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�åçþìå. Â äàíié ñòàòòi ðîçðîáëåíî òåîðiþ ñòðóêòóðíèé ïåðåòâîðåíü

ñèñòåì çâè÷àéíèõ äè�åðåíöiàëüíèõ ðiâíÿíü (ÇÄ�) äðóãîãî ïîðÿäêó, ÿêi

çáåðiãàþòü âëàñòèâiñòü ñòiéêîñòi çà Ëÿïóíîâèì. Îñîáëèâó óâàãó ïðèäiëå-

íî òàêèì ïåðåòâîðåííÿì, ÿêi ïðèâîäÿòü çàäàíó ñèñòåìó ÇÄ� äî ñïåöiàëü-

íîãî ñèìåòðè÷íîãî âèäó, áiëüø çðó÷íîãî ïðè äîñëiäæåííi ñòiéêîñòi íóëüî-

âîãî ðîçâ'çêó òàêèõ ñèñòåì. Îêðåìî ðîçãëÿíóòî âèïàäêè àâòîíîìíèõ òà

íåàâòîíîìíèõ ñèñòåì. Îñíîâíà òåîðåìà äàíî¨ ñòàòòi ñóòò¹âî óçàãàëüíþ¹

âñi âiäîìi ðåçóëüòàòè â îáëàñòi ñòðóêòóðíèõ ïåðåòâîðåíü ñèñòåì ÇÄ� òà

ìîæå ðîçãëÿäàòèñÿ ÿê àíàëîã âiäîìî¨ òåîðåìè �ðóãiíà ïðî ñèñòåìè ïåð-

øîãî ïîðÿäêó. Çàçíà÷åíà òåîðåìà äîçâîëèëà íàì óçàãàëüíèòè 3-òþ òà 4-

òó òåîðåìè Êåëüâiíà-Òåòà-×åòà¹âà. Îäåðæàíi òåîðåòè÷íi ðåçóëüòàòè áóëè

óñïiøíî çàñòîñîâàíi ïðè äîñëiäæåííi ñòiéêîñòi îáåðòàëüíîãî ðóõó æîðñò-

êîãî òiëà ïiäâiøåíîãî íà ñòðóíi.

Abstra
t. In the paper we have developed a theory of stability preserving

stru
tural transformations (SPST) of systems of se
ond-order ordinary di�er-

ential equations (ODEs), i.e., the transformations whi
h preserve the property

of Lyapunov stability. Spe
ial attention is paid to those SPST, whi
h 
an re-

du
e a given system of ODEs to several spe
ial symmetri
 forms that are more

approa
hable for the existing methods of stability investigation than the �non-

symmetri
� ones. The autonomous and non-autonomous 
ases were dis
ussed

separately. The main Theorem proved in the paper essentially generalizes all

the known theoreti
al results related to the SPST of systems of se
ond-order

ODEs and 
an be viewed as an analogous of the Erugin's theorem for the sys-

tems of se
ond-order ODEs. The Theorem allowed us to generalize the 3-rd

and 4-th Kelvin � Tait � Chetayev theorems. The obtained theoreti
al results

were su

essfully applied to the stability investigation of the rotary motion of

a rigid body suspended on a string.

MSC 2010: 74H55, 34D20, 37N15

1. Introdu
tion

It is well known that a great number of dynami
al systems 
an be approxi-

mately des
ribed by the following system of se
ond-order ordinary di�erential

equations (ODEs):

J (t) ẍ (t) + (D (t) +G (t)) ẋ (t) + (P (t) + Π (t))x (t) =F (t,x (t)) ,

t ∈ [t0,∞)
(1)

Key words. Kelvin � Tait � Chetayev theorems, null solution, stability in the sense of Lya-

punov, Lyapunov's se
ond method for stability, Lyapunov transformation, Lyapunov matrix.
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where x (t) = col [x1 (t) , x2 (t) , . . . , xm (t)] is an unknown ve
tor-fun
tion.

From the physi
al point of view the matrix J (t) = JT (t) > 0 (the upper index

T denotes the operation of transposition) des
ribes the inertia 
hara
teristi
s

of a dynami
al system; the matri
es D (t) = DT (t) , G (t) = −GT (t) , P (t) =
−P T (t) and Π(t) = ΠT (t) represent a dissipative, gyros
opi
, non-
onservative
positional and potential for
es respe
tively; the ve
tor-fun
tion F (t,x (t))1 rep-
resents an external for
es a
ting on the system.

Let us 
onsider a linear one-to-one mapping L−1(t), whi
h maps the unknown

ve
tor-fun
tion x(t) to some other m-dimensional unknown ve
tor-fun
tion

ξ(t). If the inverse mapping, L(t), is su�
iently smooth then it 
an be viewed as

a stru
tural transformation

2

of system (1). Indeed, substituting ve
tor x(t) in
system (1) with expression L(t)ξ(t) we 
an get a transformed se
ond-order sys-

tem of ODEs with respe
t to the unknown ve
tor-fun
tion ξ(t). In the present

paper we 
on�ne ourselves to study only those transformations (or mappings)

L, whi
h do not 
hange the stability properties of the null solution of system

(1). We will 
all them the stability preserving stru
tural transformations.

By �stability properties� of a null solution we mean the properties of being

unstable, stable or asymptoti
ally stable in the sense of Lyapunov.

De�nition 1. The null solution, x0(t) ≡ 0, of system (1) is 
alled stable

(in the sense of Lyapunov) if ∀ε > 0 there exists δ = δ(ε) > 0, su
h that

‖xδ(t)‖ < ε, ∀t ∈ [t0,+∞), where xδ(t) represents any solution of system (1)

whi
h satis�es initial 
ondition ‖xδ(t0)‖ < δ.
The null solution is 
alled asymptoti
ally stable (in the sense of Lyapunov)

if it is stable and lim
t→+∞

‖xδ(t)‖ = 0.

The null solution is 
alled unstable (in the sense of Lyapunov) if it is not

stable.

As an example of stability preserving stru
tural transformations we 
an men-

tion the Lyapunov transformations (see [1, p. 117℄) though those are not the

only stability preserving transformations 
onsidered in the present paper (see

se
tion 2 for more detail).

De�nition 2 (see [1℄, p. 117). A square matrix L(t) will be 
alled a Lyapunov

matrix if it satis�es the following 
onditions :

1. L(t) has 
ontinuous derivative dL(t)
dt on some interval [t0,+∞);

2. matri
es L(t) and dL(t)
dt are bounded on the interval [t0,+∞);

3. there exists a 
onstant η su
h that 0 < η < |det(L(t))|, ∀t ∈ [t0,∞).

A transformation x(t) = L(t)ξ(t) will be 
alled a Lyapunov transformation if

the matrix L(t) is a Lyapunov matrix.

The above 
lassi
 de�nition is useful only for the 
ase of �rst-order systems.

To adapt it for the 
ase of se
ond-order systems we will additionally require

that the Lyapunov matrix L(t) has 
ontinuous se
ond derivative on [t0,+∞).

1

We assume that ∀t1 ∈ [t0, +∞), lim
‖x‖→0

‖F (t1,x)‖/‖x‖ = 0.

2

In the next se
tion we will give a thorough de�nition of "stru
tural transformation" and

here we are going to give a general idea.
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As it was pointed out by V. N. Koshlyakov in [2℄, when the gyros
opi
 terms

in system (1) are periodi
 in t with some period τ > 0 then the formal ap-

pli
ation of the averaging method to the system 
ould result in the dis
arding

of gyros
opi
 stru
tures though this stru
tures had some stabilizing e�e
t on

the system before averaging. Thus, it is very desirable to have a theoreti
al

framework whi
h allows us to transform the initial system into a system that

possess the same stability properties and 
ontain no gyros
opi
 stru
tures. In

[2℄ the author has 
onsidered a 
ase when J(t) = a0E,
3 a0 > 0. He showed that

the transformation x(t) = L(t)ξ(t), with matrix L(t) that satis�es the Cau
hy

problem L̇(t) = −(2a0)
−1G(t)L(t), L(t0) = E, will redu
e system (1) to a

system whi
h does not 
ontain gyros
opi
 stru
tures. He also proved that the

transformation mentioned above is a Lyapunov transformation, i.e., it preserves

stability properties of system (1). Furthermore, V. N. Koshlyakov showed that

in some real physi
al 
ases the redu
ed system 
ould be so simple that its

general solution 
an be easily found expli
itly.

However, V. N. Koshlyakov was not the �rst one who pointed out the pra
-

ti
al bene�ts of using stability preserving transformations. Almost twenty �ve

years earlier D. L. Mingori did this.

In [3℄ D. L. Mingori has 
onsidered a 
ase when system (1) is autonomous,

that is,

Jẍ(t) + (D +G) ẋ(t) + (P + Π)x(t) = 04, (2)

where x = col [x1 (t) , x2 (t) , . . . , xm (t)] is an unknown ve
tor; here again the

matrix J = JT > 0 des
ribes the inertia 
hara
teristi
s of the dynami
al system

and matri
es D = DT , G = −GT , Π = ΠT , P = −P T
represent a dissipa-

tive, gyros
opi
, non-
onservative positional and potential for
es respe
tively.

D. L. Mingori proved that under some restri
tions imposed on the matrix 
o-

e�
ients of system (2) there exists a Lyapunov transformation

x(t) = J− 1
2L(t)ξ(t) (3)

that 
an redu
e autonomous system (2) to another autonomous system

ξ̈ (t) + V ξ̇ (t) +Wξ (t) = 0 (4)

whi
h does not 
ontain non
onservative positional stru
tures, i.e, W = W T
.

Sin
e the matrix L(t) is a Lyapunov matrix, the null solutions of systems (2)

and (4) are stable, asymptoti
ally stable or unstable simultaneously. On the

other hand, be
ause of the symmetri
al properties of system (4) the stability

investigation of its null solution is an easier task than the stability investigation

of the null solution of system (2).

Thereby in [3℄ D. L. Mingori had suggested an approa
h to the stability in-

vestigation of the se
ond-order systems of ODEs (2) whi
h 
onsists of redu
ing

the initial problem to the problem of stability investigation of the 
orrespond-

ing equivalent (in the sense of Lyapunov, see [1, p. 118℄) symmetri
 system

(4). He has shown that su
h approa
h 
an be very useful and fruitful for the

3E denotes the identity matrix of 
orresponding order.

4

For the sake of simplisity the ve
tor fun
tion of external for
es was not taken into a

ount.
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stability investigation in analyti
al me
hani
s. However, in [3℄ the author has


onsidered the 
ase when D > 0 only. Though in [4℄ the results of D. L. Mingori

were extended on the 
ase when D ≥ 0, the ne
essary and su�
ient 
onditions

providing that a given non-symmetri
 se
ond-order system of ODEs is equiva-

lent in the sense of Lyapunov to some symmetri
 se
ond-order system remains

unknown: both papers [3℄ and [4℄ 
ontain the su�
ient 
onditions only.

Later the ne
essary and su�
ient 
onditions providing that the autonomous

system (2) 
an be redu
ed to some other autonomous system (4) withW1 = W T
1

via substitution (3) were found in papers [5℄ and [6℄. However, the results of

these papers were obtained under additional assumptions that

G = HĜ,

dL (t)

dH
= 0,∀t ≥ 0, (5)

D > 0, det (G) 6= 0,

where H denotes a positive numeri
al parameter.

In some 
ases the parameter H 
an be a part of matrix Π. This will be the

ase when equation (2) des
ribes a perturbed motion of a gyros
opi
 systems

installed on the platform whi
h rotates around the verti
al with the angular

velo
ity ω. Using assumptions (5) and assuming that Π = Π(0) +HΠ(H), where
matri
es Π(0),Π(H)

are independent on H, the ne
essary and su�
ient 
ondi-

tions providing the redu
ibility of system (2) to some other system (4) with

W1 = W T
1 where obtained in [7℄.

One of the 
ommon features of the series of works [3, 4, 5, 6, 7, 8, 9℄ is that

their authors in
luded the 
ommutation of the matri
es D and P into a set

of 
onditions whi
h provide the redu
ibility of system (2) to system (4) with

W1 = W T
1 . As it is show in Se
tion 4 (see Example 1) this 
ommutativity


ondition is not the ne
essary one

5

and in the present paper we �nally got rid

of it.

In the present paper without any additional assumptions we have obtained

the ne
essary and su�
ient 
onditions (in terms of the matrix 
oe�
ients)

providing that a given system of se
ond-order ODEs is equivalent in the sense of

Lyapunov to some other system of se
ond-order ODEs with symmetri
 matrix


oe�
ients. We have 
onsidered both the autonomous and non-autonomous


ases. In the 
ase when the initial system is autonomous we require that the

redu
ed system be autonomous too.

