of the Theorem.

Lemma 3. Suppose that A,V,C,Z ∈Mm (R) , the matrix

L(t) = exp (−At)C exp (V t) (55)

is regular on [0,+∞) and

[
Z,L(t)C−1

]
= 0, ∀t ≥ 0. (56)

Then there exists a nonsingular matrix C1 ∈Mm (R) , suh that

VR = C−1
1 ARC1, (57)

C−1ZC = C−1
1 ZC1 (58)

and the matrix

L1 (t) = exp (−At)C1 exp (V t) (59)

is a regular on [0,+∞) matrix satisfying the identity

[
Z,L1 (t)C−1

1

]
= 0, ∀t ≥ 0. (60)
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Proof. Suppose that the onditions of the Lemma are ful�lled. Then, a-

ording to Lemma 2, the spetra of matries A and V has the same real part.

Thus, there exist nonsingular matries TA, TV ∈Mm (R) , suh that

A = TA (JR + IA)T−1
A , V = TV (JR + IV )T−1

V ,

IA = T−1
A AITA, IV = T−1

V VITV , [JR, IA] = [JR, IV ] = 0,
(61)

where JR is the Jordan matrix de�ned in (41).

Let us onsider the matrix L(t) (55). Using notation (61), we an rewrite it

as following

L(t) = TA exp (−(JR + IA)t)T−1
A CTV exp ((JR + IV )t)T−1

V =

= TA exp (−IAt) exp (−JRt)
(
T−1

A CTV

)
exp (JRt) exp (IV t)T

−1
V .

(62)

From Lemma 1 it follows that T−1
A CTV = Q, where Q ∈ Mm (R) is the

matrix de�ned in (44).

Formula (62) leads us to the equality

T−1
A L(t)C−1TA = exp (−IAt)×

×diag [exp (−J1 (λ1) t) , . . . , exp (−Js (λs) t)]Q×

×diag [exp (J1 (λ1) t) , . . . , exp (Js (λs) t)] exp (IV t)Q
−1.

(63)

From equality (63), owing to the ommutation properties (45), we get

T−1
A L(t)C−1TA = exp (−IAt)QD exp (IV t)Q

−1+E1 (t) = E0 (t)+E1 (t) , (64)

where

QD = diag [Q11, . . . , Qss] .

It is easy to see that identity (56) an be rewritten in the form of

[
T−1

A ZTA, T
−1
A L(t)C−1TA

]
=
[
T−1

A ZTA,E0 (t) +E1 (t)
]

= 0, ∀t ≥ 0. (65)

It is not hard to verify that the elements of matrix E0 (t) (64) an be ex-

pressed as linear ombinations of funtions of type

sin (α t) ± cos (α t) , α,∈ R. (66)

On the other hand, the elements of matrix E1 (t) (64) an be expressed as linear

ombinations of funtions of type

tpeρt (cos (αt) ± sin (αt)) , ρ, α ∈ R, ρ < 0, (67)

p ∈ N
⋃ {0} , p < m.

If the matrix E0 (t) +E1 (t) ommutates with the onstant matrix T−1
A ZTA

for all t ≥ 0 (see (65)) then the same remains true for eah of the summands

E0 (t) and E1 (t) separately. Indeed, assume to the ontrary that there exists

a value t1 ≥ 0, suh that

[
E0 (t1) , T

−1
A ZTA

]
6= 0. It is obvious that in this
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ase

[
E1 (t1) , T

−1
A ZTA

]
6= 0. Taking into aount the ontinuity of elements of

matries E0 (t) ,E1 (t) , we obtain

[
E0 (t) , T−1

A ZTA

]
6= 0,

[
E1 (t) , T−1

A ZTA

]
6= 0, ∀t ∈ [t1 − δ, t1 + δ] , (68)

for some su�iently small positive real number δ.
It is easy to see that eah element of the matrix

[
E0 (t) , T−1

A ZTA

]
an be

expressed as a linear ombination of funtions of type (66) and eah element

of the matrix

[
E1 (t) , T−1

A ZTA

]
an be expressed as a linear ombination of

funtions of type (67). Sine the funtions of types (66) and (67) are linearly

independent, we onlude that

[
E0 (t) +E1 (t) , T−1

A ZTA

]
=
[
E0 (t) , T−1

A ZTA

]
+
[
E1 (t) , T−1

A ZTA

]
6= 0

for some t ∈ [t1 − δ, t1 + δ] . Thus, we get a ontraditions to ondition (65).

This ontradition proves the inorretness of our assumption. Therefore we

proved the identity

[
E0 (t) , T−1

A ZTA

]
= 0,∀t ≥ 0. (69)

Setting t = 0 in (69) we obtain

[
QDQ

−1, T−1
A ZTA

]
= 0. (70)

Let us onstrut a matrix C1 ∈ Mm (R) , det (C1) 6= 0 satisfying equality

(58). Using equality (70) we get

C−1ZC = C−1TA

(
T−1

A ZTA

)
T−1

A C = TV

(
T−1

V C−1TA

) (
T−1

A ZTA

)
×

×
(
T−1

A CTV

)
T−1

V = TVQ
−1
(
T−1

A ZTA

)
QT−1

V =

= TVQ
−1
D

(
QDQ

−1
) (
T−1

A ZTA

) (
QQ−1

D

)
QDT

−1
V =

= TVQ
−1
D

(
T−1

A ZTA

)
QDT

−1
V =

(
TVQ

−1
D T−1

A

)
Z
(
TAQDT

−1
V

)
.

(71)

From equalities (71) it follows that the matrix C1 satisfying ondition (58) an

be hosen in the following way

C1 = TAQDT
−1
V ∈Mm (R) . (72)

Equality (57) an be obtained from the following hain of equalities

C−1
1 ARC1 =

(
TAQDT

−1
V

)−1 (
TAJRT

−1
A

)
TAQDT

−1
V =

= TVQ
−1
D T−1

A

(
TAJRT

−1
A

)
TAQDT

−1
V = TV JRT

−1
V = VR.

Let us prove that the matrix L1 (t) (59) is regular on [0,+∞). Taking into

aount equality (57) and exeuting several elementary transformations, we
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get

L1 (t) = exp (−At)C1 exp (V t) =

= exp (−AIt) exp (−ARt)C1 exp (VRt) exp (VIt) =

= exp (−AIt)C1C
−1
1 exp (−ARt)C1 exp (VRt) exp (VIt) =

= exp (−AIt)C1 exp
(
−C−1

1 ARC1t
)
exp (VRt) exp (VIt) =

= exp (−AIt)C1 exp (−VRt) exp (VRt) exp (VIt) =

= exp (−AIt)C1 exp (VIt) .

