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STABILITY PRESERVING STRUCTURAL
TRANSFORMATIONS OF SYSTEMS
OF LINEAR SECOND-ORDER
ORDINARY DIFFERENTIAL EQUATIONS

VOLODYMYR MAKAROV, DENYS DRAGUNOV

PE3IOME. B mamiit crarti po3pobJsieHO TEOpil0 CTPYKTYDHUIl TepEeTBOPEHB
cucrem 3BuHalinnx mudepenniaabanx piBasgab (3IP) mnpyroro mopanky, saki
36epiraloTh BIaCTHBICTH cTifikocTi 3a JIsgmynoBuM. OcobuBy yBary mpwiie-
HO TAKMM IIePETBOPEHHSIM, K1 IPUBOAATH 33maHy cucremy 3/IP no cremiain-
HOT'O CHMETPUIHOTO BHLY, OL/IBIIT 3PYYHOrO P JOC/IIIZKEHHI CTIKOCTI HyTbO-
BOro po3B’3ky Takux cucreM. OKpPeMO PO3rJIsHYTO BUIIAJKU aBTOHOMHHMX Ta
HeaBTOHOMHUX cructeM. OCHOBHA TeopeMma JAHOI CTATTI CYTTEBO y3ara/IbHIOE
BCi Bifiomi pe3ynbraTu B 00/1aCTi CTPYKTYpPHUX meperBopedb cuctem 3/IP ta
MOXKE PO3IVISIATUCH 9K aHAJOr BIIOMOI Teopemu EpyriHa mpo cucremu mep-
IIOT0O TOPSIAKY. 3a3HAYMEHa TeopeMa T03BOJIMNIIA HAM y3arajbHUTH 3-TiO Ta 4-
ty reopemu Kesbsina-Tera-Heraesa. Omepxkani Teoperuyni pesysibraru 6y
YCIINTHO 3aCTOCOBAHIL MIPH JOCTIPKEHH] CTIKOCTI 06epTaIbHOTO PYXY KOPCT-
KOT'O Tijla MiIBIMIEHOr0 Ha CTPYHI.

ABsTRACT. In the paper we have developed a theory of stability preserving
structural transformations (SPST) of systems of second-order ordinary differ-
ential equations (ODESs), i.e., the transformations which preserve the property
of Lyapunov stability. Special attention is paid to those SPST, which can re-
duce a given system of ODEs to several special symmetric forms that are more
approachable for the existing methods of stability investigation than the “non-
symmetric” ones. The autonomous and non-autonomous cases were discussed
separately. The main Theorem proved in the paper essentially generalizes all
the known theoretical results related to the SPST of systems of second-order
ODEs and can be viewed as an analogous of the Erugin’s theorem for the sys-
tems of second-order ODEs. The Theorem allowed us to generalize the 3-rd
and 4-th Kelvin — Tait — Chetayev theorems. The obtained theoretical results
were successfully applied to the stability investigation of the rotary motion of
a rigid body suspended on a string.

MSC 2010: 74H55, 34D20, 37N15

1. INTRODUCTION
It is well known that a great number of dynamical systems can be approxi-
mately described by the following system of second-order ordinary differential
equations (ODEs):

J(O)X () + (D (1) + G @) x(t) + (P (8) +I1(1)) x (¢) =F (£,x (¢)),
t e [to,oo)

(1)

Key words. Kelvin — Tait — Chetayev theorems, null solution, stability in the sense of Lya-
punov, Lyapunov’s second method for stability, Lyapunov transformation, Lyapunov matrix.
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where x(t) = col|zy(t),x2(t),...,Tm (t)] is an unknown vector-function.
From the physical point of view the matrix .J (t) = J7 () > 0 (the upper index
T denotes the operation of transposition) describes the inertia characteristics
of a dynamical system; the matrices D (t) = DT (t),G (t) = -GT (), P (t) =
—PT (t) and TI (t) = II7 (t) represent a dissipative, gyroscopic, non-conservative
positional and potential forces respectively; the vector-function F (¢, x (t))! rep-
resents an external forces acting on the system.

Let us consider a linear one-to-one mapping L1 (t), which maps the unknown
vector-function x(t) to some other m-dimensional unknown vector-function
&(t). If the inverse mapping, L(t), is sufficiently smooth then it can be viewed as
a structural transformation? of system (1). Indeed, substituting vector x(t) in
system (1) with expression L(t)&(t) we can get a transformed second-order sys-
tem of ODEs with respect to the unknown vector-function £(¢). In the present
paper we confine ourselves to study only those transformations (or mappings)
L, which do not change the stability properties of the null solution of system
(1). We will call them the stability preserving structural transformations.

By “stability properties” of a null solution we mean the properties of being
unstable, stable or asymptotically stable in the sense of Lyapunov.

Definition 1. The null solution, x¢(t) = 0, of system (1) is called stable
(in the sense of Lyapunov) if Ve > 0 there exists 6 = () > 0, such that
Ixs(t)|| < e, Vt € [tg,+00), where x5(t) represents any solution of system (1)
which satisfies initial condition ||x;s(to)| < 9.

The null solution is called asymptotically stable (in the sense of Lyapunov)
if it is stable and tiigrnoo Ixs(t)]] = 0.

The null solution is called unstable (in the sense of Lyapunov) if it is not
stable.

As an example of stability preserving structural transformations we can men-
tion the Lyapunov transformations (see |1, p. 117]) though those are not the
only stability preserving transformations considered in the present paper (see
section 2 for more detail).

Definition 2 (see [1], p. 117). A square matrix L(¢) will be called a Lyapunov
matrix if it satisfies the following conditions :

1. L(t) has continuous derivative dlc’l—gt) on some interval [tg, +00);
2. matrices L(t) and dlg’l—ff) are bounded on the interval [tg, +00);

3. there exists a constant 1 such that 0 < n < |det(L(t))], Vt € [to, 00).

A transformation x(t) = L(t)§(t) will be called a Lyapunov transformation if
the matrix L(¢) is a Lyapunov matrix.

The above classic definition is useful only for the case of first-order systems.
To adapt it for the case of second-order systems we will additionally require
that the Lyapunov matrix L(t) has continuous second derivative on [tg, +00).

1We assume that V¢, € [to, +00), HliHmO | F (t1,x)]|/lIx]| = 0.

2In the next section we will give a thorough definition of "structural transformation" and
here we are going to give a general idea.
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As it was pointed out by V. N. Koshlyakov in [2], when the gyroscopic terms
in system (1) are periodic in ¢ with some period 7 > 0 then the formal ap-
plication of the averaging method to the system could result in the discarding
of gyroscopic structures though this structures had some stabilizing effect on
the system before averaging. Thus, it is very desirable to have a theoretical
framework which allows us to transform the initial system into a system that
possess the same stability properties and contain no gyroscopic structures. In
[2] the author has considered a case when J(t) = agE,* ag > 0. He showed that
the transformation x(t) = L(¢)§(t), with matrix L(t) that satisfies the Cauchy
problem L(t) = —(2a0) 'G(t)L(t), L(ty) = E, will reduce system (1) to a
system which does not contain gyroscopic structures. He also proved that the
transformation mentioned above is a Lyapunov transformation, i.e., it preserves
stability properties of system (1). Furthermore, V. N. Koshlyakov showed that
in some real physical cases the reduced system could be so simple that its
general solution can be easily found explicitly.

However, V. N. Koshlyakov was not the first one who pointed out the prac-
tical benefits of using stability preserving transformations. Almost twenty five
years earlier D. L. Mingori did this.

In [3] D. L. Mingori has considered a case when system (1) is autonomous,
that is,

Ji(t) + (D +G)#(t) + (P + ) z(t) = 0, (2)
where x = col [z1 (t) ,x2(t),..., 2y (t)] is an unknown vector; here again the
matrix J = J7 > 0 describes the inertia characteristics of the dynamical system
and matrices D = DT, G = —GT, I = 1", P = —PT represent a dissipa-
tive, gyroscopic, non-conservative positional and potential forces respectively.
D. L. Mingori proved that under some restrictions imposed on the matrix co-
efficients of system (2) there exists a Lyapunov transformation

_1
a(t) = J 2 L&) (3)
that can reduce autonomous system (2) to another autonomous system
E() +VEM) +WE() =0 (4)

which does not contain nonconservative positional structures, i.e, W = W7T.
Since the matrix L(t) is a Lyapunov matrix, the null solutions of systems (2)
and (4) are stable, asymptotically stable or unstable simultaneously. On the
other hand, because of the symmetrical properties of system (4) the stability
investigation of its null solution is an easier task than the stability investigation
of the null solution of system (2).

Thereby in [3] D. L. Mingori had suggested an approach to the stability in-
vestigation of the second-order systems of ODEs (2) which consists of reducing
the initial problem to the problem of stability investigation of the correspond-
ing equivalent (in the sense of Lyapunov, see [1, p. 118|) symmetric system
(4). He has shown that such approach can be very useful and fruitful for the

3E denotes the identity matrix of corresponding order.
4For the sake of simplisity the vector function of external forces was not taken into account.



38 VOLODYMYR MAKAROV, DENYS DRAGUNOV

stability investigation in analytical mechanics. However, in [3] the author has
considered the case when D > 0 only. Though in [4] the results of D. L. Mingori
were extended on the case when D > 0, the necessary and sufficient conditions
providing that a given non-symmetric second-order system of ODEs is equiva-
lent in the sense of Lyapunov to some symmetric second-order system remains
unknown: both papers [3] and [4] contain the sufficient conditions only.