The paper is organized as follows.

In Se
tion 2 we introdu
e the notion of the stru
tural transformation of a sys-

tem of se
ond-order ODEs and give the de�nition of the Lk-equivalent systems

of se
ond-order ODEs. Using the notion of the Lk-equivalen
e we formulate

two symmetrization problems for the non-autonomous systems of se
ond-order

ODEs: the problem of Elimination of Gyros
opi
 Stru
tures (EGS problem) and

the problem of Elimination of Non-
onservative Positional Stru
tures (ENPS

5

We mean the 
ase when there are no additional restri
tions as, for example, those that

were introdu
ed in [5℄, [6℄, [7℄.
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problem). In the se
tion the ne
essary and su�
ient 
onditions providing the

solvability of the both problems were obtained.

In Se
tion 3 we reformulate the EGS and ENPS problems for the 
ase of

the autonomous systems and introdu
e the notion of the L-equivalen
e of two
autonomous systems of se
ond-order ODEs. Theorem 6 proved in the se
tion


an be 
onsidered as an analogous of the Erugin's theorem (see [1, p. 121℄)

for the autonomous systems of se
ond-order ODEs. Some useful 
onsequen
es

from Theorem 6 are stated in Se
tion 5. Among them there is a theorem whi
h

generalizes the theorems of Mingori (see [3℄) and M�uller (see [4℄).

In Se
tion 5 we dis
uss the question of the inter
onne
tion between the no-

tions of the Lk-equivalen
e and equivalen
e in the sense of Lyapunov.

In Se
tion 6 we demonstrate how the using of stru
tural transformations


an fa
ilitate the stability investigation of the null solution of the autonomous

se
ond-order system of ODEs des
ribing the rotary motion of a rigid body

suspended on a string.

Se
tion 7 
ontains several 
on
lusions about the theoreti
al results presented

in the paper.

2. Stability preserving stru
tural transformations of the

non-autonomous systems of se
ond-order ODEs

Let us 
onsider the following system of se
ond-order ordinary di�erential

equations:

ẍ +A (t) ẋ +B (t)x = 0, (6)

where x = −→x (t) = [x1 (t) , . . . , xm (t)]T is an unknown ve
tor-fun
tion. By de-

fault, we assume that A (t) , B (t) are square matri
es of orderm whose elements

are 
ontinuous on [t0,+∞) fun
tions, i.e., A (t) , B (t) ∈Mm (C [t0,+∞)) . Also
we will use the notation Mm

(
Ci [t0,+∞)

)
, i = 1, 2 to denote the linear spa
es

of square matri
es of order m whose elements belong to the fun
tional spa
e

Ci [t0,+∞) , i = 1, 2, and the notation Mm,n(R) will be used to denote the

spa
e of 
onstant real matri
es of dimension m× n.

De�nition 3. The stru
tural transformation of the se
ond-order system of

ordinary di�erential equations (6) is the transformation of unknown ve
tor x

whi
h 
an be expressed in the form

x = L (t) ξ, (7)

where ξ = [ξ1 (t) , . . . , ξm (t)]T is a new unknown ve
tor-fun
tion,

L (t) ∈Mm

(
C2 [t0,+∞)

)
, det (L (t)) 6= 0, ∀t ∈ [t0,+∞) .

Applying transformation (7) to system (6) we obtain the following system of

se
ond-order ordinary di�erential equations:

L (t) ξ̈ (t) +
(
2L̇ (t) +A (t)L (t)

)
ξ̇ (t) + (8)

+
(
L̈ (t) +A (t) L̇ (t) +B (t)L (t)

)
ξ (t) = 0,
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or , in more 
onvenient form,

ξ̈ + V (t) ξ̇ +W (t) ξ = 0, (9)

where

V (t) = L−1 (t)
(
2L̇ (t) +A (t)L (t)

)
,

W (t) = L−1 (t)
(
L̈ (t) +A (t) L̇ (t) +B (t)L (t)

)
.

(10)

Apparently we have that V (t) ,W (t) ∈ Mm (C [t0,+∞)) . Therefore, apply-
ing transformation (7) to system (6) with 
ontinuous on [t0,+∞) matrix 
o-

e�
ients, we arrive at system (9) that also possesses 
ontinuous on [t0,+∞)
matrix 
oe�
ients.

De�nition 4. We say that the system of se
ond-order ODEs (6)

is Lk-equivalent to system (9) (k ∈ {0, 1, 2}) if there exists a matrix L (t) ∈
Mm

(
C2 [t0,+∞)

)
satisfying 
onditions

1. |det (L (t))| > η > 0, ∀t ∈ [t0,+∞) ,

2. sup
t∈[t0,+∞)

∥∥∥∥
di

dti
L (t)

∥∥∥∥ < +∞, ∀i ∈ 0, k,

together with equalities (10). A matrix L (t) ∈ Mm

(
C2 [t0,+∞)

)
whi
h satis-

�es 
onditions 1, 2 for some k ∈ {0, 1, 2} is 
alled an Lk-matrix.

A

ording to the de�nition given in [10, p. 353℄, a matrix L(t) ∈
Mm(C1[t0,+∞)) whi
h satis�es 
onditions 1, 2 for k = 0, is 
alled a regular

on [t0,+∞) matrix. Transformation (7), where L (t) is an L2-matrix 
an also

be referen
ed to as a Lyapunov transformation of system of se
ond-order ODEs

(
ompare with the de�nition of a Lyapunov transformation form [1, p. 117℄).

Let us 
onsider the following symmetrization problems for the given system

of se
ond-order ODEs (6):

1. the problem of Elimination of Gyros
opi
 Stru
tures (EGS problem)

whi
h 
onsists in �nding an Lk-matrix L (t) (k = 0, 1, 2) together with
matri
es V (t) ,W (t) ∈ Mm (C [t0,+∞)) , V (t) = V T (t) , su
h that

equalities (10) hold true ∀t ∈ [t0,+∞) ;
2. the problem of Elimination of Non-
onservative Positional Stru
tures

(ENPS problem) whi
h 
onsists in �nding an Lk-matrix L (t) (k =
0, 1, 2) together with matri
es V (t) ,W (t) ∈ Mm (C [t0,+∞)) , W (t) =
W T (t) , su
h that equalities (10) hold true ∀t ∈ [t0,+∞) .

If the matri
es L (t) , V (t) ,W (t) mentioned in items 1 and/or 2 exist then we

say that the EGS and/or ENPS problems for system (6) 
an be solved by means

of Lk-transformation.

Both symmetrization problems 
an be stated in terms of the Lk-equivalen
e

in the following way:

1. to �nd a system (9) with V (t) = V T (t) whi
h is Lk-equivalent to the

given system (6) (EGS problem);

2. to �nd a system (9) with W (t) = W T (t) whi
h is Lk-equivalent to the

given system (6) (ENPS problem).
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Let us �nd the ne
essary and su�
ient 
onditions (in terms of matri
es

A (t) , B (t)) providing the solvability of the EGS and/or ENPS problems for

the given system (6), or, in other words, the ne
essary and su�
ient 
onditions

providing that system (6) is Lk-equivalent to some system (9) with V (t) =
V T (t) and/or W (t) = W T (t) for some k = 0, 1, 2.

Supposing that the matrix 
oe�
ient in front of the ve
tor-fun
tion ξ̇ in

system (9) is symmetri
 (i.e., there is no gyros
opi
 stru
tures), we arrive at the

following matrix di�erential equation with respe
t to the unknown Lk-matrix

L (t):

2
(
L̇ (t)LT (t) − L (t) L̇T (t)

)
+A (t)L (t)LT (t)−L (t)LT (t)AT (t) = 0. (11)

Similarly to that, assuming that the matrix 
oe�
ient in front of the ve
tor-

fun
tion ξ in system (9) is symmetri
 (i.e., there is no non-
onservative posi-

tional stru
tures) we arrive at the equation

L̈ (t)LT (t) − L (t) L̈T (t) +A (t) L̇ (t)LT (t)−

−L (t) L̇T (t)AT (t) +B (t)L (t)LT (t) − L (t)LT (t)BT (t) = 0.

(12)

It is easy to verify that there exists a unique pair of matri
es K(t), S(t),
su
h that

L̇LT = L̇ (t)LT (t) = K (t)+S (t) , K (t) = −KT (t) , S (t) = ST (t) . (13)

If matrix L (t) is an Lk-matrix (k = 0, 1, 2) then matri
es K (t) and S (t) (13)
belongs to Mm(C1[t0,+∞)). It is easy to see that

d

dt

(
L (t)LT (t)

)
= L̇ (t)LT (t) + L (t) L̇T (t) = 2S (t) , (14)

and

L (t)LT (t) = 2

t∫

t0

S (ν) dν + S0, L (t0)L
T (t0) = S0 = ST

0 > 0. (15)

Taking into a

ount equalities (13), (15), we 
an rewrite equations (11) and

(12) in the form of

4K (t) +A (t)

(
2

t∫
t0

S (ν) dν + S0

)
−
(

2
t∫

t0

S (ν) dν + S0

)
AT (t) = 0

(16)

and

2K̇ (t) +A (t) (S (t) +K (t)) − (S (t) −K (t))AT (t)+

+B (t)

(
t∫

t0

2S (ν) dν + S0

)
−
(

t∫
t0

2S (ν) dν + S0

)
BT (t) = 0

(17)

respe
tively. What are the ne
essary and su�
ient requirements whi
h have

to be imposed on the matri
es K (t) and S (t) to provide the existen
e of an

Lk-matrix L (t) whi
h satis�es equality (13)? The answer to this question is

given by the following theorem.
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Theorem 1. A regular on [t0,+∞) matrix L (t) whi
h satis�es equality (13)

exists if and only if the matri
es K (t) , S (t) belong to Mm (C [t0,+∞)) and

satisfy the following inequalities:

∣∣∣∣2
t∫

t0

Tr (S (ν)) dν + Tr (S0)

∣∣∣∣ ≤ µ2,∀t ∈ [t0,+∞) , (18)

det

(
2

t∫

t0

S (ν) dν + S0

)
≥ η2,∀t ∈ [t0,+∞) (19)

for some 
onstants µ > 0, η > 0 and real valued positive de�nite symmetri


matrix S0 ∈Mm (R) .

Proof. Ne
essity. Suppose that there exists a matrix L (t) whi
h belongs to

Mm

(
C1 [t0,+∞)

)
and satis�es equality (13) together with inequalities

‖L (t)‖F ≤ µ, ∀t ∈ [t0,+∞) 6, (20)

|det (L (t))| ≥ η, ∀t ∈ [t0,+∞) , (21)

for some 
onstants µ > 0, η > 0. It easy to see that the matri
es K (t) , S (t)
appearing in (13) belong to Mm (C [t0,+∞)) , and the ne
essity of 
onditions

(18), (19) immediately follows from (15). The ne
essity in the theorem is

proved.

Su�
ien
y . Suppose that K (t) , S (t) ∈ Mm(C[t0,+∞)), K(t) = −KT (t),
S(t) = ST (t) and inequalities (18), (19) hold true for some 
onstants µ >
0, η > 0 and some positive de�nite symmetri
 matrix S0. Assuming that the

matrix L = L (t) satis�es equality (13) ∀t ∈ [t0,+∞) together with the initial


ondition

L (t0) = L0, L0L
T
0 = S0, (22)

we arrive at the 
on
lusion that equality (15) together with inequality (18)

imply inequality (20) as well as inequality (19) implies inequality (21).

Let us prove that the solution L = L (t) to the Cau
hy problem (13), (22)

supplemented with 
onditions (18), (19) exists and is unique on [t0, T ] for any
arbitrary T > t0. If we denote by λi, i = 1, 2, . . . ,m the as
ending ordered

eigenvalues of matrix S0, that is, 0 < λ1 ≤ λ2 ≤ . . . ≤ λm, then inequality (18)

implies that

λm ≤
m∑

i=1

λi = Tr (S0) ≤ µ2. (23)

Taking into a

ount inequality (23) we 
an obtain from inequality (19) the

estimate

λ1 =
det (S0)

λ2 . . . λm
≥ η2

µ2(m−1)

6

Here ‖A‖
F
denotes the Frobenius norm of matrix A, that is, ‖A‖

F
=
√

Tr(AAT ).
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whi
h leads us to the inequality

∥∥L−1
0

∥∥2

E
= Tr

(
S−1

0

)
≤ m

λ1
≤ mµ2(m−1)

η2
= κ2.