It is easy to see that the matrix exp (−AIt)C1 exp (VIt) is regular on [0,+∞).
Now we intend to prove identity (60). Equalities

T−1
A L1 (t)C−1

1 TA = T−1
A

(
exp (−AIt)

(
TAQDT

−1
V

)
exp (VIt)

)
×

×
(
TAQDT

−1
V

)−1
TA = exp (−IAt)QD exp (IV t)Q

−1QQ−1
D = E0 (t)

(
QQ−1

D

)

together with ommutation identities (69) and (70) immediately lead us to the

equalities [
Z,L1 (t)C−1

1

]
=
[
T−1

A ZTA, T
−1
A L1 (t)C−1

1 TA

]
=

=
[
T−1

A ZTA,E0 (t)
(
Q (QD)−1

)]
= 0,

whih are valid for all t ≥ 0.
The Theorem is proved.

Let us denote by Xn a set ontaining all the solutions of the system of linear

matrix equations {
ZA(k)X

}
= 0, k = 0, 1, . . . , n, (73)

where Z, A ∈Mm (R) are given matries and X is the unknown square matrix

of order m.

Theorem 5. There exists a positive integer number n < m2, suh that the set

equalities

Xn = Xk, k = n+ 1, n+ 2, . . . . (74)

hold true.

Proof. It is not hard to verify that the set Xn an be represented in the

multi-parametri matrix form

Xn =

[
pn∑

k=1

χ
(n)
k,i,jck

]m

i,j=1

, (75)

where χ
(n)
k,i,j are onstant real oe�ients and ck are the arbitrary parameters

k = 1, 2, . . . , pn (see, for example, [12, p. 221℄), 0 < pn ≤ m2
.
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To begin with, we prove that if for some non-negative integer n ∈ N
⋃ {0}

the set equality

Xn = Xn+1, (76)

holds true then equalities (74) hold as well. Indeed, equality (76) implies that

0 =
{
ZA(n+1)Xn+1

}
=
[[{

ZA(n)
}
, A
]
,Xn

]
= (77)

=
[{
ZA(n)

}
, [A,Xn]

]
=
{
ZA(n) [A,Xn]

}
.

From here and below by equality of type (77) we mean the equality for every

element of set Xn. From (77) it follows that

[A,Xn] ⊆ Xn. (78)

From equality (76) and inlusion (78) it follows that

{
ZA(n+2)Xn

}
=
[[{

ZA(n+1)
}
, A
]
,Xn

]
= (79)

=
[{
ZA(n+1)

}
, [A,Xn]

]
=
{
ZA(n+1) [A,Xn]

}
= 0,

i.e., Xn ⊆ Xn+2. On the other hand, from the de�nition of the set Xn it follows

that Xn ⊇ Xn+1 ⊇ Xn+2. Therefore, we have

Xn = Xn+1 = Xn+2. (80)

Using reasoning similar to that used above and the method of mathematial

indution it is not hard to prove that equality (76) implies equalities (74).

Now let us prove that the non-negative integer n ∈ N
⋃ {0} , mentioned in

the Theorem, exists and is less thenm2. For this purpose we onsider the system
of matrix equations

{
ZA(n)X

}
= 0, n = 0, 1, . . . ,m2 − 1 (81)

with respet to unknown matrix X ∈ Mm (R). If we would show that every

solution X of system (81) satis�es equalities

{
ZA(n)X

}
= 0, n = m2,m2 + 1, . . . , (82)

then we will prove the Theorem.

Let us onsider the proess of solving of system (81). Suppose that n = 0.
There are only two possible ases (see representation (75)):

a)
{ZAX0} = 0, ∀ck ∈ R, k = 1, . . . , p0,

that is, we already have found a non-negative integer n = 0, suh that equalities

(76) hold true. Therefore, as it was proved above, equalities (81), (82) hold true

for all X ∈ X0, the proess is ompleted and the Theorem is proved;

b) equality
{ZAX0} = 0 (83)

does not hold true for all possible values of the parameters ck ∈ R, k =
1, 2, . . . , p0. This means that m2 > p0 ≥ 2, beause the assumption that p0 = 1
or p0 = m2

immediately leads us to the equalities X0 = c0E or Z = aE, a ∈ R
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respetively and we arrive at the ase a). Thus, equality (83) an be viewed

as a system of m2
linear homogeneous equations with respet to the arbitrary

parameters ck, k = 1, 2, . . . , p0. Sine this system possesses a non-zero solution,

the rank r1 of its matrix satis�es the two-sided inequality 0 < r1 < p0. If we
would solve the given system we will arrive at the matrix (set) X1 (75). In

addition to that (see [16, p. 40�41℄) p1 = p0 − r1. Therefore, p1 < p0, that is,
the number of the arbitrary parameters has dereased. Again, there are only

two possible ases

a) {
ZA(2)X1

}
= 0,∀ck ∈ R, k = 1, . . . , p1,

i.e., the proess is ompleted and the Theorem is proved;

b) equality {
ZA(2)X1

}
= 0 (84)

does not hold true for all possible values of the parameters ck ∈ R, k =
1, 2, . . . , p1. It means that m2 > p0 ≥ p1+1 ≥ 3. Equality (84) an be viewed as

a system of m2
linear homogeneous equations with respet to the parameters

ck, k = 1, 2, . . . , p1. If we would solve this new system we will arrive at the

matrix (set) X2 (75). It is obvious that in this ase p2 < p1, that is, the number
of the arbitrary parameters has dereased again. And so on.

This proess ould not ontain more than p0 < m2
steps. The Theorem is

proved.

Lemma 4. Suppose that A,V,Z,C ∈ Mm (R) and det (C) 6= 0. Then the

ommutation identity

[
Z,L (t)C−1

]
= 0, ∀t ≥ 0, (85)

where

L (2t) = exp (−At)C exp (V t) (86)

holds true if and only if the in�nite system of matrix equalities

{
ZA(n)

(
CV C−1 −A

)}
= 0, n = 0, 1, . . . . (87)

holds true.