Later the necessary and sufficient conditions providing that the autonomous
system (2) can be reduced to some other autonomous system (4) with W, = W{
via substitution (3) were found in papers [5] and [6]. However, the results of
these papers were obtained under additional assumptions that

G = HG,
dL (t)
7 — >
T =020, (5)

D >0, det(G) #0,

where H denotes a positive numerical parameter.

In some cases the parameter H can be a part of matrix II. This will be the
case when equation (2) describes a perturbed motion of a gyroscopic systems
installed on the platform which rotates around the vertical with the angular
velocity w. Using assumptions (5) and assuming that IT = 1O + HIIH) | where
matrices IO, TI) are independent on H, the necessary and sufficient condi-
tions providing the reducibility of system (2) to some other system (4) with
W1 = W{ where obtained in [7].

One of the common features of the series of works [3, 4, 5, 6, 7, 8, 9] is that
their authors included the commutation of the matrices D and P into a set
of conditions which provide the reducibility of system (2) to system (4) with
W; = W{. As it is show in Section 4 (see Example 1) this commutativity
condition is not the necessary one® and in the present paper we finally got rid
of it.

In the present paper without any additional assumptions we have obtained
the necessary and sufficient conditions (in terms of the matrix coefficients)
providing that a given system of second-order ODEs is equivalent in the sense of
Lyapunov to some other system of second-order ODEs with symmetric matrix
coefficients. We have considered both the autonomous and non-autonomous
cases. In the case when the initial system is autonomous we require that the
reduced system be autonomous too.

The paper is organized as follows.

In Section 2 we introduce the notion of the structural transformation of a sys-
tem of second-order ODEs and give the definition of the Li-equivalent systems
of second-order ODEs. Using the notion of the Lj-equivalence we formulate
two symmetrization problems for the non-autonomous systems of second-order
ODEs: the problem of Elimination of Gyroscopic Structures (EGS problem) and
the problem of Elimination of Non-conservative Positional Structures (ENPS

SWe mean the case when there are no additional restrictions as, for example, those that
were introduced in [5], [6], [7].
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problem). In the section the necessary and sufficient conditions providing the
solvability of the both problems were obtained.

In Section 3 we reformulate the EGS and ENPS problems for the case of
the autonomous systems and introduce the notion of the L-equivalence of two
autonomous systems of second-order ODEs. Theorem 6 proved in the section
can be considered as an analogous of the Erugin’s theorem (see [1, p. 121])
for the autonomous systems of second-order ODEs. Some useful consequences
from Theorem 6 are stated in Section 5. Among them there is a theorem which
generalizes the theorems of Mingori (see [3]) and Miiller (see [4]).

In Section 5 we discuss the question of the interconnection between the no-
tions of the Li-equivalence and equivalence in the sense of Lyapunov.

In Section 6 we demonstrate how the using of structural transformations
can facilitate the stability investigation of the null solution of the autonomous
second-order system of ODEs describing the rotary motion of a rigid body
suspended on a string.

Section 7 contains several conclusions about the theoretical results presented
in the paper.

2. STABILITY PRESERVING STRUCTURAL TRANSFORMATIONS OF THE
NON-AUTONOMOUS SYSTEMS OF SECOND-ORDER ODESs
Let us consider the following system of second-order ordinary differential
equations:

X+A(t)x+ B(t)x =0, (6)
where x = 7 () = [z1 () ,..., & (£)]7 is an unknown vector-function. By de-
fault, we assume that A (t), B (t) are square matrices of order m whose elements
are continuous on [tg, +00) functions, i.e., A (t), B (t) € My, (C [tg, +0o0)) . Also
we will use the notation M, (Ci [to, —|—oo)) , 1 =1,2 to denote the linear spaces
of square matrices of order m whose elements belong to the functional space

C'[to,+o0), i = 1,2, and the notation M,, ,(R) will be used to denote the
space of constant real matrices of dimension m x n.

Definition 3. The structural transformation of the second-order system of
ordinary differential equations (6) is the transformation of unknown vector x
which can be expressed in the form

x=L(t)€, (7)
where € = [, (£),...,&n (8] is a new unknown vector-function,
L () € My (C2 [to,+00)),  det (L (£)) £0, ¥t € [to, +50)

Applying transformation (7) to system (6) we obtain the following system of
second-order ordinary differential equations:

LE®) + (200 + AW L) E(D) + ®)
L+ ABLO+BOLWM)EW =0,
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or , in more convenient form,
E+V(E+W (HE=0, (9)
where .
Vi) =L ) (2L + AW L),
(10)
W) =L (@) (L) + <> () + B(H)L(1)).
Apparently we have that V (¢),W (t) € M,, (C [to,+o0)). Therefore, apply-
ing transformation (7) to system (6) with continuous on [tg, +00) matrix co-

efficients, we arrive at system (9) that also possesses continuous on [tg, +00)
matrix coefficients.

Definition 4. We say that the system of second-order ODEs (6)
is Lg-equivalent to system (9) (k € {0,1,2}) if there exists a matrix L (t) €
My, (C? [to, +00)) satisfying conditions

1. |det (L (¢ ))| > n >0, Vt e [tg, +00),

2. sup H<+OOVZEOI<:

te[t0,+00) dt
together with equalities (10). A matrix L (t) € My, (C? [to, +o0)) which satis-
fies conditions 1, 2 for some k € {0,1,2} is called an Li-matrix.

According to the definition given in [10, p. 353], a matrix L(t) €
M,,(C[tg, +00)) which satisfies conditions 1, 2 for k = 0, is called a reqular
on [tp, +00) matriz. Transformation (7), where L (¢) is an Lo-matrix can also
be referenced to as a Lyapunov transformation of system of second-order ODEs
(compare with the definition of a Lyapunov transformation form |1, p. 117]).

Let us consider the following symmetrization problems for the given system
of second-order ODEs (6):

1. the problem of Elimination of Gyroscopic Structures (EGS problem)
which consists in finding an Lg-matrix L (t) (k = 0,1,2) together with
matrices V (t), W (t) € M,, (C[tg,+2)), V (t) = VT (t), such that
equalities (10) hold true V¢ € [to, +00);

2. the problem of Elimination of Non-conservative Positional Structures
(ENPS problem) which consists in finding an Lg-matrix L (t) (k =
0,1,2) together with matrices V (t),W (t) € My, (C[tg,+0)), W (t) =
WT (t), such that equalities (10) hold true V¢ € [tg, +00).

If the matrices L (¢),V (¢), W (t) mentioned in items 1 and/or 2 exist then we
say that the EGS and/or ENPS problems for system (6) can be solved by means
of Lj-transformation.

Both symmetrization problems can be stated in terms of the Li-equivalence
in the following way:

1. to find a system (9) with V (¢) = V7T (¢) which is Ly-equivalent to the
given system (6) (EGS problem);

2. to find a system (9) with W (t) = W7 () which is Lg-equivalent to the
given system (6) (ENPS problem).
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Let us find the necessary and sufficient conditions (in terms of matrices
A(t), B (t)) providing the solvability of the EGS and/or ENPS problems for
the given system (6), or, in other words, the necessary and sufficient conditions
providing that system (6) is Li-equivalent to some system (9) with V (t) =
VT (t) and/or W (t) = WT (t) for some k = 0, 1,2.

Supposing that the matrix coefficient in front of the vector-function f in
system (9) is symmetric (i.e., there is no gyroscopic structures), we arrive at the
following matrix differential equation with respect to the unknown Lg-matrix
L(t):

2 (L () LT () — L (t) LT (t)) FAG LA LT ) — L) LT (1) AT (1) = 0. (11)

Similarly to that, assuming that the matrix coefficient in front of the vector-
function £ in system (9) is symmetric (i.e., there is no non-conservative posi-
tional structures) we arrive at the equation

LOLT ) —LOLT )+ A@®) L) LT (t) -
(12)
—L(t) LT (t) AT (t) + B (t) L (t) LT (t) — L (t) L (t) BT (t) = 0.
It is easy to verify that there exists a unique pair of matrices K(t), S(t),
such that

LIT=LWLT () =K®)+S¢), Kt)=-KT@®), St =5T@1). (13)

If matrix L (¢) is an Lg-matrix (k = 0,1,2) then matrices K (t) and S (¢) (13)
belongs to M, (Ct[tg, +00)). It is easy to see that

L) =L O+ LOIT M =250, (4

and

L)LY (t) = 2/5(1/) dv+ Sy, L(to) LT (tg) = So = SI > 0. (15)

Taking into account equalities (13), (15), we can rewrite equations (11) and
(12) in the form of

AK (1) + A (1) <2ftS(y)du+So) - <2ftS(y)dv+So)AT(t) =0 (16)

and
2K (t) + A(t) (S (t) + K (1)) — (S (t) — K (1)) AT (t) +

+B(t) ({ZQS(V)dV—i-So) - ({fgg(,,)d,,JrSO)BT(t) Ly (17)

respectively. What are the necessary and sufficient requirements which have
to be imposed on the matrices K () and S (¢) to provide the existence of an
Lj-matrix L (t) which satisfies equality (13)7 The answer to this question is
given by the following theorem.
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Theorem 1. A regular on [to,+00) matriz L (t) which satisfies equality (13)
exists if and only if the matrices K (t),S (t) belong to M,, (C [ty,+0)) and
satisfy the following inequalities:

'Q/T'r (S (v))dv +Tr (Sp) | < u?,Vt € [to, +00), (18)
det (2/5 (v)dv + So> > n?,Vt € [to, +00) (19)

for some constants p > 0, n > 0 and real valued positive definite symmetric
matriz So € My, (R).