Sin
e det(L(t)) 6= 0, ∀t ∈ [t0,+∞), equality (13) 
an be rewritten in the form

of

L̇ = F (t, L) = (S (t) +K (t))
(
L−1

)T
. (24)

Now we intend to show that the matrix-valued fun
tion F (t, L) satis�es 
on-

ditions of the Pi
ard-�Lindel�of theorem (see, for example, [11, p. 8℄) in the

re
tangle

P =

{
(t, L) ∈ R×Mm (R) : t0 ≤ t ≤ T,

∥∥∥∥L− L0

∥∥∥∥
E

≤ δ

κ
, 0 < δ < 1

}
. (25)

Taking into a

ount that the elements of matrix-fun
tions S (t) and K (t) are

ontinuous on [t0,+∞), it remains only to show that the matrix-valued fun
tion

F (t, L) is Lips
hitz-
ontinuous on P (25) with respe
t to its se
ond argument

L. This fa
t follows from the following inequalities, whi
h are valid for any

matri
es Li ∈Mm (R) , i = 1, 2, su
h that ‖Li − L0‖E ≤ δ

κ
:

∥∥L−1
1 − L−1

2

∥∥
E

=
∥∥∥(L1 − L0 + L0)

−1 − (L2 − L0 + L0)
−1
∥∥∥

E
=

=
∥∥∥L−1

0

(
(L1 − L0)L

−1
0 +E

)−1 − L−1
0

(
(L2 − L0)L

−1
0 + E

)−1
∥∥∥

E
=

=

∥∥∥∥∥L
−1
0

( ∞∑

i=0

(−1)i
(
(L1 − L0)L

−1
0

)i
−

∞∑

i=0

(−1)i
(
(L2 − L0)L

−1
0

)i
)∥∥∥∥∥

E

=

=

∥∥∥∥∥L
−1
0

( ∞∑

i=1

(−1)i
((

(L1 − L0)L
−1
0

)i
−
(
(L2 − L0)L

−1
0

)i
))∥∥∥∥∥

E

≤

≤
∥∥L−1

0

∥∥
E

∞∑

i=1




i∑

j=1

‖L1 − L0‖i−j
E ‖L1 − L2‖E ‖L2 − L0‖j−1

E

∥∥L−1
0

∥∥i

E


 =

=
∥∥L−1

0

∥∥2

E
‖L1 − L2‖E

∞∑

i=1




i∑

j=1

‖L1 − L0‖i−j
E ‖L0 − L2‖j−1

E

∥∥L−1
0

∥∥i−1

E


 ≤

≤ ‖L1 − L2‖E κ
2

∞∑

i=1

iδi−1 =
κ2

(1 − δ)2
‖L1 − L2‖E . (26)

In the above formula we have used the equality (see, for example, [12, p. 113℄)

(A+ E)−1 =

∞∑

i=0

(−1)iAi, ∀A ∈Mm (R) , ‖A‖ < 1,

and the evident identity

An −Bn =
n∑

i=1

An−i (A−B)Bi−1, ∀A,B ∈Mm (R) , n = 1, 2, . . . .



44 VOLODYMYR MAKAROV, DENYS DRAGUNOV

Using (26) we 
an estimate the norm of F (t, L) on the re
tangle P (25) in the

following way:

max
‖L−L0‖E≤ δ

κ

∥∥∥
(
L−1

)T∥∥∥
E

= max
‖L−L0‖E≤ δ

κ

∥∥L−1 − L−1
0 + L−1

0

∥∥
E
≤

≤ κ2

(1 − δ)2
max

‖L−L0‖E≤ δ
κ

‖L− L0‖E +
∥∥L−1

0

∥∥
E
≤ κδ

(1 − δ)2
+ κ,

max
(t,L)∈Π

‖F (t, L)‖E ≤ max
t∈[t0,T ]

‖K (t) + S (t)‖E max
‖L−L0‖E≤ δ

κ

∥∥∥
(
L−1

)T∥∥∥
E

= FP.

Thus, the 
onditions of the Pi
ard�Lindel�of theorem are satis�ed and the

solution of the Cau
hy problem (22), (24) exists at least on the interval Ih =

[t0, h] , where h = min

{
T,

δ

κFP

}
. If h = T then the theorem is proved. Oth-

erwise, if h < T then, applying the same reasoning as above to equation (24)

with the initial 
ondition Lh = L (h) , we arrive at the 
on
lusion that the so-

lution to the Cau
hy problem (22), (24) exists at least on the interval [t0, 2h] .
Apparently, after a �nite number of iterations we will prove that the solution

exists on [t0, T ] . From the arbitrariness of T it follows that the solution to the

Cau
hy problem (22), (24) exists on [t0,+∞) . The theorem is proved.

It is not hard to verify that the matrix K (t) +S (t) where K (t) = −KT (t),
S (t) = ST (t) is bounded on [t0,+∞] and/or belongs to Mm(Ck[t0,+∞)) if

and only if both of the two matri
es K(t) and S(t) are bounded on [t0,+∞)
and/or belong to Mm(Ck[t0,+∞)). Taking this fa
t into a

ount and using

Theorem 1 we 
an make several 
on
lusions stated below.

Corollary 3. An Lk-matrix L (t) (k = 1, 2) satisfying equality (13) exists if

and only if K (t) , S (t) ∈ Mm

(
C1 [t0,+∞)

)
and the following 
onditions hold

true:

1. there exist 
onstants µ > 0, η > 0 and matrix S0 ∈Mm (R) , S0 = ST
0 > 0

satisfying inequalities (18), (19);

2. sup
t∈[t0,+∞)

∥∥∥∥
di

dti
K (t)

∥∥∥∥+ sup
t∈[t0,+∞)

∥∥∥∥
di

dti
S (t)

∥∥∥∥ < +∞, ∀i ∈ 0, k − 1.

Equation (16) and Corollary 3 imply the following theorem.

Theorem 2. The given system of se
ond-order ODEs (6) with A (t) ∈
Mm

(
C1 [t0,+∞)

)
is Lk-equivalent (k = 0, 1, 2) to some system (9) with

V (t) = V T (t) if and only if there exist the symmetri
 matri
es S (t) ∈
Mm

(
C1 [t0,+∞)

)
, S0 ∈ Mm (R) , S0 > 0 whi
h de�ne the skew-symmetri


matrix K (t)

4K (t) = Λ (t)AT (t) −A (t) Λ (t) , Λ (t) = 2

t∫

t0

S (ν) dν + S0, (27)

and satisfy 
onditions

1. (18), (19) for some 
onstants µ > 0, η > 0;
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2. sup
t∈[t0,+∞)

∥∥∥∥
di

dti
K (t)

∥∥∥∥+ sup
t∈[t0,+∞)

∥∥∥∥
di

dti
S (t)

∥∥∥∥ < +∞, ∀i ∈ 0, k − 1, (k 6= 0)7.

From Theorem 2 we obtain the following 
orollary.

Corollary 4. The given system of se
ond-order ODEs (6) with A (t) ∈
Mm

(
C1 [t0,+∞)

)
is always L0-equivalent to some system (9) with V (t) =

V T (t) .

From equation (17) and Corollary 3 we 
an easily obtain the theorem whi
h

gives the ne
essary and su�
ient 
onditions for solvability of the ENPS prob-

lem.

Theorem 3. The given system of se
ond-order ODEs (6) is Lk-equivalent (k =
0, 1, 2) to some system (9) with W (t) = W T (t) if and only if there exist the

symmetri
 matri
es S (t) ∈ Mm

(
C1 [t0,+∞)

)
, S0 ∈ Mm (R) , S0 > 0 and the

skew-symmetri
 matrix K (t) whi
h satis�es the matrix di�erential equation

2K̇ (t) +A (t)K (t) +K (t)AT (t) +A (t)S (t)

−S (t)AT (t) +B (t) Λ (t) − Λ (t)BT (t) = 0,

Λ (t) = 2
t∫

t0

S (ν) dν + S0,

(28)

and 
onditions 1, 2 of Theorem 2.

It is worth to emphasize that for any initial 
ondition K (t0) = K0 = −KT
0 ∈

Mm (R) the solution K (t) to the matrix di�erential equation (28) is a skew-

symmetri
 matrix. Indeed, if we sum up equation (28) with the transposed

equation (28) we obtain the Cau
hy problem

2Ṅ (t) +A (t)N (t) +N (t)AT (t) = 0,

N (t) = K (t) +KT (t) , N (0) = 0.
(29)

It is easy to see that the 
onditions of the Pi
ard-�Lindel�of theorem for the

Cau
hy problem (29) are ful�lled and its solution N(t) exists and is unique on

[t0,+∞) . Therefore, the problem has the trivial solution only, that is, N (t) =
0, ∀t ∈ [t0,+∞) and K (t) = −KT (t) , ∀t ∈ [t0,+∞) . Su
h 
on
lusion 
an

also be obtained from the analysis of the analyti
al expression for the general

solution K (t) of equation (28) (see, for example, [13, p. 188℄).

From Theorem 3 we 
an easily obtain the 
orollary.

Corollary 5. The given system of se
ond-order ODEs (6) is always

L0-equivalent to some other system (9) with W (t) = W T (t) .

Combining Theorems 4 and 2 we arrive at the following one.

7

In the 
ase when k = 0 
ondition 2 should be negle
ted.
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Theorem 4. The given system of se
ond-order ODEs (6) with A (t) ∈
Mm

(
C1 [t0,+∞)

)
is Lk-equivalent (k = 0, 1, 2) to some system (9) with V (t) =

V T (t) , W (t) = W T (t) if and only if there exist the symmetri
 matri
es S (t) ∈
Mm

(
C1 [t0,+∞)

)
, S0 ∈ Mm (R) , S0 > 0 whi
h de�ne the skew-symmetri


matrix K (t) (27) and satisfy 
onditions 1, 2 of Theorem 2 together with equality

Λ (t)MT (t) = M (t)Λ (t) , ∀t ∈ [t0,+∞) ,

M (t) =
1

2

d

dt
A (t) +

1

4
A2 (t) −B (t) , Λ (t) = 2

t∫
t0

S (ν) dν + S0.
(30)

Condition (30) 
an be obtained as a result of substitution of the matrix K (t)
from equation (28) by its expression from (27).

Remark 1. Suppose that the 
onditions of at least one of the Theorems 2, 3 or

4 are ful�lled. Then ea
h suitable Lk-matrix L (t) 
an be found as the solution

to the matrix di�erential equation (13) supplemented with an initial 
ondition

L(t0) = L0 where L0 is an arbitrary matrix formMm(R), su
h that L0L
T
0 = S0.

Additionally to that, the matrix 
oe�
ients of the respe
tive symmetrized system

(9) 
an be found via formulas (10).

3. Stability preserving stru
tural transformations of the

autonomous systems of se
ond-order ODEs

Let us 
onsider the two systems of se
ond-order ordinary di�erential equa-

tions

ẍ +Aẋ +Bx = 0, A,B ∈Mm (R) , (31)

ξ̈ + V ξ̇ +Wξ = 0, V,W ∈Mm (R) . (32)

De�nition 5. We say that the given autonomous system (31) is L-equivalent
to system (32) if there exists a regular on [0,+∞) matrix L (t) (see de�nition
on p. 40) whi
h satis�es equalities

8

V = L−1 (t)
(
2L̇ (t) +AL (t)

)
,

W = L−1 (t)
(
L̈ (t) +AL̇ (t) +BL (t)

)
, ∀t ∈ [0,+∞) .

(33)

From the �rst equality of (33) we 
an easily obtain

L (2t) = exp (−At)C exp (V t) , C ∈Mm (R) . (34)

It is easy to see that if the matrix L (t) (34) is regular on [0,+∞) then it is

an Lk-matrix for k = 0, 1, 2. Hen
e, we 
an see that the notion of the Lk-

equivalen
e (k = 0, 1, 2) for two autonomous systems a

ording to de�nition 4

is tantamount to the notion of the L-equivalen
e a

ording to de�nition 5.

In this se
tion we 
onsider the following symmetrization problems for the

autonomous systems of se
ond-order ODEs (31):

8

Without loss of generality and for the sake of simpli
ity, in this se
tion we 
onsider the

segment [0, +∞) instead of [t0, +∞).
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1. to �nd an autonomous system (32) with V = V T
whi
h is L-equivalent

to the given system (31) (
ompare with the EGS problem);

2. to �nd an autonomous system (32) with W = W T
whi
h is L-equivalent

to the given system (31) (
ompare with the ENPS problem).

Let us �nd the ne
essary and su�
ient requirements whi
h have to be im-

posed on matri
es A,B to provide the solvability of the EGS and/or ENPS

problems for autonomous system (31).