Proof. Neessity. The matrix-valued funtion L (t) (86) satis�es the equali-
ties

[
A,L(n) (t)C−1

]
= AL(n) (t)C−1 − L(n) (t)C−1A =

= AL(n) (t)C−1 − L(n) (t)V C−1 + L(n) (t)V C−1 − L(n) (t)C−1A =

= −2L(n+1) (t)C−1 + L(n) (t)C−1
(
CV C−1 −A

)
=

= −2L(n+1) (t)C−1 + 2L(n) (t)C−1L(1) (0)C−1, L(n) (t)
def

=
dn

dtn
L (t)

(88)
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∀n ∈ N
⋃ {0} or, that is the same,

L(n+1) (t)C−1 = L(n) (t)C−1L(1) (0)C−1 − 1

2

[
A,L(n) (t)C−1

]
. (89)

Suppose that the ommutativity identity (85) holds. Let us prove that it

implies the identities

{
ZA(n)

(
L (t)C−1

)}
= 0, ∀t ≥ 0, ∀n ∈ N ∪ {0} . (90)

In order to prove this, we will use the method of mathematial indution with

respet to n. If n = 0 then identity (90) oinides with (85). If n = 1 then form

identity (85), using (89) and the properties of ommutators (36), we get

0 =
[
Z,L(1) (t)C−1

]
=
[
Z,L (t)C−1L(1) (0)C−1

]
−

−1

2

[
Z,
[
A,L (t)C−1

]]
= −1

2

[
[Z,A] , L (t)C−1

]
=

= − 1

2

{
ZA

(
L (t)C−1

)}
.

(91)

Equality (91) proves identity (90) with n = 1. Let us assume that identity (90)

is proved for n = k ≥ 2 and let us prove it for n = k + 1. Using equality (89)

and the properties of ommutators (36), from the latter assumption we obtain

0 =
[{
ZA(k)

}
, L(1) (t)C−1

]
=
[{
ZA(k)

}
, L (t)C−1L(1) (0)C−1

]
−

−1

2

[{
ZA(k)

}
,
[
A,L (t)C−1

]]
= −1

2

[[{
ZA(k)

}
, A
]
, L (t)C−1

]
=

= −1

2

{
ZA(k+1)

(
L (t)C−1

)}
.

(92)

Therefore, aording to the priniple of mathematial indution, we have that

identity (90) holds for all n ∈ N ∪ {0} .
Taking into aount the arbitrariness of n ∈ N∪ {0} in formula (90), we an

obtain equalities (87) via di�erentiation of identity (90) with respet to t and
subsequent substitution t = 0.

Su�ieny. Suppose that equalities (87) hold. Let us prove that they imply

identity (85). If n = 0 then from (87) we get

[
Z,
(
CV C−1 −A

)]
= 2

[
Z,L(1) (0)C−1

]
= 0. (93)

If n = 1 then from (87), taking into aount (36), (88) and (93), we obtain

0 =
[
[Z,A] ,

(
CV C−1 −A

)]
= 2

[
Z,
[
A,L(1) (0)C−1

]]
=

= − 4
[
Z,L(2) (0)C−1

]
+ 4

[
Z,
(
L(1) (0)C−1

)2
]

=

− (−2)2
[
Z,L(2) (0)C−1

]
.

(94)
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Let us assume that we already have proved equalities

[
Z,L(n) (0)C−1

]
= 0, n = 1, 2, . . . , k (95)

for some positive integer k ≥ 2.
From equalities (87), assumption (95), properties of ommutators (36) and

equality (88) we get

0 =
{
ZA(k)

(
CV C−1 −A

)}
=
[[{

ZA(k−1)
}
, A
]
,
(
CV C−1 −A

)]
=

=
[{
ZA(k−1)

}
,
[
A,CV C−1 −A

]]
= 2

[{
ZA(k−1)

}
,
[
A,L(1) (0)C−1

]]
=

= −4
[{
ZA(k−1)

}
, L(2) (0)C−1

]
+ 4

[{
ZA(k−1)

}
,
(
L(1) (0)C−1

)2
]

=

= −4
[[
ZA(k−1)

}
, L(2) (0)C−1

]
= −4

[[{
ZA(k−2)

}
, A
]
, L(2) (0)C−1

]
=

= −4
[{
ZA(k−2)

}
,
[
A,L(0) (0)C−1

]]
= 8

[{
ZA(k−2)

}
, L(3) (0)C−1

]
−

− 8
[{
ZA(k−2)

}
, L(2) (0)C−1L(1) (0)C−1

]
= . . .

. . . = − (−2)k
[
[Z,A] , L(k) (0)C−1

]
= − (−2)k

[
Z,
[
A,L(k) (0)C−1

]]
=

= − (−2)k+1
[
Z,L(k+1) (0)C−1

]
. (96)

Thus, aording to the priniple of mathematial indution, we have that equal-

ities (95) hold for every non-negative integer n ∈ N ∪ {0} .
From (86) it follows that the matrix series

∞∑

n=0

L(n) (0)C−1 t
n

n!

is dominated by the number series

∞∑

n=0

(
‖A‖ +

∥∥CV C−1
∥∥)n ( t

2

)n

n!
= exp

((
‖A‖ +

∥∥CV C−1
∥∥) t

2

)
.

Thus, the matrix series is uniformly onvergent on [0,+∞) and its sum oinides

with the matrix L (t)C−1. This fat together with equalities (95) immediately

lead us to the ommutativity identity (85). This ompletes the proof of the

Theorem.

Now we are in position to prove the main theorem of the paper. It is stated

below.

Theorem 6 (An analogue of the Erugin's theorem). Suppose that A,B, V,W ∈
Mm (R) . The two systems of seond-order di�erential equations

ẍ (t) +A ẋ (t) +B x (t) = 0, (97)

ξ̈ (t) + V ξ̇ (t) +W ξ (t) = 0 (98)
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are L-equivalent if and only if there exists a nonsingular matrix C ∈ Mm (R)
satisfying onditions

VR = C−1ARC, (99)

4W = V 2 + C−1
(
4B −A2

)
C, (100)

{(
4B −A2

)
A(n)

(
CV C−1 −A

)}
= 0, n = 0, 1, . . . ,m2 − 1. (101)

Proof. Su�ieny. Suppose that for some nonsingular matrix C ∈ Mm (R)
onditions (99), (100) and (101) are ful�lled. It is easy to see that the matrix

L (2t) = exp (−At)C exp (V t) = exp (−AIt)C exp (VIt) (102)

is regular on [0,+∞). Substituting the matrix L (t) (102) into the �rst equality
of (33) we obtain the identity

L−1 (t)
(
2L̇ (t) +AL (t)

)
= L−1 (t) (−AL (t) + L (t)V +AL (t)) = V. (103)

From the seond equality of (33) we get

4L−1 (t)
(
L̈ (t) +AL̇ (t) +BL (t)

)

=L−1 (t)
(
4B −A2

)
L (t) + V 2 = 4W.