Proof. Necessity. Suppose that there exists a matrix L (¢) which belongs to
M,, (C! [to,+00)) and satisfies equality (13) together with inequalities

IL Ol p < py V€ [to, +00) °, (20)

\det (L ()| >, Vt € [to, +00) (21)

for some constants p > 0, n > 0. It easy to see that the matrices K (¢),S (¢)
appearing in (13) belong to M, (C [to,+0o0)), and the necessity of conditions
(18), (19) immediately follows from (15). The necessity in the theorem is
proved.

Sufficiency . Suppose that K (t),S (t) € M,,(C[to, +00)), K(t) = —KT(t),
S(t) = ST(t) and inequalities (18), (19) hold true for some constants p >
0, n > 0 and some positive definite symmetric matrix Sy. Assuming that the
matrix L = L (t) satisfies equality (13) Vt € [tg,+00) together with the initial
condition

L(tg) = Lo, LoLY = So, (22)

we arrive at the conclusion that equality (15) together with inequality (18)
imply inequality (20) as well as inequality (19) implies inequality (21).

Let us prove that the solution L = L (¢) to the Cauchy problem (13), (22)
supplemented with conditions (18), (19) exists and is unique on [tg, T] for any
arbitrary T° > to. If we denote by A;, ¢ = 1,2,...,m the ascending ordered
eigenvalues of matrix Sy, that is, 0 < Ay < Ao < ... < Ay, then inequality (18)
implies that

Am <> X =Tr(So) < p®. (23)
i=1

Taking into account inequality (23) we can obtain from inequality (19) the
estimate

det (Sp) S n?
ORI Wi MQ(mfl)

A=

Here || A, denotes the Frobenius norm of matrix A, that is, ||A||, = /Tr(AAT).
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which leads us to the inequality
—112 — m
5 = (s) < <

Since det(L(t)) # 0, Vt € [tg, +00), equality (13) can be rewritten in the form
of

L=F@tL)= (St +K @) (L), (24)
Now we intend to show that the matrix-valued function F (¢, L) satisfies con-
ditions of the Picard-—Lindelof theorem (see, for example, [11, p. 8]) in the
rectangle

zp:{(t,L)eRme(R):togth, 'L—Lo

gé, 0<5<1}. (25)
g K

Taking into account that the elements of matrix-functions S (¢) and K (¢) are
continuous on [ty, +00), it remains only to show that the matrix-valued function
F (t, L) is Lipschitz-continuous on P (25) with respect to its second argument
L. This fact follows from the following inequalities, which are valid for any

)
matrices L; € My, (R),i = 1,2, such that |L; — Lo||z < e
LT = LM = H(L1 — Lo+ Lo) ™' — (La— Lo+ Lo)leE =

= 5 (- o) L+ ) - Lt (L L) Lt )| =

>0 ) i : z’E
= | Lo (Z (1)’ ((Ll - Lo)Lal) > (-1 ((L2 - Lo)Lal) ) =
=0 =0 E
1 - ) 1 i 1 ‘
=o' [ Do (-1 (((Ll_LO)Lo) - ((LQ—LO)LE )) <
=1 E
o) 7 )
B . o
<|Zo"E > 1Ly = Lol 111 = Lall g 1 L2 = Lol | Lo || | =
i=1 \j=1
5 o) 7 -
B . o
= |Lg 5 1Ly = Lallg > [ DI = Lollg? 1Lo — Lol 1 Lol | <
i=1 \j=1
o ‘ 12
<Ly — Lol g ) Jis" ! = L1 — La| g - (26)
et (1-19)

In the above formula we have used the equality (see, for example, [12, p. 113])
(A+E)' =" (-1)'A", vAe M, R), |A4] <1,
i=0
and the evident identity

A”—B”:ZA”_i(A—B)Bi_l, VA,Be M,,(R), n=1,2,....
=1
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Using (26) we can estimate the norm of F (¢, L) on the rectangle  (25) in the
following way:

max ! TH — max L I - <
IL—Lo| <& (L) B i Liess I 0 o' lls
= &72 max ||L—L0||E+HL51H < L—Fm
T (1-9) |L—Lollp<2 B=1_5)?

_I\T
max ||F (¢, L < max ||K (t)+5(t max Lt H = Fiy.
s VP (L) < s KO+ SO max (@] =Py
Thus, the conditions of the Picard—Lindel6f theorem are satisfied and the
solution of the Cauchy problem (22), (24) exists at least on the interval I}, =

[to, h], where h = min {T, %} If h = T then the theorem is proved. Oth-
erwise, if h < T then, applying the same reasoning as above to equation (24)
with the initial condition L, = L (h), we arrive at the conclusion that the so-
lution to the Cauchy problem (22), (24) exists at least on the interval [t, 2h] .
Apparently, after a finite number of iterations we will prove that the solution
exists on [tg, T]. From the arbitrariness of T" it follows that the solution to the
Cauchy problem (22), (24) exists on [tg, +00). The theorem is proved.

It is not hard to verify that the matrix K (t) + 5 (t) where K (t) = —K7T (t),
S (t) = ST (t) is bounded on [ty, +o0] and/or belongs to M,,(C*[ty, +00)) if
and only if both of the two matrices K(t) and S(¢) are bounded on [tg, +00)
and/or belong to M,,(C¥[tg, +00)). Taking this fact into account and using
Theorem 1 we can make several conclusions stated below.

Corollary 3. An Li-matriz L (t) (k = 1,2) satisfying equality (13) ezists if
and only if K (t),S (t) € My, (C! [to,+00)) and the following conditions hold
true:

1. there exist constants ju > 0,1 > 0 and matriz So € M,, (R), So = S{ >0
satisfying inequalities (18), (19);

di
—K (t
i ()

di
dt’

+ sup ' S(t)“<+oo,W€0,k:—1.

2. sup ‘
t€[to,+00)

tE(to,+00)
Equation (16) and Corollary 3 imply the following theorem.

Theorem 2. The given system of second-order ODEs (6) with A(t) €
My, (C' [to, +00)) is Ly-equivalent (k = 0,1,2) to some system (9)  with
V(t) = VI (t) if and only if there emist the symmetric matrices S (t) €
M, (C’1 [t0,+oo)), So € My, (R), Sy > 0 which define the skew-symmetric
matriz K (t)
t
AK () =A@ AT () —A@)A (), At)= 2/S(V) dv + So, (27)
to
and satisfy conditions
1. (18), (19) for some constants u > 0, n > 0;
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%

—K (t) H sup < +o0,Vi€ 0,k —1, (k+#0)".

2. sup '

t€[to,+o0) || AT €[to,+00) H dt! H

From Theorem 2 we obtain the following corollary.

Corollary 4. The given system of second-order ODEs (6) with A(t) €
My, (Ct [to, +00)) is always Lo-equivalent to some system (9) with V (t) =
VT(t).

From equation (17) and Corollary 3 we can easily obtain the theorem which
gives the necessary and sufficient conditions for solvability of the ENPS prob-
lem.

Theorem 3. The given system of second-order ODEs (6) is Lj-equivalent (k =
0,1,2) to some system (9) with W (t) = W (t) if and only if there exist the
symmetric matrices S (t) € My, (C* [to,+00)), So € My, (R), Sy > 0 and the
skew-symmetric matriz K (t) which satisfies the matriz differential equation

2K (t) + A(t) K (t) + K (t) AT (t) + A (t) S (t)

~S () AT (t) + B (t) A (t) — A () BT () = 0, (28)

A =2 S W) dv+ S,

to

and conditions 1, 2 of Theorem 2.

It is worth to emphasize that for any initial condition K (tg) = Ko = —K{ €
M, (R) the solution K (t) to the matrix differential equation (28) is a skew—
symmetric matrix. Indeed, if we sum up equation (28) with the transposed
equation (28) we obtain the Cauchy problem

2N (t) + A(t) N (t) + N (t) AT (t) = 0,
(29)
N@)=K (@) + KT (), N(0)=0.

It is easy to see that the conditions of the Picard-—Lindel6f theorem for the
Cauchy problem (29) are fulfilled and its solution N (¢) exists and is unique on
[to, +00) . Therefore, the problem has the trivial solution only, that is, N (t) =
0, Vt € [tg,+0o0) and K (t) = —K7T (t), Vt € [tg,+00). Such conclusion can
also be obtained from the analysis of the analytical expression for the general
solution K (t) of equation (28) (see, for example, [13, p. 188]).

From Theorem 3 we can easily obtain the corollary.

Corollary 5. The given system of second-order ODEs (6) is always
Lo-equivalent to some other system (9) with W (t) = WT (t).

Combining Theorems 4 and 2 we arrive at the following one.

In the case when k = 0 condition 2 should be neglected.
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Theorem 4. The given system of second-order ODEs (6) with A(t) €
M, (C1[to, +00)) is Ly-equivalent (k = 0,1,2) to some system (9) with V (t) =
VT (t), W (t) = WT (t) if and only if there exist the symmetric matrices S (t) €
M, (C’1 [to, +oo)) , So € My, (R), So > 0 which define the skew-symmetric
matriz K (t) (27) and satisfy conditions 1, 2 of Theorem 2 together with equality

A)MT (t) =M (t)A(t), VtE [ty,+00),

1d 1 ! (30)
M (t) = EaA(t)Jr ZA2 (t)—B(t), A(t) :Qth(z/)dl/—i—So.

Condition (30) can be obtained as a result of substitution of the matrix K (¢)
from equation (28) by its expression from (27).