To pro
eed with this task we have to introdu
e several 
onvenient notations.

We will use the notation [A,B] to des
ribe a 
ommutator of two square matri
es

A and B, that is,

[A,B] = AB −BA.

Also, we will use the notation {A1A2 . . . An} to des
ribe a superposition of


ommutators, that is,

{A1A2} = [A1, A2], {A1A2 . . . An} = [{A1A2 . . . An−1}, An].

It is easy to ensure that the 
ommutators obey the following properties:

[AB,C] = [A,C]B, ∀A,B,C ∈Mm(R) : [B,C] = 0, (35)

[[A,B] , C] = [A, [B,C]] , ∀A,B,C ∈Mm(R) : [A,C] = 0. (36)

It is a well known fa
t that every matrix A ∈ Mm(R) 
an be expressed in the

form of

A = TA diag
[
λ1 (A)E(p1) +H(p1), . . . , λr (A)E(pr) +H(pr)

]
T−1

A , (37)

where

λk (A) = αk (A) + i βk (A) , αk (A) , βk (A) ∈ R, (38)

k = 1, 2, . . . , r denote the eigenvalues of matrix A; E(pk)
denotes the identity

matrix; all the elements of square matrix H(pk)
are zero ex
ept those in the �rst

superdiagonal whi
h are equal to 1. The orders of square matri
es E(pk)
and

H(pk)
are equal to the power pk of the k-th elementary devisor of matrix A. The

matrix TA denotes some nonsingular matrix fromMm(R) (see, for example, [12,

p. 152℄).

A

ording to formulas (37) and (38) we de�ne

AR = TA diag
[
α1 (A)E(p1) +H(p1), . . . , αr (A)E(pr) +H(pr)

]
T−1

A ,

AI = TA diag
[
i β1 (A)E(p1), . . . , i βr (A)E(pr)

]
T−1

A ,

(39)

then

A = AR +AI , ARAI = AIAR. (40)

Using the notion of real Jordan 
anoni
al form of a real matrix (see [14, p.

184℄) it is not hard to prove that if A ∈Mm (R) then AR, AI ∈Mm (R) .
Let us 
onsider a Jordan matrix (see, for example, [14, p. 150℄)

JR = diag [J1 (λ1) , . . . , Js (λs)] , (41)



48 VOLODYMYR MAKAROV, DENYS DRAGUNOV

where Ji (λi) denotes a Jordan blo
k of size mi 
orresponding to the eigenvalue

λi ∈ R, i = 1, . . . , s. For the de�niteness we will use the assumption that

λi > λj, i < j,
s∑

i=1

mi = m. (42)

In the above formula mi denotes an algebrai
 multipli
ity of the eigenvalue λi

of matrix JR (see [14, p. 58℄). The following lemma holds true.

Lemma 1. Suppose that the matrix L(t) is de�ned by the formula

L(t) = exp (−JRt)Q exp (JRt) , t ≥ 0, (43)

where Q ∈Mm (R) . Matrix L(t) (43) is a regular on [0,+∞) matrix if and only

if the matrix Q possesses the following stru
ture:

Q =




Q11 Q12 . . . Q1s

O21 Q22 . . . Q2s

. . . . . . . . . . . .
Os1 Os2 . . . Qss


 , (44)

where matri
es Qij ∈Mmimj
(R) satisfy the 
onditions

det (Qii) 6= 0,
[
J

(R)
i , Qii

]
= 0 (45)

and Oij denotes a zero-matrix of dimension mi ×mj, i, j = 1, 2, . . . , s.

Proof. Without loss of generality, we 
onsider the 
ase when s = 2, that is,
when the matrix JR has only two di�erent eigenvalues λ1, λ2 ∈ R, λ1 > λ2 of

the algebrai
 multipli
ities m1 ≥ 0 and m2 ≥ 0 respe
tively, m1 +m2 = m. Let

us denote

G1 = J1 (0) , G2 = J2 (0) . (46)

From formula (41), taking into a

ount notation (46), we obtain (see [12, p.

157℄)

exp (JRt) =diag

[
eλ1t

m1∑

i=0

1

i!
tiGi

1, e
λ2t

m2∑

i=0

1

i!
tiGi

2

]
,

exp (−JRt) = (exp (JRt))
−1 =

=diag

[
e−λ1t

m1∑

i=0

(−t)i
i!

Gi
1, e

−λ2t
m2∑

i=0

(−t)i
i!

Gi
2

]
.

(47)

Ne
essity. Assume that the matrix L (t) (43) is a regular on [0,+∞) matrix.

Taking into a

ount formulas (47) we obtain
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L (t) = exp (−JRt)

[
Q11 Q12

Q21 Q22

]
exp (JRt) =

[
L11 (t) L12 (t)
L21 (t) L22 (t)

]
,

L11 (t) =

(
m1∑
i=0

(−t)i

i! Gi
1

)
Q11

(
m1∑
i=0

ti

i!G
i
1

)
,

L12 (t) = e(λ2−λ1)t

(
m1∑
i=0

(−t)i

i! Gi
1

)
Q12

(
m2∑
i=0

ti

i!G
i
2

)
,

L21 (t) = e(λ1−λ2)t

(
m2∑
i=0

(−t)i

i! Gi
2

)
Q21

(
m1∑
i=0

ti

i!G
i
1

)
,

L22 (t) =

(
m2∑
i=0

(−t)i

i! Gi
2

)
Q22

(
m2∑
i=0

ti

i!G
i
2

)
.

(48)

Sin
e the matri
es

mj∑
i=0

(±t)i

i! Gi
j , j = 1, 2 are nonsingular, it is easy to see that

the matrix L (t) (43) has unbounded norm on [0,∞) unless Q21 = O21 and

matri
es L11 (t) , L22 (t) , whose elements are polynomials of t, are 
onstant.

The latter fa
t implies that

L11 (t) = Q11, L22 (t) = Q22. (49)

Parti
ulary, from equalities (49) it follows that det (Qjj) 6= 0, j = 1, 2. Taking
into a

ount the equalities

( mj∑

i=0

(−t)i
i!

Gi
j

)
=

( mj∑

i=0

(t)i

i!
Gi

j

)−1

, j = 1, 2,

from (48) and (49) we obtain

Qjj

(mj∑

i=0

(t)i

i!
Gi

j

)
=

(mj∑

i=0

(t)i

i!
Gi

j

)
Qjj, j = 1, 2, ∀t ≥ 0. (50)

Equalities (50) imply that [Gj , Qjj] = 0, j = 1, 2, and we immediately arrive at

the 
on
lusion about ne
essity of 
ommutativity equalities in (45). The proof

of the ne
essity is 
omplete.

Su�
ien
y. Assume that the matrix Q has a stru
ture des
ribed in (44),

that is,

Q =

[
Q11 Q12

O21 Q22

]
,

and 
onditions (45) holds true. Then, taking into a

ount equalities (47), we

get

L (t) = exp (−JRt)

[
Q11 Q12

O21 Q22

]
exp (JRt) =

[
Q11 L12 (t)
O21 Q22

]
,

L12 (t) = e(λ2−λ1)t

(
m1∑
i=0

(−t)i

i! Gi
1

)
Q12

(
m2∑
i=0

ti

i!G
i
2

)
.

(51)
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Conditions (45) together with assumption (42) imply that the matrix L (t)
(51) is regular on [0,+∞). Hen
e, the su�
ien
y is proved and the Theorem is

proved.

Lemma 2. Suppose that A, V, C ∈ Mm (R) . If the matrix L(t), de�ned by

formula

L(t) = exp (−At)C exp (V t) , t ≥ 0, (52)

is regular on [0,+∞) then the spe
tra of matri
es A and V has the same real

part (see de�nition in [15, p. 145℄ ), that is, there exists a nonsingular matrix

C1 ∈Mm (R), su
h that

VR = C−1
1 ARC1.

Proof. From the 
ommutativity of matri
es AI and AR (40) it follows that

L(t) = exp (−AIt) exp (−ARt)C exp (VRt) exp (VIt) . (53)

Taking into a

ount the de�nitions of matri
es AI and VI and equality (53) we

arrive at the 
on
lusion that the matrix L (t) is regular on [0,+∞) if and only

if the matrix

L1(t) = exp (−ARt)C exp (VRt)

is regular on [0,+∞). On the other hand, it is easy to see that the matrix L1(t)
represents the general solution to the matrix di�erential equation (supposing

that C represents an arbitrary matrix from spa
e Mm (R))

d

dt
L1 (t) = L1 (t)VR −ARL1 (t) . (54)

In [12, pp. 121�125℄ it was proved that equation (54) possesses a solution L1 (t)
that is a regular on [0,+∞) matrix if and only if the matri
es AR and VR has

the same set of elementary devisors. It is known (see [14, p. 185℄) that if the

matri
es AR, VR ∈ Mm (R) has the same set of elementary devisors then they

are similar, furthermore, the similarity matrix C1 
an be 
hosen from the spa
e

Mm (R) . This 
ompletes the proof of the Theorem.

Lemma 3. Suppose that A,V,C,Z ∈Mm (R) , the matrix

L(t) = exp (−At)C exp (V t) (55)

is regular on [0,+∞) and

[
Z,L(t)C−1

]
= 0, ∀t ≥ 0. (56)

Then there exists a nonsingular matrix C1 ∈Mm (R) , su
h that

VR = C−1
1 ARC1, (57)

C−1ZC = C−1
1 ZC1 (58)

and the matrix

L1 (t) = exp (−At)C1 exp (V t) (59)

is a regular on [0,+∞) matrix satisfying the identity

[
Z,L1 (t)C−1

1

]
= 0, ∀t ≥ 0. (60)



STABILITY PRESERVING STRUCTURAL TRANSFORMATIONS ... 51

Proof. Suppose that the 
onditions of the Lemma are ful�lled. Then, a
-


ording to Lemma 2, the spe
tra of matri
es A and V has the same real part.

Thus, there exist nonsingular matri
es TA, TV ∈Mm (R) , su
h that

A = TA (JR + IA)T−1
A , V = TV (JR + IV )T−1

V ,

IA = T−1
A AITA, IV = T−1

V VITV , [JR, IA] = [JR, IV ] = 0,
(61)

where JR is the Jordan matrix de�ned in (41).

Let us 
onsider the matrix L(t) (55). Using notation (61), we 
an rewrite it

as following

L(t) = TA exp (−(JR + IA)t)T−1
A CTV exp ((JR + IV )t)T−1

V =

= TA exp (−IAt) exp (−JRt)
(
T−1

A CTV

)
exp (JRt) exp (IV t)T

−1
V .

(62)

From Lemma 1 it follows that T−1
A CTV = Q, where Q ∈ Mm (R) is the

matrix de�ned in (44).

Formula (62) leads us to the equality

T−1
A L(t)C−1TA = exp (−IAt)×

×diag [exp (−J1 (λ1) t) , . . . , exp (−Js (λs) t)]Q×

×diag [exp (J1 (λ1) t) , . . . , exp (Js (λs) t)] exp (IV t)Q
−1.

(63)

From equality (63), owing to the 
ommutation properties (45), we get

T−1
A L(t)C−1TA = exp (−IAt)QD exp (IV t)Q

−1+E1 (t) = E0 (t)+E1 (t) , (64)

where

QD = diag [Q11, . . . , Qss] .

It is easy to see that identity (56) 
an be rewritten in the form of

[
T−1

A ZTA, T
−1
A L(t)C−1TA

]
=
[
T−1

A ZTA,E0 (t) +E1 (t)
]

= 0, ∀t ≥ 0. (65)

It is not hard to verify that the elements of matrix E0 (t) (64) 
an be ex-

pressed as linear 
ombinations of fun
tions of type

sin (α t) ± cos (α t) , α,∈ R. (66)

On the other hand, the elements of matrix E1 (t) (64) 
an be expressed as linear


ombinations of fun
tions of type

tpeρt (cos (αt) ± sin (αt)) , ρ, α ∈ R, ρ < 0, (67)

p ∈ N
⋃ {0} , p < m.