(104)

Here we have taken into aount that equalities (101), aording to Theorem 5

and Lemma 4, are equivalent to the ommutativity identity

[
4B −A2, L (t)C−1

]
= 0, ∀t ≥ 0. (105)

Sine the regular on [0,+∞) matrix L (t) (102) satis�es onditions (33), systems

(97) and (98) are L-equivalent. The su�ieny is proved.

Neessity. Suppose that systems (97) and (98) are L-equivalent. Then, a-

ording to the de�nition of the L-equivalene, there exists a regular on [0,+∞)
matrix L (t) , suh that

L−1 (t)
(
2L̇ (t) +AL (t)

)
= V, (106)

L−1 (t)
(
L̈ (t) +AL̇ (t) +BL (t)

)
= W, ∀t ∈ [0,+∞) . (107)

From (106) we obtain that

L (2t) = exp (−At)C exp (V t) , (108)

where C ∈ Mm (R) , det (C) 6= 0. Then from (107), using formula (108) and

setting t = 0, we obtain equality (100) and ommutativity identity (105).

Sine the onditions of Lemma 3 are ful�lled, we an assume that the matrix

C is hosen in suh a way that identity (105), equality (100) and ondition (99)

hold and in addition to that matrix (108) is regular on [0,+∞) . From identity

(105), aording to Lemma (4), we get equalities (101). The neessity is proved

and the proof of the Theorem is ompleted.
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Remark 2. Suppose that A,V,C ∈Mm (R) and det (C) 6= 0. If for some non-

negative integer n ∈ N∪{0} the spetrum of the matrix Zn =
{(

4B −A2
)
A(n)

}

is simple, i.e., all the eigenvalues of matrix Zn are di�erent, then onditions

(101) are equivalent to the equalities

[
B,CV C−1 −A

]
= 0, (109)

[
A,CV C−1

]
= 0. (110)

Proof. It is almost obvious that onditions (109) and (110) imply onditions

(101).

Suppose that onditions (101) are ful�lled and for some non-negative integer

n the spetrum of matrix Zn is simple. Then there exists a nonsingular matrix

T, suh that the matrix T−1ZnT is diagonal with pairwise di�erent diagonal

elements. Thus, (see [12, p. 221℄) we have that

T−1
(
CV C−1 −A

)
T = diag [σ1, . . . , σm] , σi ∈ R, i ∈ 1,m. (111)

Using Theorem 5 and equalities (101) we obtain

0 =
[
[Zn, A] , CV C−1 −A

]
=
[
Zn,

[
A,CV C−1 −A

]]
.

Applying the same reasoning as above to the latter equalities we arrive at the

following representation, whih is similar to (111):

T−1
[
A,CV C−1 −A

]
T = T−1ATT−1

(
CV C−1 −A

)
T−

−T−1
(
CV C−1 −A

)
TT−1AT = TAT−1diag [σ1, . . . , σm]−

−diag [σ1, . . . , σm]TAT−1 = diag [τ1, . . . , τm] , τi ∈ R, i ∈ 1,m.

(112)

It is easy to see that all the diagonal elements of matrix

[TAT−1, diag [σ1, . . . , σm]] are equal to 0. On the other hand, from (112) it fol-

lows that all the elements of matrix [TAT−1, diag [σ1, . . . , σm]] exept for the
diagonal are equal to 0. Therefore we get the equality

[
A,CV C−1 −A

]
= 0

whih implies equality (110). Additionally to that equality (109) obviously

follows from (101) and (110). The proof is ompleted.

Remark 3. Conditions (109) and (110) imply onditions (101). The reverse

impliation is true only when the spetrum of the matrix Zn ={(
4B −A2

)
A(n)

}
is simple for some non-negative integer n.

Though Theorem 6 gives us the neessary and su�ient onditions provid-

ing that systems (97) and (98) are equivalent (L-equivalent, to be preise),

onditions (99), (100) and (101) of the Theorem do not possess the property of

symmetry, whih is one of the main properties of an equivalene relation. How-

ever, this is only the matter of the wording. In that form the theorem about

L-equivalene will be useful in the further setions of the paper. Theorem 6

an be reformulated in the �symmetri� form presented below.
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Theorem 7 (An analogue of the Erugin's theorem in the �symmetri� form).

Suppose that A,B, V,W ∈ Mm (R) . The two systems of seond-order di�er-

ential equations (97) and (98) are L-equivalent if and only if there exists a

nonsingular matrix C ∈Mm (R) , suh that

CVR = ARC, (113)

C
(
4W − V 2

)
=
(
4B −A2

)
C, (114)

{(
4B −A2

)
A(n)

}
(CV −AC) = (CV −AC)

{(
4W − V 2

)
V (n)

}
, (115)

n = 0, 1, 2, . . . ,m2 − 1.

Proof. To prove the Theorem it is enough to show that onditions (99) �

(101) are equivalent to onditions (113) � (115). It is easy to see that ondition

(99) is equivalent to ondition (113), as well as ondition (100) is equivalent to

ondition (114).

Taking into aount (114), from equalities (115) with n = 0 we obtain the

equalities

(
4B −A2

) (
CV C−1 −A

)
=
(
CV C−1 −A

)
C
(
4W − V 2

)
C−1 = (116)

=
(
CV C−1 −A

) (
4B −A2

)

whih lead us to ondition (101) with n = 0. Multiplying equality (116) on C−1

from the left and on C from the right and rearranging the summands, we get

[C−1
(
4B −A2

)
C, V ] = [

(
4W − V 2

)
, V ] = C−1

[(
4B −A2

)
, A
]
C. (117)

From equalities (115) with n = 1, taking into aount (114) and (117), we

obtain the equalities

{(
4B −A2

)
A
} (
CV C−1 −A

)
=

=
(
CV C−1 −A

)
C
{(

4W − V 2
)
V
}
C−1 = (118)

=
(
CV C−1 −A

) {(
4B −A2

)
V
}

whih lead us to ondition (101) with n = 1. Multiplying equality (118) on C−1

from the left and on C from the right and rearranging the summands, we get

(
C−1

{(
4B −A2

)
A
}
C
)
V − V

(
C−1

{(
4B −A2

)
A
}
C
)

=

= C−1
{(

4B −A2
)
A(2)

}
C.