Remark 1. Suppose that the conditions of at least one of the Theorems 2, 3 or
4 are fulfilled. Then each suitable Ly-matriz L (t) can be found as the solution
to the matriz differential equation (13) supplemented with an initial condition
L(tg) = Lo where Lq is an arbitrary matriz form M,,(R), such that LoL = So.
Additionally to that, the matriz coefficients of the respective symmetrized system

(9) can be found via formulas (10).

3. STABILITY PRESERVING STRUCTURAL TRANSFORMATIONS OF THE
AUTONOMOUS SYSTEMS OF SECOND-ORDER ODES
Let us consider the two systems of second-order ordinary differential equa-
tions
X+ Ax+Bx=0, A,Be M, (R), (31)

E+VEFWE=0, V,W e My, (R). (32)

Definition 5. We say that the given autonomous system (31) is L-equivalent
to system (32) if there exists a regular on [0, +00) matrix L (¢) (see definition
on p. 40) which satisfies equalities ®

V=L <2L (t) + AL (t)) ,
(33)
W:LAQN£®+AL®+BL@» Wt € [0, +00) .

From the first equality of (33) we can easily obtain
L(2t) = exp(—At)Cexp(Vt), C e M, R). (34)

It is easy to see that if the matrix L (t) (34) is regular on [0, +00) then it is
an Lg-matrix for k = 0,1,2. Hence, we can see that the notion of the L-
equivalence (k = 0,1,2) for two autonomous systems according to definition 4
is tantamount to the notion of the L-equivalence according to definition 5.

In this section we consider the following symmetrization problems for the
autonomous systems of second-order ODEs (31):

8Without loss of generality and for the sake of simplicity, in this section we consider the
segment [0, +0c0) instead of [to, +00).
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1. to find an autonomous system (32) with V' = V7 which is L-equivalent
to the given system (31) (compare with the EGS problem);

2. to find an autonomous system (32) with W = W7 which is L-equivalent
to the given system (31) (compare with the ENPS problem).

Let us find the necessary and sufficient requirements which have to be im-
posed on matrices A, B to provide the solvability of the EGS and/or ENPS
problems for autonomous system (31).

To proceed with this task we have to introduce several convenient notations.
We will use the notation [A, B] to describe a commutator of two square matrices
A and B, that is,

[A,B] = AB — BA.
Also, we will use the notation {A;As...A,} to describe a superposition of
commutators, that is,
{A1As} = [A1, As], {A1As.. . An} =[{A14y.. . Ay}, Ayl
It is easy to ensure that the commutators obey the following properties:

[AB,C] =[A,C]B, VA,B,C € My(R) :[B,C] =0, (35)
[[A,B],C] = [A,[B,C]], VA,B,C € Mp(R) : [4,C]=0.  (36)

It is a well known fact that every matrix A € M,,(R) can be expressed in the
form of

A =Ty diag [,\1 (A) B®D 4 gED A (A) EP) 4 H<Pr>] T, (37)

where
)\k (A) = O (A) +1 ﬁk (A) ) (6773 (A) 75k (A) € Rv (38)

k=1,2,...,r denote the eigenvalues of matrix A; E®r) denotes the identity
matrix; all the elements of square matrix H %) are zero except those in the first
superdiagonal which are equal to 1. The orders of square matrices E®*) and
H k) are equal to the power pj, of the k-th elementary devisor of matrix A. The
matrix T4 denotes some nonsingular matrix from M,,(R) (see, for example, [12,
p. 152]).

According to formulas (37) and (38) we define

AR = TA d/Lag [al (A) E(pl) + H(pl)’ e, O (A) E(pr) + H(pr)] Tgl’
(39)
Ap =Ty diag [i B (A) E®Y, ... i B, (A) E®)] T, 1,
then
A=Ar+ Ay, ARA; = AjAR. (40)
Using the notion of real Jordan canonical form of a real matrix (see [14, p.

184]) it is not hard to prove that if A € M, (R) then Ar, A; € M,, (R).
Let us consider a Jordan matrix (see, for example, [14, p. 150])

Jr = diag [Jl ()‘1)7~~~7J5 ()‘s)]v (41)
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where J; (A;) denotes a Jordan block of size m; corresponding to the eigenvalue

A €R, i=1,...,s. For the definiteness we will use the assumption that
S
A >Ny, i<, Y mi=m. (42)
i=1

In the above formula m; denotes an algebraic multiplicity of the eigenvalue \;
of matrix Jg (see [14, p. 58]). The following lemma holds true.

Lemma 1. Suppose that the matriz L(t) is defined by the formula
L(t) = exp (—Jgt) Qexp (Jrt), t > 0, (43)

where Q € My, (R). Matriz L(t) (43) is a reqular on [0, +00) matriz if and only
if the matriz (Q possesses the following structure:

Qll Q12 le
Q= | O @ G (44
Osl 032 st

where matrices Qij € My,m; (R) satisfy the conditions

det (Qii) # 0, [JZ-(R)7 Qn} =0 (45)
and O;; denotes a zero-matriz of dimension m; x mj, i,j5=1,2,...,s.

Proof. Without loss of generality, we consider the case when s = 2, that is,
when the matrix Jr has only two different eigenvalues A1, Ao € R, A1 > Ao of
the algebraic multiplicities m; > 0 and mo > 0 respectively, mi +mo = m. Let
us denote

G1 = J1 (0), Gy = Jo (0). (46)

From formula (41), taking into account notation (46), we obtain (see [12, p.
157])

)

[ L U
exp (Jgt) =diag e)‘ltz Ethzl’ e’\QtZ ﬁtZGZQ
i=0 i=0

exp (—Jgt) = (exp (_JRt))_l = (47)

&), &=ty
=diag ef’\ltz ' 4, ef)‘QtZ ; G4
L i=0 ’ i=0 ’

1 1

Necessity. Assume that the matrix L (t) (43) is a regular on [0, +00) matrix.
Taking into account formulas (47) we obtain
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_ _ Qu Q2 [ L (1) L (1)
L (t) = exp (—Jgt) [ oo ]exp(JRt) - [ oy ]
L (t) = (% (Zf)i ) (Z “GZ>
=0
L () =0+ (8 G061 ) 0 (32t ) (13)
=0 =0
Lo (t) = et Rt 5 (7!5)1 ZQ) Q2 (ml %Gll) )
1= 1=0

Since the matrices Z Gl j = 1,2 are nonsingular, it is easy to see that

the matrix L (t) (43) has unbounded norm on [0,00) unless Q21 = Oz and
matrices L1y (t), Loo (t), whose elements are polynomials of ¢, are constant.
The latter fact implies that

Ly (t) = Qu1, Lo (t) = Qao. (49)

Particulary, from equalities (49) it follows that det (Q;;) # 0, j = 1, 2. Taking
into account the equalities

s . e ~1
J _tl . J tZ . )
<Z(i!)G;> - <Z (i!) Gé’) i=12

=0 =0

from (48) and (49) we obtain

0;; <Z (z') G;) _ ( (7;) G;,) Qjjr =1,2, Vt>0, (50)

=0 1=0

Equalities (50) imply that [G;,Q;;] =0, j = 1,2, and we immediately arrive at
the conclusion about necessity of commutativity equalities in (45). The proof
of the necessity is complete.

Sufficiency. Assume that the matrix @ has a structure described in (44),

that is,
0= [ Qu Q2 }
O Q22 |’
and conditions (45) holds true. Then, taking into account equalities (47), we
get

L (t) = exp (—JRt) { g;i g;z ] exp (Jpt) = [ 602;1 Lé222(2t) ] ’

Ly (t) = eem (Z (;—?Z'GQ Q2 (2 i-—iGé) -
=0

1=0

(51)
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Conditions (45) together with assumption (42) imply that the matrix L (¢)
(51) is regular on [0, +00). Hence, the sufficiency is proved and the Theorem is
proved.

Lemma 2. Suppose that A, V, C € M,, (R). If the matriz L(t), defined by
formula
L(t) = exp (—At)Cexp (Vt),t >0, (52)

is reqular on [0,4+00) then the spectra of matrices A and V' has the same real
part (see definition in [15, p. 145] ), that is, there exists a nonsingular matriz
Cy € My, (R), such that

Vr = C{ 1 ARCh.
Proof. From the commutativity of matrices A; and Agr (40) it follows that
L(t) = exp (—Art) exp (—Agt) C exp (Vrt) exp (Vit) . (53)

Taking into account the definitions of matrices A; and Vi and equality (53) we
arrive at the conclusion that the matrix L (¢) is regular on [0, 400) if and only
if the matrix

Ly(t) = exp (—Agt) C exp (Vgt)
is regular on [0, +00). On the other hand, it is easy to see that the matrix L;(t)
represents the general solution to the matrix differential equation (supposing
that C represents an arbitrary matrix from space M, (R))

%Ll (t)=L1(t) Ve — ArL1 (1) . (54)

In [12, pp. 121-125] it was proved that equation (54) possesses a solution Lj (t)
that is a regular on [0, +00) matrix if and only if the matrices A and Vg has
the same set of elementary devisors. It is known (see [14, p. 185]) that if the
matrices Ag, Vg € M,, (R) has the same set of elementary devisors then they
are similar, furthermore, the similarity matrix C; can be chosen from the space
M., (R). This completes the proof of the Theorem.