If the matrix E0 (t) +E1 (t) 
ommutates with the 
onstant matrix T−1
A ZTA

for all t ≥ 0 (see (65)) then the same remains true for ea
h of the summands

E0 (t) and E1 (t) separately. Indeed, assume to the 
ontrary that there exists

a value t1 ≥ 0, su
h that

[
E0 (t1) , T

−1
A ZTA

]
6= 0. It is obvious that in this
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ase

[
E1 (t1) , T

−1
A ZTA

]
6= 0. Taking into a

ount the 
ontinuity of elements of

matri
es E0 (t) ,E1 (t) , we obtain

[
E0 (t) , T−1

A ZTA

]
6= 0,

[
E1 (t) , T−1

A ZTA

]
6= 0, ∀t ∈ [t1 − δ, t1 + δ] , (68)

for some su�
iently small positive real number δ.
It is easy to see that ea
h element of the matrix

[
E0 (t) , T−1

A ZTA

]

an be

expressed as a linear 
ombination of fun
tions of type (66) and ea
h element

of the matrix

[
E1 (t) , T−1

A ZTA

]

an be expressed as a linear 
ombination of

fun
tions of type (67). Sin
e the fun
tions of types (66) and (67) are linearly

independent, we 
on
lude that

[
E0 (t) +E1 (t) , T−1

A ZTA

]
=
[
E0 (t) , T−1

A ZTA

]
+
[
E1 (t) , T−1

A ZTA

]
6= 0

for some t ∈ [t1 − δ, t1 + δ] . Thus, we get a 
ontradi
tions to 
ondition (65).

This 
ontradi
tion proves the in
orre
tness of our assumption. Therefore we

proved the identity

[
E0 (t) , T−1

A ZTA

]
= 0,∀t ≥ 0. (69)

Setting t = 0 in (69) we obtain

[
QDQ

−1, T−1
A ZTA

]
= 0. (70)

Let us 
onstru
t a matrix C1 ∈ Mm (R) , det (C1) 6= 0 satisfying equality

(58). Using equality (70) we get

C−1ZC = C−1TA

(
T−1

A ZTA

)
T−1

A C = TV

(
T−1

V C−1TA

) (
T−1

A ZTA

)
×

×
(
T−1

A CTV

)
T−1

V = TVQ
−1
(
T−1

A ZTA

)
QT−1

V =

= TVQ
−1
D

(
QDQ

−1
) (
T−1

A ZTA

) (
QQ−1

D

)
QDT

−1
V =

= TVQ
−1
D

(
T−1

A ZTA

)
QDT

−1
V =

(
TVQ

−1
D T−1

A

)
Z
(
TAQDT

−1
V

)
.

(71)

From equalities (71) it follows that the matrix C1 satisfying 
ondition (58) 
an

be 
hosen in the following way

C1 = TAQDT
−1
V ∈Mm (R) . (72)

Equality (57) 
an be obtained from the following 
hain of equalities

C−1
1 ARC1 =

(
TAQDT

−1
V

)−1 (
TAJRT

−1
A

)
TAQDT

−1
V =

= TVQ
−1
D T−1

A

(
TAJRT

−1
A

)
TAQDT

−1
V = TV JRT

−1
V = VR.

Let us prove that the matrix L1 (t) (59) is regular on [0,+∞). Taking into

a

ount equality (57) and exe
uting several elementary transformations, we
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get

L1 (t) = exp (−At)C1 exp (V t) =

= exp (−AIt) exp (−ARt)C1 exp (VRt) exp (VIt) =

= exp (−AIt)C1C
−1
1 exp (−ARt)C1 exp (VRt) exp (VIt) =

= exp (−AIt)C1 exp
(
−C−1

1 ARC1t
)
exp (VRt) exp (VIt) =

= exp (−AIt)C1 exp (−VRt) exp (VRt) exp (VIt) =

= exp (−AIt)C1 exp (VIt) .

It is easy to see that the matrix exp (−AIt)C1 exp (VIt) is regular on [0,+∞).
Now we intend to prove identity (60). Equalities

T−1
A L1 (t)C−1

1 TA = T−1
A

(
exp (−AIt)

(
TAQDT

−1
V

)
exp (VIt)

)
×

×
(
TAQDT

−1
V

)−1
TA = exp (−IAt)QD exp (IV t)Q

−1QQ−1
D = E0 (t)

(
QQ−1

D

)

together with 
ommutation identities (69) and (70) immediately lead us to the

equalities [
Z,L1 (t)C−1

1

]
=
[
T−1

A ZTA, T
−1
A L1 (t)C−1

1 TA

]
=

=
[
T−1

A ZTA,E0 (t)
(
Q (QD)−1

)]
= 0,

whi
h are valid for all t ≥ 0.
The Theorem is proved.

Let us denote by Xn a set 
ontaining all the solutions of the system of linear

matrix equations {
ZA(k)X

}
= 0, k = 0, 1, . . . , n, (73)

where Z, A ∈Mm (R) are given matri
es and X is the unknown square matrix

of order m.

Theorem 5. There exists a positive integer number n < m2, su
h that the set

equalities

Xn = Xk, k = n+ 1, n+ 2, . . . . (74)

hold true.

Proof. It is not hard to verify that the set Xn 
an be represented in the

multi-parametri
 matrix form

Xn =

[
pn∑

k=1

χ
(n)
k,i,jck

]m

i,j=1

, (75)

where χ
(n)
k,i,j are 
onstant real 
oe�
ients and ck are the arbitrary parameters

k = 1, 2, . . . , pn (see, for example, [12, p. 221℄), 0 < pn ≤ m2
.
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To begin with, we prove that if for some non-negative integer n ∈ N
⋃ {0}

the set equality

Xn = Xn+1, (76)

holds true then equalities (74) hold as well. Indeed, equality (76) implies that

0 =
{
ZA(n+1)Xn+1

}
=
[[{

ZA(n)
}
, A
]
,Xn

]
= (77)

=
[{
ZA(n)

}
, [A,Xn]

]
=
{
ZA(n) [A,Xn]

}
.

From here and below by equality of type (77) we mean the equality for every

element of set Xn. From (77) it follows that

[A,Xn] ⊆ Xn. (78)

From equality (76) and in
lusion (78) it follows that

{
ZA(n+2)Xn

}
=
[[{

ZA(n+1)
}
, A
]
,Xn

]
= (79)

=
[{
ZA(n+1)

}
, [A,Xn]

]
=
{
ZA(n+1) [A,Xn]

}
= 0,

i.e., Xn ⊆ Xn+2. On the other hand, from the de�nition of the set Xn it follows

that Xn ⊇ Xn+1 ⊇ Xn+2. Therefore, we have

Xn = Xn+1 = Xn+2. (80)

Using reasoning similar to that used above and the method of mathemati
al

indu
tion it is not hard to prove that equality (76) implies equalities (74).

Now let us prove that the non-negative integer n ∈ N
⋃ {0} , mentioned in

the Theorem, exists and is less thenm2. For this purpose we 
onsider the system
of matrix equations

{
ZA(n)X

}
= 0, n = 0, 1, . . . ,m2 − 1 (81)

with respe
t to unknown matrix X ∈ Mm (R). If we would show that every

solution X of system (81) satis�es equalities

{
ZA(n)X

}
= 0, n = m2,m2 + 1, . . . , (82)

then we will prove the Theorem.

Let us 
onsider the pro
ess of solving of system (81). Suppose that n = 0.
There are only two possible 
ases (see representation (75)):

a)
{ZAX0} = 0, ∀ck ∈ R, k = 1, . . . , p0,

that is, we already have found a non-negative integer n = 0, su
h that equalities

(76) hold true. Therefore, as it was proved above, equalities (81), (82) hold true

for all X ∈ X0, the pro
ess is 
ompleted and the Theorem is proved;

b) equality
{ZAX0} = 0 (83)

does not hold true for all possible values of the parameters ck ∈ R, k =
1, 2, . . . , p0. This means that m2 > p0 ≥ 2, be
ause the assumption that p0 = 1
or p0 = m2

immediately leads us to the equalities X0 = c0E or Z = aE, a ∈ R
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respe
tively and we arrive at the 
ase a). Thus, equality (83) 
an be viewed

as a system of m2
linear homogeneous equations with respe
t to the arbitrary

parameters ck, k = 1, 2, . . . , p0. Sin
e this system possesses a non-zero solution,

the rank r1 of its matrix satis�es the two-sided inequality 0 < r1 < p0. If we
would solve the given system we will arrive at the matrix (set) X1 (75). In

addition to that (see [16, p. 40�41℄) p1 = p0 − r1. Therefore, p1 < p0, that is,
the number of the arbitrary parameters has de
reased. Again, there are only

two possible 
ases

a) {
ZA(2)X1

}
= 0,∀ck ∈ R, k = 1, . . . , p1,

i.e., the pro
ess is 
ompleted and the Theorem is proved;

b) equality {
ZA(2)X1

}
= 0 (84)

does not hold true for all possible values of the parameters ck ∈ R, k =
1, 2, . . . , p1. It means that m2 > p0 ≥ p1+1 ≥ 3. Equality (84) 
an be viewed as

a system of m2
linear homogeneous equations with respe
t to the parameters

ck, k = 1, 2, . . . , p1. If we would solve this new system we will arrive at the

matrix (set) X2 (75). It is obvious that in this 
ase p2 < p1, that is, the number
of the arbitrary parameters has de
reased again. And so on.

This pro
ess 
ould not 
ontain more than p0 < m2
steps. The Theorem is

proved.

Lemma 4. Suppose that A,V,Z,C ∈ Mm (R) and det (C) 6= 0. Then the


ommutation identity

[
Z,L (t)C−1

]
= 0, ∀t ≥ 0, (85)

where

L (2t) = exp (−At)C exp (V t) (86)

holds true if and only if the in�nite system of matrix equalities

{
ZA(n)

(
CV C−1 −A

)}
= 0, n = 0, 1, . . . . (87)

holds true.

Proof. Ne
essity. The matrix-valued fun
tion L (t) (86) satis�es the equali-
ties

[
A,L(n) (t)C−1

]
= AL(n) (t)C−1 − L(n) (t)C−1A =

= AL(n) (t)C−1 − L(n) (t)V C−1 + L(n) (t)V C−1 − L(n) (t)C−1A =

= −2L(n+1) (t)C−1 + L(n) (t)C−1
(
CV C−1 −A

)
=

= −2L(n+1) (t)C−1 + 2L(n) (t)C−1L(1) (0)C−1, L(n) (t)
def

=
dn

dtn
L (t)

(88)
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∀n ∈ N
⋃ {0} or, that is the same,

L(n+1) (t)C−1 = L(n) (t)C−1L(1) (0)C−1 − 1

2

[
A,L(n) (t)C−1

]
. (89)

Suppose that the 
ommutativity identity (85) holds. Let us prove that it

implies the identities

{
ZA(n)

(
L (t)C−1

)}
= 0, ∀t ≥ 0, ∀n ∈ N ∪ {0} . (90)

In order to prove this, we will use the method of mathemati
al indu
tion with

respe
t to n. If n = 0 then identity (90) 
oin
ides with (85). If n = 1 then form

identity (85), using (89) and the properties of 
ommutators (36), we get

0 =
[
Z,L(1) (t)C−1

]
=
[
Z,L (t)C−1L(1) (0)C−1

]
−

−1

2

[
Z,
[
A,L (t)C−1

]]
= −1

2

[
[Z,A] , L (t)C−1

]
=

= − 1

2

{
ZA

(
L (t)C−1

)}
.

(91)

Equality (91) proves identity (90) with n = 1. Let us assume that identity (90)

is proved for n = k ≥ 2 and let us prove it for n = k + 1. Using equality (89)

and the properties of 
ommutators (36), from the latter assumption we obtain

0 =
[{
ZA(k)

}
, L(1) (t)C−1

]
=
[{
ZA(k)

}
, L (t)C−1L(1) (0)C−1

]
−

−1

2

[{
ZA(k)

}
,
[
A,L (t)C−1

]]
= −1

2

[[{
ZA(k)

}
, A
]
, L (t)C−1

]
=

= −1

2

{
ZA(k+1)

(
L (t)C−1

)}
.

(92)

Therefore, a

ording to the prin
iple of mathemati
al indu
tion, we have that

identity (90) holds for all n ∈ N ∪ {0} .
Taking into a

ount the arbitrariness of n ∈ N∪ {0} in formula (90), we 
an

obtain equalities (87) via di�erentiation of identity (90) with respe
t to t and
subsequent substitution t = 0.

Su�
ien
y. Suppose that equalities (87) hold. Let us prove that they imply

identity (85). If n = 0 then from (87) we get

[
Z,
(
CV C−1 −A

)]
= 2

[
Z,L(1) (0)C−1

]
= 0. (93)

If n = 1 then from (87), taking into a

ount (36), (88) and (93), we obtain

0 =
[
[Z,A] ,

(
CV C−1 −A

)]
= 2

[
Z,
[
A,L(1) (0)C−1

]]
=

= − 4
[
Z,L(2) (0)C−1

]
+ 4

[
Z,
(
L(1) (0)C−1

)2
]

=

− (−2)2
[
Z,L(2) (0)C−1

]
.