Combining the latter equality with (117) we obtain

{(
4W − V 2

)
V (2)

}
= C−1

{(
4B −A2

)
A(2)

}
C. (119)

Therefore we have proved that the �rst two equalities of (101) (with n = 0, 1)
are equivalent to the �rst two equalities of (115) (with n = 0, 1) respetively.
Besides that we have proved the auxiliary equalities (117) and (119). Let us

assume that for some positive integer k, 2 < k < m2 − 1 we have proved that

the �rst k equalities of (101) are equivalent to the �rst k equalities of (115)
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(with n = 0, 1, . . . , k − 1) respetively and the auxiliary equality (similar to

(119)) {(
4W − V 2

)
V (k)

}
= C−1

{(
4B −A2

)
A(k)

}
C (120)

holds. Then from equalities (115) with n = k, taking into aount (120), we

obtain equalities

{(
4B −A2

)
A(k)

} (
CV C−1 −A

)
=

=
(
CV C−1 −A

)
C
{(

4W − V 2
)
V (k)

}
C−1 =

=
(
CV C−1 −A

) {(
4B −A2

)
V (k)

}
(121)

whih lead us to ondition (101) with n = k. In addition to that, multiplying

equality (121) on C−1
from the left and on C from the right and rearranging

the summands, we obtain

(
C−1

{(
4B −A2

)
A(k)

}
C
)
V − V

(
C−1

{(
4B −A2

)
A(k)

}
C
)

=

= C−1
{(

4B −A2
)
A(k+1)

}
C.

Combining the latter equality with assumption (120) we get

{(
4W − V 2

)
V (k+1)

}
= C−1

{(
4B −A2

)
A(k+1)

}
C. (122)

Therefore we have proved that the �rst k+ 1 equalities of (101) are equivalent

to the �rst k + 1 equalities of (115) (with n = 0, 1, . . . , k) respetively. Also,

we have proved the auxiliary equality (122). Aording to the priniple of

mathematial indution we an onlude that equalities (101) are equivalent to

equalities (115), provided that ondition (114) holds. This ompletes the proof

of the Theorem.

4. Consequenes from Theorem 6

Below we have stated several onsequenes from Theorem 6 that are related

to the question of symmetrization of the matrix di�erential equation (or, in

other words, the system of di�erential equations)

J ẍ + (D +G) ẋ + (P + Π)x = 0, (123)

where J,D,G,P,Π ∈ Mm (R) , J = JT > 0, D = DT , Π = ΠT , G = −GT ,
P = −P T . Let us denote

A = J− 1
2 (D +G) J− 1

2 , B = J− 1
2 (P + Π) J− 1

2 . (124)

Corollary 6. Suppose that there exist a symmetri matrix V ∈Mm (R) and a

nonsingular matrix C ∈Mm (R) satisfying onditions

9

[
A, CV C−1

]
= ACV C−1 −CV C−1A = 0, (125)

[
B, A− CV C−1

]
= B

(
A−CV C−1

)
−
(
A− CV C−1

)
B = 0, (126)

CVR = ARC. (127)

9

See Remark 3.
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Then the autonomous equation (123) is L-equivalent to the autonomous equa-

tion

ξ̈ + V ξ̇ +Wξ = 0, V,W ∈Mm (R) , (128)

W =
1

4
V 2 + C−1

(
B − 1

4
A2

)
C, (129)

ontaining no gyrosopi strutures (V = V T ).

Corollary 7. Suppose that there exist matries V,C ∈ Mm (R) , det (C) 6= 0
satisfying onditions (125)�(127) and

V 2 −
(
V 2
)T

+ C−1ZC − CTZT
(
C−1

)T
= 0 (130)

where

Z =

(
B − 1

4
A2

)
.

Then the autonomous equation (123) is L-equivalent to the autonomous equa-

tion (128), (129), ontaining no non-onservative positional strutures (W =
W T ).

Corollary 8. Suppose that there exist a symmetri matrix V ∈ Mm (R) and

a nonsingular matrix C ∈ Mm (R) satisfying onditions (125)�(127) together

with the equality

C−1ZC − CTZT
(
C−1

)T
= 0. (131)

Then the autonomous equation (123) is L-equivalent to the �symmetri� au-

tonomous equation (128), (129) (W = W T , V = V T ).

Corollary 9. If for some non-negative integer n the spetrum of the matrix

Zn =
{(

4B −A2
)
A(n)

}

is simple then the onditions of Corollaries 6�8 are the neessary ones (not only

su�ient!).

Combining Theorem 6 with the theorems of Kelvin � Tait � Chetayev it is

not hard to prove the following theorem that an be viewed as a generalization

of the Mingori's [3℄ and M�uller's [4℄ theorems.

Theorem 8. Suppose that the matries V,C ∈ Mm (R) , det (C) 6= 0,
V + V T > 0 satisfy onditions

CVR = ARC, (132)

{(
4B −A2

)
A(n)

(
CV C−1 −A

)}
= 0, n = 0, 1, . . . ,m2 − 1, (133)

V 2 −
(
V 2
)T

+ C−1
(
4B −A2

)
C − CT

(
4B −A2

)T (
C−1

)T
= 0. (134)

If the symmetri matrix

W =
1

4
V 2 + C−1

(
B − 1

4
A2

)
C (135)

is positive de�nite then the null solution of system (123) is asymptotially stable

(in the sense of Lyapunov ) and if matrix (135) is nonsingular and has at least
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one negative eigenvalue then the null solution of system (123) is unstable (in

the sense of Lyapunov).

It is easy to see that if P = 0 then onditions (132) � (134) an be satis�ed

one we take V = A, C = E. In this ase we would have that W = Π. This
means that Theorem 8 an be onsidered as a generalization of the 3-rd and

4-th theorems of Kelvin � Tait � Chetayev (see [17℄).

It is not hard to verify that the onditions of the Mingori's [3℄ and M�uller's

[4℄ theorems implies onditions (132) � (134). However, the following example

shows that the onverse of above proposition is not orret in general.

Example 1. Assume that

A = diag [A1, A2] , B =

[
B1 b5E

(2)

b5E
(2) B2

]
,

A1 = T

[
a1 a2

−a2 a1

]
T−1, A2 = T

[
a3 a4

−a4 a3

]
T−1,

B1 = T

[
b1 b2
−b2 b1

]
T−1, B2 = T

[
b3

a3b2
a1

−a3b2
a1

b3

]
T−1,

J = diag [1, 1, 1, 1] , T =

[
1 1
0 1

]
, E(2) =

[
1 0
0 1

]
.