Lemma 3. Suppose that A,V,C,Z € M, (R), the matriz
L(t) = exp (—At) Cexp (V) (55)

is regular on [0, +00) and

[Z,L(t)C™'] =0, Vt > 0. (56)
Then there exists a nonsingular matriz Cy; € M, (R), such that
Vg = C; 1 ARCYH, (57)
clzc=cytzo (58)
and the matriz
Ly (t) = exp (—At) Crexp (Vi) (59)

is a regular on [0,400) matriz satisfying the identity

[Z,Ly (t)Cy'] =0, V¢ > 0. (60)
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Proof. Suppose that the conditions of the Lemma are fulfilled. Then, ac-
cording to Lemma 2, the spectra of matrices A and V has the same real part.
Thus, there exist nonsingular matrices T4, Ty € M,, (R), such that

A=Tr(JR+ 10T, V =Ty (Jr+1Iv) T,

61

o o - - (61)
Ip=T, ATy, Iv =T, ViTy, [Jr,1a] = [Jr,Iv] = 0,

where Jg is the Jordan matrix defined in (41).
Let us consider the matrix L(t) (55). Using notation (61), we can rewrite it
as following

L(t) = Taexp (—(Jr + 1a)t) T, ' CTy exp ((Jg + Iy)t) Ty, ' =
(62)
= Taexp (—1at)exp (—Jgt) (TglCTV) exp (Jrt) exp (Iyt) Ty, .

From Lemma 1 it follows that TglCTv = @, where Q € M,, (R) is the
matrix defined in (44).
Formula (62) leads us to the equality

T L(t)C~'Ty = exp (—I4t) x
xdiag [exp (—=J1 (A1) 1) ;... exp (—=Js (As) )] @ (63)

xdiag [exp (J1 (M) 1), ... exp (Js (As) )] exp (Iyt) Q1.
From equality (63), owing to the commutation properties (45), we get
T L()O ™' Ty = exp (—1at) Qpexp (Ivt) Q '+E; (t) = Eo (t)+Eq (1), (64)

where

QD = d’LG/g [Q117 e 7QSS] .
It is easy to see that identity (56) can be rewritten in the form of
(T3'ZTa, T ' L(t)C ' Ta] = [T ZTu, Eq (t) + E1 ()] =0, V£ > 0. (65)

It is not hard to verify that the elements of matrix Eq (¢) (64) can be ex-
pressed as linear combinations of functions of type

sin(at) £ cos(at), a,€R. (66)

On the other hand, the elements of matrix E; (¢) (64) can be expressed as linear
combinations of functions of type

tPef" (cos (at) £ sin (at)), p,a € R, p <0, (67)

pe NU{0},p<m.

If the matrix Eq (t) + Eq (t) commutates with the constant matrix T, *ZT4
for all ¢ > 0 (see (65)) then the same remains true for each of the summands
Eo (t) and E; (¢) separately. Indeed, assume to the contrary that there exists
a value ¢t; > 0, such that [EO (t1) ,TngTA] # 0. It is obvious that in this
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case [El (t1),T ng TA] = (0. Taking into account the continuity of elements of
matrices Eq (t),E; (t), we obtain

[Eo (t),T4'ZTa] #0, [B1(t), T 'ZTa] #0, Vte [t —d,t1+6], (68)

for some sufficiently small positive real number 6.

It is easy to see that each element of the matrix [Eq (t) ,TleTA] can be
expressed as a linear combination of functions of type (66) and each element
of the matrix [El (t),T XlZTA] can be expressed as a linear combination of
functions of type (67). Since the functions of types (66) and (67) are linearly
independent, we conclude that

[Eo (t) + E1 (), Ty ZTa] = [Eo (t), Ty ZTa] + [E1 (t) , T4 ZTa] #0

for some ¢ € [t; — 6,t;1 + 6] . Thus, we get a contradictions to condition (65).
This contradiction proves the incorrectness of our assumption. Therefore we
proved the identity

[Eq (t), T, ZT4] =0,V > 0. (69)
Setting ¢ = 0 in (69) we obtain
(QpQ ™', T,'ZT4] = 0. (70)

Let us construct a matrix C; € M, (R), det (C1) # 0 satisfying equality
(58). Using equality (70) we get

C1ZC =C Ty (T ZTa) T C = Ty (T, ' C7YTa) (T4 ZT4) %
x (T,'CTy) Ty =Ty QY (T, Z2T4) QT ' =
(71)
=TvQp' (QpQ™") (T4 2T4) (QQp') QpTy " =

=TvQp' (T4 ZT4) QpTy ' = (TvQp'Ty") Z (TaQpTy ) -

From equalities (71) it follows that the matrix C; satisfying condition (58) can
be chosen in the following way

C1 =TaQpTy ' € My, (R). (72)
Equality (57) can be obtained from the following chain of equalities
_ 1y -1 _ _
Cr'ARCY = (TaQpTy ') (TaJrTy ') TaQpTy ' =
=TyQp' Ty (TaJrTy") TaQpTy ' = Ty JRT, ' = Vi

Let us prove that the matrix L; (¢) (59) is regular on [0,+0c0). Taking into
account equality (57) and executing several elementary transformations, we
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get
Ly (t) = exp (—At)Crexp (Vi) =

= exp (—At) exp (—Agt) Crexp (Vrt) exp (Vit) =
= exp (—A;t) CLC1 " exp (—Agt) Cy exp (Vit) exp (Vit) =
= exp (—Ajt) C1 exp (—Cy ' ArCit) exp (Vgt) exp (Vit) =
= exp (—Ayt) Cr exp (—Vgt) exp (Vrt) exp (Vit) =

= exp (—Art) Crexp (Vrt).

It is easy to see that the matrix exp (—Art) C1 exp (Vrt) is regular on [0, +00).
Now we intend to prove identity (60). Equalities

Ty Ly () O Ty = T <exp (—Ast) (TaQpT; ) exp (m)) x

< (TaQpTy ") Ta = exp (~Lat) Qp exp (Iv1) Q7'QQp" = By (1) Q@)

together with commutation identities (69) and (70) immediately lead us to the
equalities
(2, L () O] = (T3 270, T3 Ly (1) O V) =

= [T;lzTA,EO () (Q (QD)’l)} =0,

which are valid for all ¢ > 0.

The Theorem is proved.

Let us denote by X, a set containing all the solutions of the system of linear
matrix equations

{ZA(’“)X} —0, k=0,1,...,n, (73)

where Z, A € M, (R) are given matrices and X is the unknown square matrix
of order m.

Theorem 5. There exists a positive integer number n < m?, such that the set
equalities

X, =X, k=n+1,n+2,.... (74)
hold true.

Proof. 1t is not hard to verify that the set A, can be represented in the
multi-parametric matrix form

Pn m
Xn = [Z X;:Z')Jclc] ’ (75)
k=1 ij=1
where X;ni) ; are constant real coefficients and ¢ are the arbitrary parameters

k=1,2,...,p, (see, for example, [12, p. 221]), 0 < p,, < m?.
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To begin with, we prove that if for some non-negative integer n € N{J {0}
the set equality

X, = X, (76)
holds true then equalities (74) hold as well. Indeed, equality (76) implies that
0={zA" D, } = [[{247}, 4] 2] = (77)

- HZA(”)} LA, Xn]} - {ZA(”) (A, Xn]}.

From here and below by equality of type (77) we mean the equality for every
element of set X,. From (77) it follows that

[A, X,] C X,. (78)
From equality (76) and inclusion (78) it follows that
{ZA<"+2>Xn} - H{ZA<"+1)} ,A] ,Xn} - (79)

_ H ZA(”+1)} 1A, Xn]} = {Z4l40) 14, Xn]} —0,

ie.,, X, C Xpt+2. On the other hand, from the definition of the set X, it follows
that X, O &},4+1 2 A}, +2. Therefore, we have

Xn — Xn+1 — Xn+2. (80)

Using reasoning similar to that used above and the method of mathematical
induction it is not hard to prove that equality (76) implies equalities (74).

Now let us prove that the non-negative integer n € N|J {0}, mentioned in
the Theorem, exists and is less then m?. For this purpose we consider the system
of matrix equations

{ZA(”)X}:O, n=01,...,m*—1 (81)

with respect to unknown matrix X € M, (R). If we would show that every
solution X of system (81) satisfies equalities

{ZA(")X} —0, n=m2m?+1,.... (82)

then we will prove the Theorem.

Let us consider the process of solving of system (81). Suppose that n = 0.
There are only two possible cases (see representation (75)):

a)

{ZAX()} =0,V €R, k=1,...,po,

that is, we already have found a non-negative integer n = 0, such that equalities
(76) hold true. Therefore, as it was proved above, equalities (81), (82) hold true
for all X € A, the process is completed and the Theorem is proved;

b) equality

(ZAXy} =0 (83)

does not hold true for all possible values of the parameters ¢, € R, k =
1,2,...,po. This means that m? > py > 2, because the assumption that py = 1

or po = m? immediately leads us to the equalities Xy = coF or Z = aF, a € R
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respectively and we arrive at the case a). Thus, equality (83) can be viewed
as a system of m? linear homogeneous equations with respect to the arbitrary
parameters ¢, k= 1,2,...,pg. Since this system possesses a non-zero solution,
the rank r; of its matrix satisfies the two-sided inequality 0 < r; < pg. If we
would solve the given system we will arrive at the matrix (set) X; (75). In
addition to that (see [16, p. 40-41]) p1 = po — r1. Therefore, p; < pp, that is,
the number of the arbitrary parameters has decreased. Again, there are only
two possible cases

a)
{ZA(2)X1} = O7v0k S R, k = 17"'7p17

i.e., the process is completed and the Theorem is proved;
b) equality

{ZA(2)X1} ~0 (84)

does not hold true for all possible values of the parameters ¢, € R, k =
1,2,...,p1. It means that m? > pg > p;+1 > 3. Equality (84) can be viewed as
a system of m? linear homogeneous equations with respect to the parameters
e, k=1,2,...,p1. If we would solve this new system we will arrive at the
matrix (set) Xy (75). It is obvious that in this case ps < p1, that is, the number
of the arbitrary parameters has decreased again. And so on.