(94)
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Let us assume that we already have proved equalities

[
Z,L(n) (0)C−1

]
= 0, n = 1, 2, . . . , k (95)

for some positive integer k ≥ 2.
From equalities (87), assumption (95), properties of 
ommutators (36) and

equality (88) we get

0 =
{
ZA(k)

(
CV C−1 −A

)}
=
[[{

ZA(k−1)
}
, A
]
,
(
CV C−1 −A

)]
=

=
[{
ZA(k−1)

}
,
[
A,CV C−1 −A

]]
= 2

[{
ZA(k−1)

}
,
[
A,L(1) (0)C−1

]]
=

= −4
[{
ZA(k−1)

}
, L(2) (0)C−1

]
+ 4

[{
ZA(k−1)

}
,
(
L(1) (0)C−1

)2
]

=

= −4
[[
ZA(k−1)

}
, L(2) (0)C−1

]
= −4

[[{
ZA(k−2)

}
, A
]
, L(2) (0)C−1

]
=

= −4
[{
ZA(k−2)

}
,
[
A,L(0) (0)C−1

]]
= 8

[{
ZA(k−2)

}
, L(3) (0)C−1

]
−

− 8
[{
ZA(k−2)

}
, L(2) (0)C−1L(1) (0)C−1

]
= . . .

. . . = − (−2)k
[
[Z,A] , L(k) (0)C−1

]
= − (−2)k

[
Z,
[
A,L(k) (0)C−1

]]
=

= − (−2)k+1
[
Z,L(k+1) (0)C−1

]
. (96)

Thus, a

ording to the prin
iple of mathemati
al indu
tion, we have that equal-

ities (95) hold for every non-negative integer n ∈ N ∪ {0} .
From (86) it follows that the matrix series

∞∑

n=0

L(n) (0)C−1 t
n

n!

is dominated by the number series

∞∑

n=0

(
‖A‖ +

∥∥CV C−1
∥∥)n ( t

2

)n

n!
= exp

((
‖A‖ +

∥∥CV C−1
∥∥) t

2

)
.

Thus, the matrix series is uniformly 
onvergent on [0,+∞) and its sum 
oin
ides

with the matrix L (t)C−1. This fa
t together with equalities (95) immediately

lead us to the 
ommutativity identity (85). This 
ompletes the proof of the

Theorem.

Now we are in position to prove the main theorem of the paper. It is stated

below.

Theorem 6 (An analogue of the Erugin's theorem). Suppose that A,B, V,W ∈
Mm (R) . The two systems of se
ond-order di�erential equations

ẍ (t) +A ẋ (t) +B x (t) = 0, (97)

ξ̈ (t) + V ξ̇ (t) +W ξ (t) = 0 (98)
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are L-equivalent if and only if there exists a nonsingular matrix C ∈ Mm (R)
satisfying 
onditions

VR = C−1ARC, (99)

4W = V 2 + C−1
(
4B −A2

)
C, (100)

{(
4B −A2

)
A(n)

(
CV C−1 −A

)}
= 0, n = 0, 1, . . . ,m2 − 1. (101)

Proof. Su�
ien
y. Suppose that for some nonsingular matrix C ∈ Mm (R)

onditions (99), (100) and (101) are ful�lled. It is easy to see that the matrix

L (2t) = exp (−At)C exp (V t) = exp (−AIt)C exp (VIt) (102)

is regular on [0,+∞). Substituting the matrix L (t) (102) into the �rst equality
of (33) we obtain the identity

L−1 (t)
(
2L̇ (t) +AL (t)

)
= L−1 (t) (−AL (t) + L (t)V +AL (t)) = V. (103)

From the se
ond equality of (33) we get

4L−1 (t)
(
L̈ (t) +AL̇ (t) +BL (t)

)

=L−1 (t)
(
4B −A2

)
L (t) + V 2 = 4W.

(104)

Here we have taken into a

ount that equalities (101), a

ording to Theorem 5

and Lemma 4, are equivalent to the 
ommutativity identity

[
4B −A2, L (t)C−1

]
= 0, ∀t ≥ 0. (105)

Sin
e the regular on [0,+∞) matrix L (t) (102) satis�es 
onditions (33), systems

(97) and (98) are L-equivalent. The su�
ien
y is proved.

Ne
essity. Suppose that systems (97) and (98) are L-equivalent. Then, a
-


ording to the de�nition of the L-equivalen
e, there exists a regular on [0,+∞)
matrix L (t) , su
h that

L−1 (t)
(
2L̇ (t) +AL (t)

)
= V, (106)

L−1 (t)
(
L̈ (t) +AL̇ (t) +BL (t)

)
= W, ∀t ∈ [0,+∞) . (107)

From (106) we obtain that

L (2t) = exp (−At)C exp (V t) , (108)

where C ∈ Mm (R) , det (C) 6= 0. Then from (107), using formula (108) and

setting t = 0, we obtain equality (100) and 
ommutativity identity (105).

Sin
e the 
onditions of Lemma 3 are ful�lled, we 
an assume that the matrix

C is 
hosen in su
h a way that identity (105), equality (100) and 
ondition (99)

hold and in addition to that matrix (108) is regular on [0,+∞) . From identity

(105), a

ording to Lemma (4), we get equalities (101). The ne
essity is proved

and the proof of the Theorem is 
ompleted.
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Remark 2. Suppose that A,V,C ∈Mm (R) and det (C) 6= 0. If for some non-

negative integer n ∈ N∪{0} the spe
trum of the matrix Zn =
{(

4B −A2
)
A(n)

}

is simple, i.e., all the eigenvalues of matrix Zn are di�erent, then 
onditions

(101) are equivalent to the equalities

[
B,CV C−1 −A

]
= 0, (109)

[
A,CV C−1

]
= 0. (110)

Proof. It is almost obvious that 
onditions (109) and (110) imply 
onditions

(101).

Suppose that 
onditions (101) are ful�lled and for some non-negative integer

n the spe
trum of matrix Zn is simple. Then there exists a nonsingular matrix

T, su
h that the matrix T−1ZnT is diagonal with pairwise di�erent diagonal

elements. Thus, (see [12, p. 221℄) we have that

T−1
(
CV C−1 −A

)
T = diag [σ1, . . . , σm] , σi ∈ R, i ∈ 1,m. (111)

Using Theorem 5 and equalities (101) we obtain

0 =
[
[Zn, A] , CV C−1 −A

]
=
[
Zn,

[
A,CV C−1 −A

]]
.

Applying the same reasoning as above to the latter equalities we arrive at the

following representation, whi
h is similar to (111):

T−1
[
A,CV C−1 −A

]
T = T−1ATT−1

(
CV C−1 −A

)
T−

−T−1
(
CV C−1 −A

)
TT−1AT = TAT−1diag [σ1, . . . , σm]−

−diag [σ1, . . . , σm]TAT−1 = diag [τ1, . . . , τm] , τi ∈ R, i ∈ 1,m.

(112)

It is easy to see that all the diagonal elements of matrix

[TAT−1, diag [σ1, . . . , σm]] are equal to 0. On the other hand, from (112) it fol-

lows that all the elements of matrix [TAT−1, diag [σ1, . . . , σm]] ex
ept for the
diagonal are equal to 0. Therefore we get the equality

[
A,CV C−1 −A

]
= 0

whi
h implies equality (110). Additionally to that equality (109) obviously

follows from (101) and (110). The proof is 
ompleted.

Remark 3. Conditions (109) and (110) imply 
onditions (101). The reverse

impli
ation is true only when the spe
trum of the matrix Zn ={(
4B −A2

)
A(n)

}
is simple for some non-negative integer n.

Though Theorem 6 gives us the ne
essary and su�
ient 
onditions provid-

ing that systems (97) and (98) are equivalent (L-equivalent, to be pre
ise),


onditions (99), (100) and (101) of the Theorem do not possess the property of

symmetry, whi
h is one of the main properties of an equivalen
e relation. How-

ever, this is only the matter of the wording. In that form the theorem about

L-equivalen
e will be useful in the further se
tions of the paper. Theorem 6


an be reformulated in the �symmetri
� form presented below.
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Theorem 7 (An analogue of the Erugin's theorem in the �symmetri
� form).

Suppose that A,B, V,W ∈ Mm (R) . The two systems of se
ond-order di�er-

ential equations (97) and (98) are L-equivalent if and only if there exists a

nonsingular matrix C ∈Mm (R) , su
h that

CVR = ARC, (113)

C
(
4W − V 2

)
=
(
4B −A2

)
C, (114)

{(
4B −A2

)
A(n)

}
(CV −AC) = (CV −AC)

{(
4W − V 2

)
V (n)

}
, (115)

n = 0, 1, 2, . . . ,m2 − 1.

Proof. To prove the Theorem it is enough to show that 
onditions (99) �

(101) are equivalent to 
onditions (113) � (115). It is easy to see that 
ondition

(99) is equivalent to 
ondition (113), as well as 
ondition (100) is equivalent to


ondition (114).

Taking into a

ount (114), from equalities (115) with n = 0 we obtain the

equalities

(
4B −A2

) (
CV C−1 −A

)
=
(
CV C−1 −A

)
C
(
4W − V 2

)
C−1 = (116)

=
(
CV C−1 −A

) (
4B −A2

)

whi
h lead us to 
ondition (101) with n = 0. Multiplying equality (116) on C−1

from the left and on C from the right and rearranging the summands, we get

[C−1
(
4B −A2

)
C, V ] = [

(
4W − V 2

)
, V ] = C−1

[(
4B −A2

)
, A
]
C. (117)

From equalities (115) with n = 1, taking into a

ount (114) and (117), we

obtain the equalities

{(
4B −A2

)
A
} (
CV C−1 −A

)
=

=
(
CV C−1 −A

)
C
{(

4W − V 2
)
V
}
C−1 = (118)

=
(
CV C−1 −A

) {(
4B −A2

)
V
}

whi
h lead us to 
ondition (101) with n = 1. Multiplying equality (118) on C−1

from the left and on C from the right and rearranging the summands, we get

(
C−1

{(
4B −A2

)
A
}
C
)
V − V

(
C−1

{(
4B −A2

)
A
}
C
)

=

= C−1
{(

4B −A2
)
A(2)

}
C.

Combining the latter equality with (117) we obtain

{(
4W − V 2

)
V (2)

}
= C−1

{(
4B −A2

)
A(2)

}
C. (119)

Therefore we have proved that the �rst two equalities of (101) (with n = 0, 1)
are equivalent to the �rst two equalities of (115) (with n = 0, 1) respe
tively.
Besides that we have proved the auxiliary equalities (117) and (119). Let us

assume that for some positive integer k, 2 < k < m2 − 1 we have proved that

the �rst k equalities of (101) are equivalent to the �rst k equalities of (115)
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(with n = 0, 1, . . . , k − 1) respe
tively and the auxiliary equality (similar to

(119)) {(
4W − V 2

)
V (k)

}
= C−1

{(
4B −A2

)
A(k)

}
C (120)

holds. Then from equalities (115) with n = k, taking into a

ount (120), we

obtain equalities

{(
4B −A2

)
A(k)

} (
CV C−1 −A

)
=

=
(
CV C−1 −A

)
C
{(

4W − V 2
)
V (k)

}
C−1 =

=
(
CV C−1 −A

) {(
4B −A2

)
V (k)

}
(121)

whi
h lead us to 
ondition (101) with n = k. In addition to that, multiplying

equality (121) on C−1
from the left and on C from the right and rearranging

the summands, we obtain

(
C−1

{(
4B −A2

)
A(k)

}
C
)
V − V

(
C−1

{(
4B −A2

)
A(k)

}
C
)

=

= C−1
{(

4B −A2
)
A(k+1)

}
C.

Combining the latter equality with assumption (120) we get

{(
4W − V 2

)
V (k+1)

}
= C−1

{(
4B −A2

)
A(k+1)

}
C. (122)

Therefore we have proved that the �rst k+ 1 equalities of (101) are equivalent

to the �rst k + 1 equalities of (115) (with n = 0, 1, . . . , k) respe
tively. Also,

we have proved the auxiliary equality (122). A

ording to the prin
iple of

mathemati
al indu
tion we 
an 
on
lude that equalities (101) are equivalent to

equalities (115), provided that 
ondition (114) holds. This 
ompletes the proof

of the Theorem.