(136)

Then in terms of matrix oe�ients of equation (123) we have

D = diag [D1,D2] , G = diag [G1, G2] ,

D1 =

[
a1 − a2

a2
2

a2
2 a2 + a1

]
, D2 =

[
a3 − a4

a4
2

a4
2 a4 + a3

]
,

G1 = −3a2
2 S(2), G2 = −3a4

2 S(2), S(2) =

[
0 −1
1 0

]
,

Π =

[
Π1 b5E

(2)

b5E
(2) Π2

]
, P = −diag

[
3b2
2 S

(2), 3a3b2
2a1

S(2)
]
,

Π1 =

[
b1 − b2

b2
2

b2
2 b2 + b1

]
, Π2 =

[
b3a1−b2a3

a1

a3b2
2a1

a3b2
2a1

a3b2+b3a1
a1

]
.

(137)

Both, the Mingori's [3℄ and M�uller's [4℄ theorems demand the ommutativity

of the matries P and D.

10

However, it is easy to verify that for the matries

P and D (137) this ondition is not ful�lled in general. Thus, we an't use

the results of the mentioned theorems for the stability investigation of system

(123), (137). On the other hand, the matries

V = diag [V1, V2] , C = diag [T, T ] ,

V1 = a1E
(2) −

(
a2 − 2b2

a1

)
S(2), V2 = a3E

(2) −
(
a4 − 2b2

a1

)
S(2),

(138)

10

The same is true for the results of papers [5, 6, 7, 8, 9℄
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satisfy onditions (125) � (127) of Theorem 8, aording to whih the matrix

W (135) an be expressed in the form of

W =

[
w1E

(2) b5E
(2)

b5E
(2) w2E

(2)

]
,

w1 =
a1a2b2 − b22 + a2

1b1
a2

1

, w2 =
a1a4b2 − b22 + a2

1b3
a2

1

.

(139)

The onditions of Sylvester's riterion (see [18, . 99℄), when applied to the

matrix W (139), lead us to the inequalities

w1 > 0, w2 > 0. (140)

Inequalities (140) together with the onditions a1 > 0, a3 > 0 (whih provide

that the matrix V (138) is positive de�nite) desribe the region of the asymp-

totial stability of the null solution of system (123), (137).

5. On the interonnetion between the notions of the

Lk-equivalene and the equivalene in the sense of Lyapunov

It is well known that systems (6) and (9) an be rewritten in the form of

d

dt

[
x

ẋ

]
= A

∗ (t)

[
x

ẋ

]
, A

∗ (t) =

[
O E

−B (t) −A (t)

]
, (141)

and

d

dt

[
ξ

ξ̇

]
= V

∗ (t)

[
ξ

ξ̇

]
, V

∗ (t) =

[
O E

−W (t) −V (t)

]
, (142)

respetively. Suppose that systems (141) and (142) are onneted by the trans-

formation[
x

ẋ

]
= L (t)

[
ξ

ξ̇

]
, L (t) =

[
L11 (t) L12 (t)
L21 (t) L22 (t)

]
, t ∈ [t0,+∞) , (143)

Lij (t) ∈Mm

(
C1 [t0,+∞]

)
. It is not hard to verify that this would be the ase

if and only if the equalities

L̇11 (t) − L12 (t)W (t) − L21 (t) = 0,

L̇12 (t) − L12 (t)V (t) + L11 (t) − L22 (t) = 0,

(144)

B (t)L11 (t) +A (t)L21 (t) = L22 (t)W (t) − L̇21 (t) ,

B (t)L12 (t) +A (t)L22 (t) = −L21 (t) + L22 (t)V (t) − L̇22 (t)

(145)

hold true ∀t ∈ [t0,+∞) .
In aordane with the de�nition of the equivalene in the sense of Lyapunov

of two systems of �rst-order ODEs that was given in [1, p. 118℄ we an introdue

the same notion for the ase of seond-order systems.

De�nition 6. We say that the systems of seond-order ODEs (6) and (9) are

equivalent in the sense of Lyapunov if there exists a Lyapunov matrix (see

de�nition in [1, p. 117℄) L (t) (143) satisfying onditions (144), (145).
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Let us assume that the matrix L (t) (143) satis�es onditions

L12 (t) = O, L11 (t) = L (t) ∈Mm

(
C2 [t0,+∞)

)
,

inf
t∈[t0,+∞]

|det (L (t))| > 0, sup
t∈[t0,+∞)

∥∥∥∥
dk

dtk
L (t)

∥∥∥∥ < +∞, ∀k ∈ 0, 2.

Then from equalities (144) we immediately obtain that L21 (t) = L̇11 (t) ,
L22 (t) = L (t) ; transformation (143) redues to the form

[
x

ẋ

]
=

[
L (t) O

L̇ (t) L (t)

] [
ξ

ξ̇

]
(146)

and represents a Lyapunov transformation (see de�nition in [1, p. 117℄); on-

ditions (145) redue to onditions (10), i.e.,

V (t) = L−1 (t)
(
2L̇ (t) +A (t)L (t)

)
,

W (t) = L−1 (t)
(
L̈ (t) +A (t) L̇ (t) +B (t)L (t)

)
.

(147)

Thus, we an onlude that if systems (6) and (9) are L2-equivalent aording

to De�nition 4 then they are equivalent in the sense of Lyapunov aording to

De�nition 6. However, it is almost obvious that the onverse of above proposi-

tion is not orret in general. It is easy to see that the notion of the equivalene

in the sense of Lyapunov inludes the notions of the L2-equivalene (see De�-

nition 4) and the L-equivalene (see De�nition 5) as partial ases. Therefore,

when we onsider the possibility of using strutural transformations to aid the

investigation of stability of the null solution of system (6), we inevitably arrive

at the following general problems of symmetrization:

1. for the given system (6), �nd a Lyapunov matrix L (t) (143) and matries

V (t) ,W (t) ∈ Mm (C [t0,+∞)) whih satisfy the symmetry onditions

V (t) = V T (t) and/or W (t) = W T (t) together with equalities (144),

(145) ∀t ∈ [t0,+∞) ;
2. for the given autonomous system (6), i.e, A (t) = A ∈ Mm (R) , B (t) =
B ∈ Mm (R) , �nd a Lyapunov matrix L (t) (143) and matries V (t) =
V ∈ Mm (R) , W (t) = W ∈ Mm (R) whih satisfy the symmetry on-

ditions V = V T
and/or W = W T

together with equalities (144), (145)

∀t ∈ [0,+∞) .