This process could not contain more than py < m? steps. The Theorem is
proved.

Lemma 4. Suppose that A,V,Z,C € M, (R) and det (C) # 0. Then the
commutation identity

(Z,L({t)Cc™'] =0, Vt>0, (85)
where
L (2t) = exp (—At) Cexp (V) (86)
holds true if and only if the infinite system of matrix equalities
{za" (cve - a)} =0, n=0,1,.... (87)
holds true.

Proof. Necessity. The matrix-valued function L (t) (86) satisfies the equali-
ties

[A, L™ () C~1] = AL (1) =1 — L™ (1) CTTA =

= ALW () C' = LMW () VO + LW ) VOt — LW (1) C1A =

88
= 2L (ot + LW (1) oL (CV O - A) = (88)

dn
= —2L+D) (1) 0= 4 200 (1) c-1LW (0) 01, L™ (1) & L (1)
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Vn € N {0} or, that is the same,
1
L @yc=t = LM yc~ LW (o)t - 5 |4 L™ @ e, (89)

Suppose that the commutativity identity (85) holds. Let us prove that it
implies the identities

{ZA(”) (L (%) C‘l)} =0, Vt>0, VneNU{0}. (90)

In order to prove this, we will use the method of mathematical induction with
respect to n. If n = 0 then identity (90) coincides with (85). If n = 1 then form
identity (85), using (89) and the properties of commutators (36), we get

0=z W] = [zLwe LY ] -

L
sl laLwe ] - —5lzA Lo = o

- {zALmo).

Equality (91) proves identity (90) with n = 1. Let us assume that identity (90)
is proved for n = k > 2 and let us prove it for n = k + 1. Using equality (89)
and the properties of commutators (36), from the latter assumption we obtain

0=[{zAW} LO t)Cc~ '] = [{zAW} L) c~ LW (0)Cc1] -
S {ZAWY [ L@ O] = 5 [{Z49) 4], L O = (92

—%{ZA(’““) (L))

Therefore, according to the principle of mathematical induction, we have that
identity (90) holds for all n € NU {0} .

Taking into account the arbitrariness of n € NU {0} in formula (90), we can
obtain equalities (87) via differentiation of identity (90) with respect to ¢ and
subsequent substitution ¢ = 0.

Sufficiency. Suppose that equalities (87) hold. Let us prove that they imply
identity (85). If n = 0 then from (87) we get

[z, (cveTt — a)] =2|z,10 ) ™! =o. (93)
If n = 1 then from (87), taking into account (36), (88) and (93), we obtain
0=[(2,4],(cvC™ - a)] =2 |z, [4, 20 (0) ]| =
— 4 [Z,L@) (0) C‘l} +4 [Z ( M (o )C—l) } = (94)

—(~2)? [z, L® (0) 0*1] .
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Let us assume that we already have proved equalities
[Z, L™ (0) C*l] —0,n=12... .k (95)

for some positive integer k > 2.
From equalities (87), assumption (95), properties of commutators (36) and
equality (88) we get

0={z4® (cvet - a)} = [[{z4% D} 4] (cve - a)| =
- [{ZA(k—U}, [A,cve - AH — 9 [{ZAUH)}, [A, LW (0) C_lﬂ -
— 4 HZAUH)} ,L? (0) C‘l} +4 [{ZA““‘”} : (L<1> (0) C‘1>2 -
— 4 HZA(’“*U} LD (0) C*l} — 4 H{ZAUH)} ,A} L (0) C’l]
— 4 HZA(’“_Q)} , [A, L© (0) 0—1” —8 HZA(’“‘2)} ,L® (0) 0—1] -
—8 [{ZAUH)} L@ (0) 12O (0) C—l] _

(=2 [[27 A], L™ (0) 0*1} = — (—2)" [Z, {A,L(k) (0) Cil” =

— _(—2)kt [Z,L("“H) 0) 0—1} . (96)

Thus, according to the principle of mathematical induction, we have that equal-
ities (95) hold for every non-negative integer n € NU {0} .
From (86) it follows that the matrix series

Sz (o)1l
n=0

n!

is dominated by the number series

i (HAH + HC‘;?lH)n (%)n = exp <(||AH + HCVC_IH) %) .

Thus, the matrix series is uniformly convergent on [0, +00) and its sum coincides
with the matrix L (t) C~!. This fact together with equalities (95) immediately
lead us to the commutativity identity (85). This completes the proof of the
Theorem.

Now we are in position to prove the main theorem of the paper. It is stated
below.

Theorem 6 (An analogue of the Erugin’s theorem). Suppose that A, B,V,W €
M., (R). The two systems of second-order differential equations
Z(t)+Az(t)+Bax(t)=0, (97)

EO+VER+WER) =0 (98)
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are L-equivalent if and only if there exists a nonsingular matriz C € M, (R)
satisfying conditions

Vg = C 1ARC, (99)
AW =Vv2+C7H (4B - A?) C, (100)
{(aB - 42 A® (cve = 4)} =0, n=0,1,...,m* ~ 1. (101)

Proof. Sufficiency. Suppose that for some nonsingular matrix C' € M, (R)
conditions (99), (100) and (101) are fulfilled. It is easy to see that the matrix

L (2t) = exp (—At) Cexp (Vt) = exp (—Art) Cexp (Vi) (102)

is regular on [0, +00). Substituting the matrix L (¢) (102) into the first equality
of (33) we obtain the identity

L7 (1) (2L (t) + AL (t)) =L Y t) (AL (t)+ L(t)V + AL (t)) = V. (103)
From the second equality of (33) we get

AL~ (1) (L (1) + AL (1) + BL (t))

104
=L~ (t) (4B — A*) L (t) + V? = 4W. oY

Here we have taken into account that equalities (101), according to Theorem 5
and Lemma 4, are equivalent to the commutativity identity

[AB— A% L(t)C7'] =0, Vt>0. (105)

Since the regular on [0, +o00) matrix L (t) (102) satisfies conditions (33), systems
(97) and (98) are L-equivalent. The sufficiency is proved.

Necessity. Suppose that systems (97) and (98) are L-equivalent. Then, ac-
cording to the definition of the L-equivalence, there exists a regular on [0, +00)
matrix L (¢), such that

L7 (1) (2L (t) + AL (t)) —v, (106)

L7 () (L (1) + AL () + BL (t)) — W, Wt € [0, +00). (107)
From (106) we obtain that
L (2t) = exp (—At) Cexp (V) (108)

where C' € M, (R), det (C') # 0. Then from (107), using formula (108) and
setting t = 0, we obtain equality (100) and commutativity identity (105).

Since the conditions of Lemma 3 are fulfilled, we can assume that the matrix
C'is chosen in such a way that identity (105), equality (100) and condition (99)
hold and in addition to that matrix (108) is regular on [0, 4+00) . From identity
(105), according to Lemma (4), we get equalities (101). The necessity is proved
and the proof of the Theorem is completed.
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Remark 2. Suppose that A,V,C € M,, (R) and det (C) # 0. If for some non-
negative integer n € NU{0} the spectrum of the matriz Z,, = {(4B — AQ) A(")}
is simple, i.e., all the eigenvalues of matriz Z, are different, then conditions
(101) are equivalent to the equalities

[B,cvC™! - A] =0, (109)

[A,cvet] =o. (110)

Proof. 1t is almost obvious that conditions (109) and (110) imply conditions
(101).

Suppose that conditions (101) are fulfilled and for some non-negative integer
n the spectrum of matrix Z, is simple. Then there exists a nonsingular matrix
T, such that the matrix 7-'Z,T is diagonal with pairwise different diagonal
elements. Thus, (see [12, p. 221]) we have that

T-! (C’VC*1 — AT =diago1,...,0n), 0, €ER, i € I,m. (111)
Using Theorem 5 and equalities (101) we obtain
0=[[Zn,A],CVC™! — Al = [Z,,[A,CcVCT — 4]].

Applying the same reasoning as above to the latter equalities we arrive at the
following representation, which is similar to (111):

T~ [A,CVC™' = A]T =T ATT-' (CVC™ — A) T

1 -1 -1 _ 1, _
T (CVC’ A)TT AT = TAT 'diag [o1,...,0m] (112)

—~diag [o1,...,0m| TAT Y = diag [t1,...,7m], T €R, i€ 1,m.

It is easy to see that all the diagonal elements of matrix
[TAT! diag[o1,...,0m]] are equal to 0. On the other hand, from (112) it fol-
lows that all the elements of matrix [TAT !, diag [01, ... ,0m]] except for the
diagonal are equal to 0. Therefore we get the equality [A, cve—t — A] =0
which implies equality (110). Additionally to that equality (109) obviously
follows from (101) and (110). The proof is completed.

Remark 3. Conditions (109) and (110) imply conditions (101). The reverse
implication 4s true only when the spectrum of the matriz Z, =
{(4B — AQ) A(")} s stmple for some non-negative integer n.