4. Consequen
es from Theorem 6

Below we have stated several 
onsequen
es from Theorem 6 that are related

to the question of symmetrization of the matrix di�erential equation (or, in

other words, the system of di�erential equations)

J ẍ + (D +G) ẋ + (P + Π)x = 0, (123)

where J,D,G,P,Π ∈ Mm (R) , J = JT > 0, D = DT , Π = ΠT , G = −GT ,
P = −P T . Let us denote

A = J− 1
2 (D +G) J− 1

2 , B = J− 1
2 (P + Π) J− 1

2 . (124)

Corollary 6. Suppose that there exist a symmetri
 matrix V ∈Mm (R) and a

nonsingular matrix C ∈Mm (R) satisfying 
onditions

9

[
A, CV C−1

]
= ACV C−1 −CV C−1A = 0, (125)

[
B, A− CV C−1

]
= B

(
A−CV C−1

)
−
(
A− CV C−1

)
B = 0, (126)

CVR = ARC. (127)

9

See Remark 3.
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Then the autonomous equation (123) is L-equivalent to the autonomous equa-

tion

ξ̈ + V ξ̇ +Wξ = 0, V,W ∈Mm (R) , (128)

W =
1

4
V 2 + C−1

(
B − 1

4
A2

)
C, (129)


ontaining no gyros
opi
 stru
tures (V = V T ).

Corollary 7. Suppose that there exist matri
es V,C ∈ Mm (R) , det (C) 6= 0
satisfying 
onditions (125)�(127) and

V 2 −
(
V 2
)T

+ C−1ZC − CTZT
(
C−1

)T
= 0 (130)

where

Z =

(
B − 1

4
A2

)
.

Then the autonomous equation (123) is L-equivalent to the autonomous equa-

tion (128), (129), 
ontaining no non-
onservative positional stru
tures (W =
W T ).

Corollary 8. Suppose that there exist a symmetri
 matrix V ∈ Mm (R) and

a nonsingular matrix C ∈ Mm (R) satisfying 
onditions (125)�(127) together

with the equality

C−1ZC − CTZT
(
C−1

)T
= 0. (131)

Then the autonomous equation (123) is L-equivalent to the �symmetri
� au-

tonomous equation (128), (129) (W = W T , V = V T ).

Corollary 9. If for some non-negative integer n the spe
trum of the matrix

Zn =
{(

4B −A2
)
A(n)

}

is simple then the 
onditions of Corollaries 6�8 are the ne
essary ones (not only

su�
ient!).

Combining Theorem 6 with the theorems of Kelvin � Tait � Chetayev it is

not hard to prove the following theorem that 
an be viewed as a generalization

of the Mingori's [3℄ and M�uller's [4℄ theorems.

Theorem 8. Suppose that the matri
es V,C ∈ Mm (R) , det (C) 6= 0,
V + V T > 0 satisfy 
onditions

CVR = ARC, (132)

{(
4B −A2

)
A(n)

(
CV C−1 −A

)}
= 0, n = 0, 1, . . . ,m2 − 1, (133)

V 2 −
(
V 2
)T

+ C−1
(
4B −A2

)
C − CT

(
4B −A2

)T (
C−1

)T
= 0. (134)

If the symmetri
 matrix

W =
1

4
V 2 + C−1

(
B − 1

4
A2

)
C (135)

is positive de�nite then the null solution of system (123) is asymptoti
ally stable

(in the sense of Lyapunov ) and if matrix (135) is nonsingular and has at least
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one negative eigenvalue then the null solution of system (123) is unstable (in

the sense of Lyapunov).

It is easy to see that if P = 0 then 
onditions (132) � (134) 
an be satis�ed

on
e we take V = A, C = E. In this 
ase we would have that W = Π. This
means that Theorem 8 
an be 
onsidered as a generalization of the 3-rd and

4-th theorems of Kelvin � Tait � Chetayev (see [17℄).

It is not hard to verify that the 
onditions of the Mingori's [3℄ and M�uller's

[4℄ theorems implies 
onditions (132) � (134). However, the following example

shows that the 
onverse of above proposition is not 
orre
t in general.

Example 1. Assume that

A = diag [A1, A2] , B =

[
B1 b5E

(2)

b5E
(2) B2

]
,

A1 = T

[
a1 a2

−a2 a1

]
T−1, A2 = T

[
a3 a4

−a4 a3

]
T−1,

B1 = T

[
b1 b2
−b2 b1

]
T−1, B2 = T

[
b3

a3b2
a1

−a3b2
a1

b3

]
T−1,

J = diag [1, 1, 1, 1] , T =

[
1 1
0 1

]
, E(2) =

[
1 0
0 1

]
.

(136)

Then in terms of matrix 
oe�
ients of equation (123) we have

D = diag [D1,D2] , G = diag [G1, G2] ,

D1 =

[
a1 − a2

a2
2

a2
2 a2 + a1

]
, D2 =

[
a3 − a4

a4
2

a4
2 a4 + a3

]
,

G1 = −3a2
2 S(2), G2 = −3a4

2 S(2), S(2) =

[
0 −1
1 0

]
,

Π =

[
Π1 b5E

(2)

b5E
(2) Π2

]
, P = −diag

[
3b2
2 S

(2), 3a3b2
2a1

S(2)
]
,

Π1 =

[
b1 − b2

b2
2

b2
2 b2 + b1

]
, Π2 =

[
b3a1−b2a3

a1

a3b2
2a1

a3b2
2a1

a3b2+b3a1
a1

]
.

(137)

Both, the Mingori's [3℄ and M�uller's [4℄ theorems demand the 
ommutativity

of the matri
es P and D.

10

However, it is easy to verify that for the matri
es

P and D (137) this 
ondition is not ful�lled in general. Thus, we 
an't use

the results of the mentioned theorems for the stability investigation of system

(123), (137). On the other hand, the matri
es

V = diag [V1, V2] , C = diag [T, T ] ,

V1 = a1E
(2) −

(
a2 − 2b2

a1

)
S(2), V2 = a3E

(2) −
(
a4 − 2b2

a1

)
S(2),

(138)

10

The same is true for the results of papers [5, 6, 7, 8, 9℄
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satisfy 
onditions (125) � (127) of Theorem 8, a

ording to whi
h the matrix

W (135) 
an be expressed in the form of

W =

[
w1E

(2) b5E
(2)

b5E
(2) w2E

(2)

]
,

w1 =
a1a2b2 − b22 + a2

1b1
a2

1

, w2 =
a1a4b2 − b22 + a2

1b3
a2

1

.

(139)

The 
onditions of Sylvester's 
riterion (see [18, 
. 99℄), when applied to the

matrix W (139), lead us to the inequalities

w1 > 0, w2 > 0. (140)

Inequalities (140) together with the 
onditions a1 > 0, a3 > 0 (whi
h provide

that the matrix V (138) is positive de�nite) des
ribe the region of the asymp-

toti
al stability of the null solution of system (123), (137).

5. On the inter
onne
tion between the notions of the

Lk-equivalen
e and the equivalen
e in the sense of Lyapunov

It is well known that systems (6) and (9) 
an be rewritten in the form of

d

dt

[
x

ẋ

]
= A

∗ (t)

[
x

ẋ

]
, A

∗ (t) =

[
O E

−B (t) −A (t)

]
, (141)

and

d

dt

[
ξ

ξ̇

]
= V

∗ (t)

[
ξ

ξ̇

]
, V

∗ (t) =

[
O E

−W (t) −V (t)

]
, (142)

respe
tively. Suppose that systems (141) and (142) are 
onne
ted by the trans-

formation[
x

ẋ

]
= L (t)

[
ξ

ξ̇

]
, L (t) =

[
L11 (t) L12 (t)
L21 (t) L22 (t)

]
, t ∈ [t0,+∞) , (143)

Lij (t) ∈Mm

(
C1 [t0,+∞]

)
. It is not hard to verify that this would be the 
ase

if and only if the equalities

L̇11 (t) − L12 (t)W (t) − L21 (t) = 0,

L̇12 (t) − L12 (t)V (t) + L11 (t) − L22 (t) = 0,

(144)

B (t)L11 (t) +A (t)L21 (t) = L22 (t)W (t) − L̇21 (t) ,

B (t)L12 (t) +A (t)L22 (t) = −L21 (t) + L22 (t)V (t) − L̇22 (t)

(145)

hold true ∀t ∈ [t0,+∞) .
In a

ordan
e with the de�nition of the equivalen
e in the sense of Lyapunov

of two systems of �rst-order ODEs that was given in [1, p. 118℄ we 
an introdu
e

the same notion for the 
ase of se
ond-order systems.

De�nition 6. We say that the systems of se
ond-order ODEs (6) and (9) are

equivalent in the sense of Lyapunov if there exists a Lyapunov matrix (see

de�nition in [1, p. 117℄) L (t) (143) satisfying 
onditions (144), (145).
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Let us assume that the matrix L (t) (143) satis�es 
onditions

L12 (t) = O, L11 (t) = L (t) ∈Mm

(
C2 [t0,+∞)

)
,

inf
t∈[t0,+∞]

|det (L (t))| > 0, sup
t∈[t0,+∞)

∥∥∥∥
dk

dtk
L (t)

∥∥∥∥ < +∞, ∀k ∈ 0, 2.

Then from equalities (144) we immediately obtain that L21 (t) = L̇11 (t) ,
L22 (t) = L (t) ; transformation (143) redu
es to the form

[
x

ẋ

]
=

[
L (t) O

L̇ (t) L (t)

] [
ξ

ξ̇

]
(146)

and represents a Lyapunov transformation (see de�nition in [1, p. 117℄); 
on-

ditions (145) redu
e to 
onditions (10), i.e.,

V (t) = L−1 (t)
(
2L̇ (t) +A (t)L (t)

)
,

W (t) = L−1 (t)
(
L̈ (t) +A (t) L̇ (t) +B (t)L (t)

)
.

(147)

Thus, we 
an 
on
lude that if systems (6) and (9) are L2-equivalent a

ording

to De�nition 4 then they are equivalent in the sense of Lyapunov a

ording to

De�nition 6. However, it is almost obvious that the 
onverse of above proposi-

tion is not 
orre
t in general. It is easy to see that the notion of the equivalen
e

in the sense of Lyapunov in
ludes the notions of the L2-equivalen
e (see De�-

nition 4) and the L-equivalen
e (see De�nition 5) as partial 
ases. Therefore,

when we 
onsider the possibility of using stru
tural transformations to aid the

investigation of stability of the null solution of system (6), we inevitably arrive

at the following general problems of symmetrization:

1. for the given system (6), �nd a Lyapunov matrix L (t) (143) and matri
es

V (t) ,W (t) ∈ Mm (C [t0,+∞)) whi
h satisfy the symmetry 
onditions

V (t) = V T (t) and/or W (t) = W T (t) together with equalities (144),

(145) ∀t ∈ [t0,+∞) ;
2. for the given autonomous system (6), i.e, A (t) = A ∈ Mm (R) , B (t) =
B ∈ Mm (R) , �nd a Lyapunov matrix L (t) (143) and matri
es V (t) =
V ∈ Mm (R) , W (t) = W ∈ Mm (R) whi
h satisfy the symmetry 
on-

ditions V = V T
and/or W = W T

together with equalities (144), (145)

∀t ∈ [0,+∞) .

In the 
ase when systems (6) and (9) are autonomous, i.e., A∗ (t) = A∗ ∈
M2m (R) , V

∗ (t) = V
∗ ∈ M2m (R) , the ne
essary and su�
ient 
onditions

providing that they are equivalent in the sense of Lyapunov were found by

Erugin (see the Erugin's theorem in [15, p. 145℄): Two systems (141) and

(142) (A
∗
and V

∗
are 
onstant matri
es of the same order) are equivalent in

the sense of Lyapunov if and only if the matri
es A
∗
and V

∗
have a single,

similar real part of the spe
trum or, in other words, there exists a nonsingular

matrix C ∈M2m (R) , satisfying equality

A
∗
R = CV

∗
RC

−1.
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Evidently, in general 
ase, to 
he
k whether the 
onditions of the Erugin's

theorem are ful�lled 
ould be as di�
ult as to solve both systems (141) and

(142) dire
tly. However, Theorems 2 � 4, 6 indi
ate that in some 
ases the

question about equivalen
e in the sense of Lyapunov of two systems (141) and

(142) 
an be answered without ne
essity to solve them.

Let as suppose that V (t) ,W (t) ∈Mm

(
C1 [t0,+∞)

)
. Then substituting the

expressions for matri
es L21 (t) and L22 (t) obtained from equations (144) into

equation (145), we get the following system of se
ond-order matrix di�erential

equations with respe
t to the unknown matri
es L11 (t) , L12 (t) :

d

dt

(
Ż (t) + Z (t)V∗ (t)

)
+
(
Ż (t) + Z (t)V∗ (t)

)
V

∗ (t)+

+B (t)Z (t) + +A (t)
(
Ż (t) + Z (t)V∗ (t)

)
= 0,

Z (t) = [L11 (t) , L12 (t)] .