In the ase when systems (6) and (9) are autonomous, i.e., A∗ (t) = A∗ ∈
M2m (R) , V

∗ (t) = V
∗ ∈ M2m (R) , the neessary and su�ient onditions

providing that they are equivalent in the sense of Lyapunov were found by

Erugin (see the Erugin's theorem in [15, p. 145℄): Two systems (141) and

(142) (A
∗
and V

∗
are onstant matries of the same order) are equivalent in

the sense of Lyapunov if and only if the matries A
∗
and V

∗
have a single,

similar real part of the spetrum or, in other words, there exists a nonsingular

matrix C ∈M2m (R) , satisfying equality

A
∗
R = CV

∗
RC

−1.
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Evidently, in general ase, to hek whether the onditions of the Erugin's

theorem are ful�lled ould be as di�ult as to solve both systems (141) and

(142) diretly. However, Theorems 2 � 4, 6 indiate that in some ases the

question about equivalene in the sense of Lyapunov of two systems (141) and

(142) an be answered without neessity to solve them.

Let as suppose that V (t) ,W (t) ∈Mm

(
C1 [t0,+∞)

)
. Then substituting the

expressions for matries L21 (t) and L22 (t) obtained from equations (144) into

equation (145), we get the following system of seond-order matrix di�erential

equations with respet to the unknown matries L11 (t) , L12 (t) :

d

dt

(
Ż (t) + Z (t)V∗ (t)

)
+
(
Ż (t) + Z (t)V∗ (t)

)
V

∗ (t)+

+B (t)Z (t) + +A (t)
(
Ż (t) + Z (t)V∗ (t)

)
= 0,

Z (t) = [L11 (t) , L12 (t)] .

(148)

Thus, we arrive at the onlusion that systems (6) and (9) are equivalent in

the sense of Lyapunov if and only if system (148) possesses a solution Z (t)
satisfying onditions

sup
t∈[t0,+∞)

∥∥∥∥
dk

dtk
L (t)

∥∥∥∥ < +∞, k = 0, 1, inf
t∈[t0,+∞)

|det (L (t))| > 0,

L21 (t) = L̇11 (t) − L12 (t)W (t) ,

L22 (t) = L̇12 (t) − L12 (t)V (t) + L11 (t) .

(149)

The general problems of symmetrization (GPS) stated above have not been

studied in this paper. However, on our opinion, the problem of �nding neessary

and su�ient onditions for solvability of the GPS an be interesting from both

pratial and theoretial points of view. This problem is signi�antly more

ompliated then the problem of �nding neessary and su�ient onditions for

solvability of the EGS and/or ENPS problems (see de�nitions on pp. 40 and

46). The main reason for that is the signi�ant omplexity of onditions (148),

(149) for �nding the matries L (t) , V (t) and W (t) . On the other hand, as

it was mentioned above, in some ases to solve the GPS for the given system

the one should be able to determine the Jordan anonial form of the system's

matrix (see the onditions of the Erugin's theorem). Evidently, in this ase the

using of strutural transformations an't failitate the stability investigation of

the null solution of the system.

6. Appliation of the strutural transformations to the

stability investigation of dynamial systems

The stability of rotary motion of a rigid body suspended on a

string. Let us onsider the symmetrization problem for the system of seond-

order di�erential equations desribing the perturbed motion of a heavy, sym-

metri rigid body suspended to the stationary point O by the inextensible

weightless string. We assume that the string is attahed to the body at the

point S lying on the body's symmetry axis. We denote the distane between
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point S and the enter of mass of the body by a, and the length of the string

by b. It is known that the rotary motion of the body an be approximately

desribed (assuming that the displaement and rotations are small enough) by

the following equations (see equations (2.8) and (2.9) from [19℄):





J1ẍ1 + λẋ1 + cx1 − (2J1 − J3)ωẋ2 + (λ1 − λ)ωx2 +mgax3 = 0,
J1ẍ2 + λẋ2 + cx2 + (2J1 − J3)ωẋ1 − (λ1 − λ)ωx1 +mgax4 = 0,
mb2ẍ3 +mb(g − bω2)x3 − 2mb2ωẋ4 +mgax1 = 0,
mb2ẍ4 +mb(g − bω2)x4 + 2mb2ωẋ3 +mgax2 = 0,

(150)

where c = mga (ε+ 1)+(J3 − J1)ω
2, a = bε, λ = fD1, λ1 = fD3. In equations

(150) by ω > 0 we denote the angular veloity of rotation of the body, by

m � the mass of the body, by g � the free fall aeleration, and by J∗ =
diag [J1, J1, J3] � the entral tensor of inertia of the body. The authors of

[19℄ assume that the body is e�eted by the dissipative moment Md = −fDω,
where D = diag [D1,D1,D3] , D1 > 0,D3 > 0, f > 0. Additionally, we assume

that 2J1 − J3 6= 0, J1 > 0.
It is easy to see that system (150) an be represented in the form of (123)

with

J = diag
[
J1 E

(2),mb2 E(2)
]
, D = diag

[
λ E(2), O(2)

]
,

G = diag
[
(2J1 − J3)ω S

(2), 2mb2ω S(2)
]
,

Π =

[
c E(2) mga E(2)

mga E(2) mb(g − bω2) E(2)

]
,

P = diag
[
−(λ1 − λ)ω S(2), O(2)

]
,

E(2) =

[
1 0
0 1

]
, S(2) =

[
0 −1
1 0

]
,

where O(2)
denotes the square zero matrix of order 2. Furthermore, using

notation (124) we get

A = J− 1
2 (D +G) J− 1

2 = D1 +G1 =

= diag

[
1
J1

[
λ −(2J1 − J3)ω

(2J1 − J3)ω λ

]
, 2ω

[
0 −1
1 0

]]
,

(151)

B = J− 1
2 (P + Π)J− 1

2 = P1 + Π1 =

=

[
cJ−1

1 E(2) − J−1
1 (λ1 − λ)ω S(2) ga

√
m

b
√

J1
E(2)

ga
√

m

b
√

J1
E(2)

(
gb−1 − ω2

)
E(2)

]
.

(152)

Let us �nd the su�ient onditions in terms of the parameters of system

(150) whih provide that the system is equivalent to some other system that

does not ontain the gyrosopi strutures and (or) non-onservative positional

strutures.
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The elimination of the gyrosopi strutures. It is easy to verify that

the spetrum of matrix Z0 =
(
4B −A2

)
(151), (152) is simple. Therefore, a-

ording to Corollary 9 the onditions of Corollary 6 are neessary and su�ient

simultaneously. Let us hek whether the onditions of Corollary 6 are ful�lled.