Though Theorem 6 gives us the necessary and sufficient conditions provid-
ing that systems (97) and (98) are equivalent (L-equivalent, to be precise),
conditions (99), (100) and (101) of the Theorem do not possess the property of
symmetry, which is one of the main properties of an equivalence relation. How-
ever, this is only the matter of the wording. In that form the theorem about
L-equivalence will be useful in the further sections of the paper. Theorem 6
can be reformulated in the “symmetric” form presented below.
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Theorem 7 (An analogue of the Erugin’s theorem in the “symmetric” form).
Suppose that A,B,V,W € M,, (R). The two systems of second-order differ-
ential equations (97) and (98) are L-equivalent if and only if there erists a
nonsingular matriz C € My, (R), such that

CVg = AgC, (113)
C(4W —V?) = (4B — A% C, (114)

{(43 — A2) A(”)} (CV — AC) = (CV — AC) {(4W ~V?) V<”>} . (115)
n=01,2,...,m* -1
Proof. To prove the Theorem it is enough to show that conditions (99) —
(101) are equivalent to conditions (113) — (115). It is easy to see that condition
(99) is equivalent to condition (113), as well as condition (100) is equivalent to
condition (114).
Taking into account (114), from equalities (115) with n = 0 we obtain the
equalities

(4B-A*) (CcvC'—A)=(CvCT'—A)Cc(4aW —-V*)Ccl = (116)
= (CVC™ - A) (4B - A?)

which lead us to condition (101) with n = 0. Multiplying equality (116) on C~*
from the left and on C from the right and rearranging the summands, we get

[C1(4B—A*) C, V] =[4W —V?),V]=C"'[4B — A%) ,A]C. (117)
From equalities (115) with n = 1, taking into account (114) and (117), we
obtain the equalities

{(4B-A*) A} (CVO! - A) =
=(cvect—A) c{(aw -V} VicT = (118)
=(cvCct - A){(4B- A%V}

which lead us to condition (101) with n = 1. Multiplying equality (118) on C~*
from the left and on C from the right and rearranging the summands, we get

(CH{(4B - A*)A}C)V =V (C7H{(4B - A*) A} C) =
—cH{(4B - 4% A%} C
Combining the latter equality with (117) we obtain
{aw —va)v@L —c{(ap - a?) a®}C. (119)

Therefore we have proved that the first two equalities of (101) (with n = 0, 1)
are equivalent to the first two equalities of (115) (with n = 0, 1) respectively.
Besides that we have proved the auxiliary equalities (117) and (119). Let us
assume that for some positive integer k, 2 < k < m? — 1 we have proved that
the first k equalities of (101) are equivalent to the first k equalities of (115)
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(with n = 0,1,...,k — 1) respectively and the auxiliary equality (similar to
(119))

{aw —v3) vl —c 1 {(4B - 42) a0} C (120)
holds. Then from equalities (115) with n = k, taking into account (120), we
obtain equalities

{(4B - 42) AW} (cve! - 4) =
—(cveTt -y {(aw - v vl - (121)
=(cvet - a){(aB - 4% v}

which lead us to condition (101) with n = k. In addition to that, multiplying
equality (121) on C~! from the left and on C from the right and rearranging
the summands, we obtain

(e {@B-a)a®lc)v-v(c™{@4B - 4% a0} C) =

= {(4B - %) At} o
Combining the latter equality with assumption (120) we get
{(aw —v2) vl — et {(ap - 42) At} 0 (122)

Therefore we have proved that the first k + 1 equalities of (101) are equivalent
to the first k 4+ 1 equalities of (115) (with n = 0,1,...,k) respectively. Also,
we have proved the auxiliary equality (122). According to the principle of
mathematical induction we can conclude that equalities (101) are equivalent to
equalities (115), provided that condition (114) holds. This completes the proof
of the Theorem.

4. CONSEQUENCES FROM THEOREM 6
Below we have stated several consequences from Theorem 6 that are related
to the question of symmetrization of the matrix differential equation (or, in
other words, the system of differential equations)

Jk+ (D +G) %+ (P +1I)x = 0, (123)

where J,D,G,P,11 € M,, (R), J = JI'>0, D=DT 11 =107, G=-G7,
P = —P7T. Let us denote

A=J2(D+G)J 2, B=J2(P+1I)J 2. (124)
Corollary 6. Suppose that there exist a symmetric matriz V € My, (R) and a

nonsingular matriz C' € M, (R) satisfying conditions’
(A, cveTl| =Acve —CcVCeTTA=0, (125)
[B,A-CcvC'|=B(A-cvC ) - (A-cvec ) B=o, (126)
CVg = ARC. (127)

9See Remark 3.
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Then the autonomous equation (123) is L-equivalent to the autonomous equa-
tion . )
E+VE+WE=0, VW e M, (R), (128)
1 1
W = ZV2 +Ct (B — ZA2> C, (129)
containing no gyroscopic structures (V = VT).

Corollary 7. Suppose that there exist matrices V,C € My, (R), det (C) # 0
satisfying conditions (125)-(127) and

Vi (v 4 clze-cTz" (¢ =0 (130)

Z:<3—1A2>.
4

Then the autonomous equation (123) is L-equivalent to the autonomous equa-
tion (128), (129), containing no non-conservative positional structures (W =
wT).

where

Corollary 8. Suppose that there exist a symmetric matriz V € M,, (R) and
a nonsingular matriz C € M, (R) satisfying conditions (125)—(127) together
with the equality

clzc-cTtz" (¢ )" =o. (131)
Then the autonomous equation (123) is L-equivalent to the “symmetric” au-
tonomous equation (128), (129) (W =W7T v =Vv7T).
Corollary 9. If for some non-negative integer n the spectrum of the matrix
Zy = { (4B — 4%) A}
is simple then the conditions of Corollaries 6-8 are the necessary ones (not only

sufficient!).

Combining Theorem 6 with the theorems of Kelvin — Tait — Chetayev it is
not hard to prove the following theorem that can be viewed as a generalization
of the Mingori’s [3] and Miiller’s [4] theorems.

Theorem 8. Suppose that the matrices V,C € My, (R), det(C) # 0,
V + VT >0 satisfy conditions

OV = ArC, (132)
{(43 — A2 AM (cvet - A)} —0,n=0,1,...,m%—1, (133)
Vi (V) 40t (4B- A% C—-CT (4B- A" () =0 (134)

If the symmetric matriz
1 1
W= ZV2 +C! (B - ZA2) C (135)

is positive definite then the null solution of system (123) is asymptotically stable
(in the sense of Lyapunov ) and if matriz (135) is nonsingular and has at least
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one negative eigenvalue then the null solution of system (123) is unstable (in
the sense of Lyapunov).

It is easy to see that if P = 0 then conditions (132) — (134) can be satisfied
once we take V = A, C = FE. In this case we would have that W = II. This
means that Theorem 8 can be considered as a generalization of the 3-rd and
4-th theorems of Kelvin — Tait — Chetayev (see [17]).

It is not hard to verify that the conditions of the Mingori’s [3] and Miiller’s
[4] theorems implies conditions (132) — (134). However, the following example
shows that the converse of above proposition is not correct in general.

Example 1. Assume that

(2)
A= d’LCLg [Ala A2] ’ B = |: Bl b5E :| )

b;E? By

AlzT[ “ QQ]Tl AQZT[ a3 “4]T1

—a2 Qi —ay4 as
(136)
Bi=r| " blp1p_p| b oy 71
1 — —b2 bl ) 2 — _% b )
1 1 1 0
J =diag[1,1,1,1], T [0 1}, E [0 1}
Then in terms of matrix coefficients of equation (123) we have
D = diag [D1, D], G = diag[G1,G2],
| ar—a2 7 _laz—ay o
_ 312 g(2) _ _sag® g@_ |0 -1
Gy 2 v G 2 , S [ 1 0 ] ’ (137)

2
M- [ 11, b5E( ) ] . P=—diag [%3(2)’ 3321925(2)] ’

bsE? Il
_ by bzai —baaz azby
Hl = |: bl b b2 2 :| ) H2 = aa%) a, b2ilb a
b2 azba azba+bsay
2 b2 + bl 2a1 al

Both, the Mingori’s [3] and Miiller’s [4] theorems demand the commutativity
of the matrices P and D. ' However, it is easy to verify that for the matrices
P and D (137) this condition is not fulfilled in general. Thus, we can’t use
the results of the mentioned theorems for the stability investigation of system
(123), (137). On the other hand, the matrices

V =diag [V1,Va], C =diag[T,T],
(138)
Vi=aE@ — (a2 _ @) S@ .V, = a3 E® — <a4 _ @) 5@

al

10The same is true for the results of papers [5, 6, 7,8, 9]
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satisfy conditions (125) — (127) of Theorem 8, according to which the matrix
W (135) can be expressed in the form of

wi E@ b5E(2)
T bsE®@  wyE®? |7

139
aiasby — b% + a%bl aiaqby — b% + a%bg ( )
wy = 2 , W2 = 2 .
ay ay

The conditions of Sylvester’s criterion (see [18, c. 99]), when applied to the
matrix W (139), lead us to the inequalities

wp >0, wy > 0. (140)

Inequalities (140) together with the conditions a; > 0,a3 > 0 (which provide
that the matrix V' (138) is positive definite) describe the region of the asymp-
totical stability of the null solution of system (123), (137).

5. ON THE INTERCONNECTION BETWEEN THE NOTIONS OF THE
Li-EQUIVALENCE AND THE EQUIVALENCE IN THE SENSE OF LYAPUNOV
It is well known that systems (6) and (9) can be rewritten in the form of

alx|-ao[i] vo-[ 5y Jo] oo
and
%:E}ZV*@)[E}’ V*(t):[—v(v)@) —‘]/E(t):’ (142)

respectively. Suppose that systems (141) and (142) are connected by the trans-
formation

[ﬂzw[g], w:[fzgg ﬁgm,te[to,+m), (143)

Lij (t) € My, (C* [to, +00]) . It is not hard to verify that this would be the case
if and only if the equalities

L1 (t) = Lo () W (t) — Loy (t) = 0,
(144)
Lo (t) — Lo (t) Vv (t) + L11 (t) — Loo (t) =0,
B(t) L1y (t) + A(t) Ly (t) = Lao () W (t) — Loy (1),
‘ (145)
B (t) Lig (t) + A(t) Laa (t) = —La1 (1) + Laa (1) V (t) — Loz (¢)
hold true V¢ € [tg, +00) .