(148)

Thus, we arrive at the 
on
lusion that systems (6) and (9) are equivalent in

the sense of Lyapunov if and only if system (148) possesses a solution Z (t)
satisfying 
onditions

sup
t∈[t0,+∞)

∥∥∥∥
dk

dtk
L (t)

∥∥∥∥ < +∞, k = 0, 1, inf
t∈[t0,+∞)

|det (L (t))| > 0,

L21 (t) = L̇11 (t) − L12 (t)W (t) ,

L22 (t) = L̇12 (t) − L12 (t)V (t) + L11 (t) .

(149)

The general problems of symmetrization (GPS) stated above have not been

studied in this paper. However, on our opinion, the problem of �nding ne
essary

and su�
ient 
onditions for solvability of the GPS 
an be interesting from both

pra
ti
al and theoreti
al points of view. This problem is signi�
antly more


ompli
ated then the problem of �nding ne
essary and su�
ient 
onditions for

solvability of the EGS and/or ENPS problems (see de�nitions on pp. 40 and

46). The main reason for that is the signi�
ant 
omplexity of 
onditions (148),

(149) for �nding the matri
es L (t) , V (t) and W (t) . On the other hand, as

it was mentioned above, in some 
ases to solve the GPS for the given system

the one should be able to determine the Jordan 
anoni
al form of the system's

matrix (see the 
onditions of the Erugin's theorem). Evidently, in this 
ase the

using of stru
tural transformations 
an't fa
ilitate the stability investigation of

the null solution of the system.

6. Appli
ation of the stru
tural transformations to the

stability investigation of dynami
al systems

The stability of rotary motion of a rigid body suspended on a

string. Let us 
onsider the symmetrization problem for the system of se
ond-

order di�erential equations des
ribing the perturbed motion of a heavy, sym-

metri
 rigid body suspended to the stationary point O by the inextensible

weightless string. We assume that the string is atta
hed to the body at the

point S lying on the body's symmetry axis. We denote the distan
e between
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point S and the 
enter of mass of the body by a, and the length of the string

by b. It is known that the rotary motion of the body 
an be approximately

des
ribed (assuming that the displa
ement and rotations are small enough) by

the following equations (see equations (2.8) and (2.9) from [19℄):





J1ẍ1 + λẋ1 + cx1 − (2J1 − J3)ωẋ2 + (λ1 − λ)ωx2 +mgax3 = 0,
J1ẍ2 + λẋ2 + cx2 + (2J1 − J3)ωẋ1 − (λ1 − λ)ωx1 +mgax4 = 0,
mb2ẍ3 +mb(g − bω2)x3 − 2mb2ωẋ4 +mgax1 = 0,
mb2ẍ4 +mb(g − bω2)x4 + 2mb2ωẋ3 +mgax2 = 0,

(150)

where c = mga (ε+ 1)+(J3 − J1)ω
2, a = bε, λ = fD1, λ1 = fD3. In equations

(150) by ω > 0 we denote the angular velo
ity of rotation of the body, by

m � the mass of the body, by g � the free fall a

eleration, and by J∗ =
diag [J1, J1, J3] � the 
entral tensor of inertia of the body. The authors of

[19℄ assume that the body is e�e
ted by the dissipative moment Md = −fDω,
where D = diag [D1,D1,D3] , D1 > 0,D3 > 0, f > 0. Additionally, we assume

that 2J1 − J3 6= 0, J1 > 0.
It is easy to see that system (150) 
an be represented in the form of (123)

with

J = diag
[
J1 E

(2),mb2 E(2)
]
, D = diag

[
λ E(2), O(2)

]
,

G = diag
[
(2J1 − J3)ω S

(2), 2mb2ω S(2)
]
,

Π =

[
c E(2) mga E(2)

mga E(2) mb(g − bω2) E(2)

]
,

P = diag
[
−(λ1 − λ)ω S(2), O(2)

]
,

E(2) =

[
1 0
0 1

]
, S(2) =

[
0 −1
1 0

]
,

where O(2)
denotes the square zero matrix of order 2. Furthermore, using

notation (124) we get

A = J− 1
2 (D +G) J− 1

2 = D1 +G1 =

= diag

[
1
J1

[
λ −(2J1 − J3)ω

(2J1 − J3)ω λ

]
, 2ω

[
0 −1
1 0

]]
,

(151)

B = J− 1
2 (P + Π)J− 1

2 = P1 + Π1 =

=

[
cJ−1

1 E(2) − J−1
1 (λ1 − λ)ω S(2) ga

√
m

b
√

J1
E(2)

ga
√

m

b
√

J1
E(2)

(
gb−1 − ω2

)
E(2)

]
.

(152)

Let us �nd the su�
ient 
onditions in terms of the parameters of system

(150) whi
h provide that the system is equivalent to some other system that

does not 
ontain the gyros
opi
 stru
tures and (or) non-
onservative positional

stru
tures.
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The elimination of the gyros
opi
 stru
tures. It is easy to verify that

the spe
trum of matrix Z0 =
(
4B −A2

)
(151), (152) is simple. Therefore, a
-


ording to Corollary 9 the 
onditions of Corollary 6 are ne
essary and su�
ient

simultaneously. Let us 
he
k whether the 
onditions of Corollary 6 are ful�lled.

The matrix CV C−1
satisfying 
ondition (125) 
an be expressed in the form of

CV C−1 = diag

[[
v11 v12
−v12 v11

]
,

[
v33 v34
−v34 v33

]]
. (153)

Taking into a

ount representation (153) and the fa
t that matrix V is real we

arrive at the 
on
lusion that 
ondition (127) 
an be satis�ed if and only if

v11 =
λ

J1
, v33 = 0. (154)

Taking into a

ount (153) and (154), from 
ondition (126) we 
an �nd that

CV C−1 = diag

[[
λJ−1

1 v12 + ωJ3J
−1
1

−v12 − ωJ3J
−1
1 λJ−1

1

]
,

[
0 v12

−v12 0

]]
. (155)

From formula (155) it follows that the matrix V is a symmetri
 matrix if and

only if

J3 = 0, v12 = 0. (156)

Thus, the gyros
opi
 stru
tures 
an be ex
luded from system (150) if and only

if J3 = 0.
We 
an assume that the 
ondition J3 = 0 is satis�ed if the value of the inertia

moment J3 is fairly small in 
omparison with the value of 2J1. This 
an be the


ase when the body is heavy and has a shape of a 
ylinder with a very small

transverse se
tion.

Following to the Sommerfeld- Greenhill 
on
ept we 
an set λ = µJ1, λ1 =
µJ3, where µ is a small 
onstant 
oe�
ient depending on the environment


hara
teristi
s. Returning to the 
ase of a heavy 
ylinder with a very small

transverse se
tion, we 
an assume that λ1 = 0.
The elimination of the non-
onservative positional stru
tures. As it

was shown above, 
onditions (125) � (127) led us to representation (155). Let

us take C = E(4). To satisfy 
ondition (130) we take v12 = −2ωλ1
λ and a

ording

to Corollary 7, whose 
onditions are ful�lled, obtain the matrix 
oe�
ients of

equation (128)

V = diag
[
V (1), V (2)

]
,

V (1) = 1
λJ1

[
λ2 J3ωλ− 2ωλ1J1

−J3ωλ+ 2ωλ1J1 λ2

]
,

V (2) = 2ωλ1
λ

[
0 −1
1 0

]
,

W =



(
ω2 λ1

λ

(
J3
J1

− λ1
λ

)
+ mga

J1
(ε+ 1)

)
E(2)

√
mgε√
J1
E(2)

√
mgε√
J1
E(2)

(
g
b − λ2

1ω2

λ2

)
E(2)


 .

(157)
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We see that, a

ording to Corollary 7, the elimination of the non-
onservative

positional stru
tures is possible without any additional restri
tions on the pa-

rameters of system (150).

On
e the non-
onservative positional stru
tures are eliminated, we 
an try to

�nd the region of the asymptoti
 stability of the null solution of system (150).

Sin
e systems (150) and (128), (157) are L-equivalent, that is, equivalent in the

sense of Lyapunov, their regions of the asymptoti
 stability 
oin
ide. Let us

�nd the region of the asymptoti
 stability of system (128), (157).

Unfortunately, the matrix V (157) is not a positive de�nite matrix, that is,

the 
onditions of Theorem 8 are not ful�lled. However, this problem 
an be

over
ame. First of all let us emphasize the fa
t that if the parameters of system

(150) are 
hosen in su
h a way that det (W ) = 0 then the null solution of system
(150) is unstable. Thus, we 
an assume that the matrix W is nonsingular.

It is easy to verify that if

W > 0 (158)

then fun
tion V (ξ) = ξ̇T ξ̇ + ξTWξ where ξ = ξ(t) represents an arbitrary so-

lution of system (128), (157), satis�es the 
onditions of the Krasovsky theorem

on asymptoti
 stability (see, for example, [17, p. 42℄). On the other hand if

the symmetri
 matrix W (157) is nonsingular and has at least one negative

eigenvalue then the fun
tion −V (ξ) satis�es the 
onditions of the Krasovsky

theorem on instability (see, for example, [17, p. 51℄). Thus, we 
an 
on
lude

that 
ondition (158) des
ribes the required region of asymptoti
 stability.

The 
onditions of Sylvester's 
riterion, when applied to the matrix W (157),

lead us to the following system of inequalities:

P > 0, PS −R2 > 0, (159)

where

P =

(
ω2λ1

λ

(
J3

J1
− λ1

λ

)
+
mga

J1
(ε+ 1)

)
, S =

(
g

b
− λ2

1ω
2

λ2

)
, R =

√
mgε√
J1

.

Returning to the 
ase of a heavy 
ylinder with a very small transverse se
tion

and setting λ1 = 0 we see that

P =
mga

J1

(
1 +

a

b

)
, S =

g

b
, R =

ga
√
m

b
√
J1

.

Therefore, the �rst inequality of (159) is ful�lled and the se
ond one redu
es

to the form

mg2

J1

a

b
> 0.

It is worth to emphasize that 
onditions (159) are in good agreement with the

similar 
onditions obtained in [9℄. On the other hand, a sophisti
ated method

proposed in paper [19℄ for the stability investigation of the null solution of

system (150) results in a set of inequalities whi
h do not des
ribe the region of

asymptoti
 stability of the system (
ontrary to the expe
tations of the authors

of paper [19℄). The reason for that is an essential error introdu
ed in [19℄ by

the authors.
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7. Con
lusions

In the present paper we have extended and generalized the results of a series

of papers devoted to the stability investigation of the null solution of systems of

se
ond-order ODEs via the stability preserving stru
tural transformations. The

series was started with D.L. Mingori [3℄ and then 
ontinued by Von P. C. M�uller

[4℄, V.N. Koshlyakov [8℄, V.N. Koshlyakov and V.L. Makarov [20, 5, 6, 7℄,

V.N. Koshlyakov and V.A. Storozhenko [9℄.

We have found the ne
essary and su�
ient 
onditions providing that a given

autonomous (non-autonomous) system of se
ond-order ODEs is equivalent in

the sense of Lyapunov to some autonomous (non-autonomous) system of se
ond-

order ODEs whi
h does not 
ontain gyros
opi
 and/or non-
onservative posi-

tional stru
tures (see Theorems 2, 3, 4, 6).

Parti
ularly, using Theorem 6 we managed to generalize the results of papers

[3, 4, 5, 6, 7, 8, 9℄ whi
h are related to the ENPS problem for the autonomous

system (123). The results of the mentioned papers are appli
able only when

the matrix D 
ommutate with P whereas in the present paper we got rid of

this unne
essary 
onstraint (see Example 1).

Theorem 8 proved in the paper generalizes the 3-rd and 4-th Kelvin � Tait

� Chetayev theorems as well as the Mingori's [3℄ and M�uller's [4℄ theorems.

In Se
tion 5 we stated and brie�y dis
ussed the general problems of sym-

metrization (GPS). It was shown that the EGS and ENPS problems 
an be


onsidered as parti
ular 
ases of the GPS. The solution of the latter problems


an provide us with essentially more powerful tools for the stability investiga-

tion of systems of ODEs than those obtained in the present paper. Due to the

signi�
ant 
omplexity of the GPS we left them for the subsequent publi
ations.

In Se
tion 6 it was shown that the theoreti
al results presented in the paper


an be su

essfully applied to the stability investigation of real me
hani
al

systems.
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