The matrix CV C−1
satisfying ondition (125) an be expressed in the form of

CV C−1 = diag

[[
v11 v12
−v12 v11

]
,

[
v33 v34
−v34 v33

]]
. (153)

Taking into aount representation (153) and the fat that matrix V is real we

arrive at the onlusion that ondition (127) an be satis�ed if and only if

v11 =
λ

J1
, v33 = 0. (154)

Taking into aount (153) and (154), from ondition (126) we an �nd that

CV C−1 = diag

[[
λJ−1

1 v12 + ωJ3J
−1
1

−v12 − ωJ3J
−1
1 λJ−1

1

]
,

[
0 v12

−v12 0

]]
. (155)

From formula (155) it follows that the matrix V is a symmetri matrix if and

only if

J3 = 0, v12 = 0. (156)

Thus, the gyrosopi strutures an be exluded from system (150) if and only

if J3 = 0.
We an assume that the ondition J3 = 0 is satis�ed if the value of the inertia

moment J3 is fairly small in omparison with the value of 2J1. This an be the

ase when the body is heavy and has a shape of a ylinder with a very small

transverse setion.

Following to the Sommerfeld- Greenhill onept we an set λ = µJ1, λ1 =
µJ3, where µ is a small onstant oe�ient depending on the environment

harateristis. Returning to the ase of a heavy ylinder with a very small

transverse setion, we an assume that λ1 = 0.
The elimination of the non-onservative positional strutures. As it

was shown above, onditions (125) � (127) led us to representation (155). Let

us take C = E(4). To satisfy ondition (130) we take v12 = −2ωλ1
λ and aording

to Corollary 7, whose onditions are ful�lled, obtain the matrix oe�ients of

equation (128)

V = diag
[
V (1), V (2)

]
,

V (1) = 1
λJ1

[
λ2 J3ωλ− 2ωλ1J1

−J3ωλ+ 2ωλ1J1 λ2

]
,

V (2) = 2ωλ1
λ

[
0 −1
1 0

]
,

W =



(
ω2 λ1

λ

(
J3
J1

− λ1
λ

)
+ mga

J1
(ε+ 1)

)
E(2)

√
mgε√
J1
E(2)

√
mgε√
J1
E(2)

(
g
b − λ2

1ω2

λ2

)
E(2)


 .

(157)
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We see that, aording to Corollary 7, the elimination of the non-onservative

positional strutures is possible without any additional restritions on the pa-

rameters of system (150).

One the non-onservative positional strutures are eliminated, we an try to

�nd the region of the asymptoti stability of the null solution of system (150).

Sine systems (150) and (128), (157) are L-equivalent, that is, equivalent in the

sense of Lyapunov, their regions of the asymptoti stability oinide. Let us

�nd the region of the asymptoti stability of system (128), (157).

Unfortunately, the matrix V (157) is not a positive de�nite matrix, that is,

the onditions of Theorem 8 are not ful�lled. However, this problem an be

overame. First of all let us emphasize the fat that if the parameters of system

(150) are hosen in suh a way that det (W ) = 0 then the null solution of system
(150) is unstable. Thus, we an assume that the matrix W is nonsingular.

It is easy to verify that if

W > 0 (158)

then funtion V (ξ) = ξ̇T ξ̇ + ξTWξ where ξ = ξ(t) represents an arbitrary so-

lution of system (128), (157), satis�es the onditions of the Krasovsky theorem

on asymptoti stability (see, for example, [17, p. 42℄). On the other hand if

the symmetri matrix W (157) is nonsingular and has at least one negative

eigenvalue then the funtion −V (ξ) satis�es the onditions of the Krasovsky

theorem on instability (see, for example, [17, p. 51℄). Thus, we an onlude

that ondition (158) desribes the required region of asymptoti stability.

The onditions of Sylvester's riterion, when applied to the matrix W (157),

lead us to the following system of inequalities:

P > 0, PS −R2 > 0, (159)

where

P =

(
ω2λ1

λ

(
J3

J1
− λ1

λ

)
+
mga

J1
(ε+ 1)

)
, S =

(
g

b
− λ2

1ω
2

λ2

)
, R =

√
mgε√
J1

.

Returning to the ase of a heavy ylinder with a very small transverse setion

and setting λ1 = 0 we see that

P =
mga

J1

(
1 +

a

b

)
, S =

g

b
, R =

ga
√
m

b
√
J1

.

Therefore, the �rst inequality of (159) is ful�lled and the seond one redues

to the form

mg2

J1

a

b
> 0.

It is worth to emphasize that onditions (159) are in good agreement with the

similar onditions obtained in [9℄. On the other hand, a sophistiated method

proposed in paper [19℄ for the stability investigation of the null solution of

system (150) results in a set of inequalities whih do not desribe the region of

asymptoti stability of the system (ontrary to the expetations of the authors

of paper [19℄). The reason for that is an essential error introdued in [19℄ by

the authors.
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7. Conlusions

In the present paper we have extended and generalized the results of a series

of papers devoted to the stability investigation of the null solution of systems of

seond-order ODEs via the stability preserving strutural transformations. The

series was started with D.L. Mingori [3℄ and then ontinued by Von P. C. M�uller

[4℄, V.N. Koshlyakov [8℄, V.N. Koshlyakov and V.L. Makarov [20, 5, 6, 7℄,

V.N. Koshlyakov and V.A. Storozhenko [9℄.

We have found the neessary and su�ient onditions providing that a given

autonomous (non-autonomous) system of seond-order ODEs is equivalent in

the sense of Lyapunov to some autonomous (non-autonomous) system of seond-

order ODEs whih does not ontain gyrosopi and/or non-onservative posi-

tional strutures (see Theorems 2, 3, 4, 6).

Partiularly, using Theorem 6 we managed to generalize the results of papers

[3, 4, 5, 6, 7, 8, 9℄ whih are related to the ENPS problem for the autonomous

system (123). The results of the mentioned papers are appliable only when

the matrix D ommutate with P whereas in the present paper we got rid of

this unneessary onstraint (see Example 1).

Theorem 8 proved in the paper generalizes the 3-rd and 4-th Kelvin � Tait

� Chetayev theorems as well as the Mingori's [3℄ and M�uller's [4℄ theorems.

In Setion 5 we stated and brie�y disussed the general problems of sym-

metrization (GPS). It was shown that the EGS and ENPS problems an be

onsidered as partiular ases of the GPS. The solution of the latter problems

an provide us with essentially more powerful tools for the stability investiga-

tion of systems of ODEs than those obtained in the present paper. Due to the

signi�ant omplexity of the GPS we left them for the subsequent publiations.

In Setion 6 it was shown that the theoretial results presented in the paper

an be suessfully applied to the stability investigation of real mehanial

systems.
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