In accordance with the definition of the equivalence in the sense of Lyapunov

of two systems of first-order ODEs that was given in [1, p. 118] we can introduce
the same notion for the case of second-order systems.

Definition 6. We say that the systems of second-order ODEs (6) and (9) are
equivalent in the sense of Lyapunov if there exists a Lyapunov matrix (see
definition in [1, p. 117]) L (¢) (143) satisfying conditions (144), (145).
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Let us assume that the matrix L (¢) (143) satisfies conditions

L5 (t) =0, Ly (t) =L(t) € My, (C*[to, +0)),
dk
dtk

Then from equalities (144) we immediately obtain that Lo (t) = L1 (t),
Log (t) = L (t) ; transformation (143) reduces to the form

{ﬂ:[égg L(()t)Hﬂ (146)

and represents a Lyapunov transformation (see definition in [1, p. 117]); con-
ditions (145) reduce to conditions (10), i.e.,

Vi) =L ) (2L + AW L),

inf |det (L(t))| >0, sup ‘
t€(to,+00] t€to,+00)

L(t)H < 400, Vk €0,2.

(147)
W(t) =L\ (1) (L )+ AL () +B)L (t)) .

Thus, we can conclude that if systems (6) and (9) are Lo-equivalent according
to Definition 4 then they are equivalent in the sense of Lyapunov according to
Definition 6. However, it is almost obvious that the converse of above proposi-
tion is not correct in general. It is easy to see that the notion of the equivalence
in the sense of Lyapunov includes the notions of the La-equivalence (see Defi-
nition 4) and the L-equivalence (see Definition 5) as partial cases. Therefore,
when we consider the possibility of using structural transformations to aid the
investigation of stability of the null solution of system (6), we inevitably arrive
at the following general problems of symmetrization:

L. for the given system (6), find a Lyapunov matriz L (t) (143) and matrices
V(t),W(t) € My, (Cto,+00)) which satisfy the symmetry conditions
V(t) = VI (t) and/or W (t) = WT (t) together with equalities (144),
(145) Vt € [to, +00);

2. for the given autonomous system (6), i.e, A(t) = A€ M,, (R), B(t) =
B € My, (R), find a Lyapunov matriz L (t) (143) and matrices V () =
Ve M, R), W(t) =W € M, (R) which satisfy the symmetry con-
ditions V.= VT and/or W = W7 together with equalities (144), (145)
Vt €0, 400) .

In the case when systems (6) and (9) are autonomous, i.e., A*(t) = A* €
Moy, (R), V*(t) = V* € My, (R), the necessary and sufficient conditions
providing that they are equivalent in the sense of Lyapunov were found by
Erugin (see the Erugin’s theorem in [15, p. 145]): Two systems (141) and
(142) (A* and V* are constant matrices of the same order) are equivalent in
the sense of Lyapunov if and only if the matrices A* and V* have a single,
similar real part of the spectrum or, in other words, there exists a nonsingular
matriz C € My, (R), satisfying equality

»=CVRC .
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Evidently, in general case, to check whether the conditions of the Erugin’s
theorem are fulfilled could be as difficult as to solve both systems (141) and
(142) directly. However, Theorems 2 — 4, 6 indicate that in some cases the
question about equivalence in the sense of Lyapunov of two systems (141) and
(142) can be answered without necessity to solve them.

Let as suppose that V (t) , W (t) € My, (C* [to, +00)) . Then substituting the
expressions for matrices Lo () and Lgs (¢) obtained from equations (144) into
equation (145), we get the following system of second-order matrix differential
equations with respect to the unknown matrices L1y (¢), L2 (t) :

% (Zw+zov @)+ (20 + 20V ©) V(@0 +
FB(O)Z (1) ++A() (Z(0)+ 20V (1) =0, (148)
Z(t) = [L11 (1), L2 (1)] .-

Thus, we arrive at the conclusion that systems (6) and (9) are equivalent in
the sense of Lyapunov if and only if system (148) possesses a solution Z (t)
satisfying conditions

dk
sup (|7 (¢) H <00, k=0,1, inf |det (L ()| > 0,
telto,+oo) | At t€[to,+00)
Lot () = Ly (t) — Lia () W (t), (149)

Loo (t) = ng (t) — L19 (t) Vv (t) + L1 (t) .

The general problems of symmetrization (GPS) stated above have not been
studied in this paper. However, on our opinion, the problem of finding necessary
and sufficient conditions for solvability of the GPS can be interesting from both
practical and theoretical points of view. This problem is significantly more
complicated then the problem of finding necessary and sufficient conditions for
solvability of the EGS and/or ENPS problems (see definitions on pp. 40 and
46). The main reason for that is the significant complexity of conditions (148),
(149) for finding the matrices L (t), V (¢) and W (¢). On the other hand, as
it was mentioned above, in some cases to solve the GPS for the given system
the one should be able to determine the Jordan canonical form of the system’s
matrix (see the conditions of the Erugin’s theorem). Evidently, in this case the
using of structural transformations can’t facilitate the stability investigation of
the null solution of the system.

6. APPLICATION OF THE STRUCTURAL TRANSFORMATIONS TO THE
STABILITY INVESTIGATION OF DYNAMICAL SYSTEMS
The stability of rotary motion of a rigid body suspended on a
string. Let us consider the symmetrization problem for the system of second-
order differential equations describing the perturbed motion of a heavy, sym-
metric rigid body suspended to the stationary point O by the inextensible
weightless string. We assume that the string is attached to the body at the
point S lying on the body’s symmetry axis. We denote the distance between
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point S and the center of mass of the body by a, and the length of the string
by b. It is known that the rotary motion of the body can be approximately
described (assuming that the displacement and rotations are small enough) by
the following equations (see equations (2.8) and (2.9) from [19]):

J1%1 + A&1 + cx1 — (2.]1 — Jg)wi'g + ()\1 — )\)wxg + mgaxs = 0,
J1Z9 + A9 + cxg + (2J1 — Jg)w.’tl — ()\1 — )\)(4)561 + mgaxy = 0,
mb?is + mb(g — bw?)x3 — 2mb*wiry + mgax; = 0,
mb?i, + mb(g — bw?)z4 + 2mb*wiz + mgazrs = 0,

(150)

where ¢ = mga (¢ + 1)+ (J3 — J1) w?, a = be, A\ = fDy1, \ = fDs. In equations
(150) by w > 0 we denote the angular velocity of rotation of the body, by
m — the mass of the body, by g — the free fall acceleration, and by J* =
diag [J1, J1, J3] — the central tensor of inertia of the body. The authors of
[19] assume that the body is effected by the dissipative moment My = — f Dw,
where D = diag [D1, Dy, D3], D1 > 0,D3 > 0, f > 0. Additionally, we assume
that 2J; — J3 # 0, J; > 0.

It is easy to see that system (150) can be represented in the form of (123)
with

J = diag [Jl E® mp? E<2)} , D =diag [A E®, 0<2>] :

G = diag [(2J1 — J3)w S(2), 2mb3w 5(2)} ,

n cE® mga E®
N [ mga E®  mb(g — bw?) E? } ’

P = diag {—()\1 - Mw 5@, 0(2)] )

@) _ 1 0 @) _ 0o -1
B =g 1] oso=]

where O®) denotes the square zero matrix of order 2. Furthermore, using
notation (124) we get

SN N |

B=J3(P+I)J 3 =P +1I =

(152)

[ CJTVE® — I (M — Nw SO R pe)

g3/ (2 (gb™" —w?) E®

Let us find the sufficient conditions in terms of the parameters of system
(150) which provide that the system is equivalent to some other system that
does not contain the gyroscopic structures and (or) non-conservative positional
structures.
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The elimination of the gyroscopic structures. It is easy to verify that
the spectrum of matrix Zy = (4B — A?) (151), (152) is simple. Therefore, ac-
cording to Corollary 9 the conditions of Corollary 6 are necessary and sufficient
simultaneously. Let us check whether the conditions of Corollary 6 are fulfilled.
The matrix CVC~! satisfying condition (125) can be expressed in the form of

Cve! = diag H vir i } , [ Us3 U3 ” . (153)
—U12 V11 —VU34 V33

Taking into account representation (153) and the fact that matrix V is real we
arrive at the conclusion that condition (127) can be satisfied if and only if

v = %, vgg = 0. (154)
Taking into account (153) and (154), from condition (126) we can find that
-1 _ 5 )\Jfl v12 + WJngl 0 V12
CVC™ = diag H vty — w g A o . (155)

From formula (155) it follows that the matrix V' is a symmetric matrix if and
only if
J3 = 0, V12 = 0. (156)

Thus, the gyroscopic structures can be excluded from system (150) if and only
if J3 =0.

We can assume that the condition J3 = 0 is satisfied if the value of the inertia
moment J3 is fairly small in comparison with the value of 2.J;. This can be the
case when the body is heavy and has a shape of a cylinder with a very small
transverse section.

Following to the Sommerfeld- Greenhill concept we can set A = uJ;, A =
s, where p is a small constant coefficient depending on the environment
characteristics. Returning to the case of a heavy cylinder with a very small
transverse section, we can assume that A\; = 0.

The elimination of the non-conservative positional structures. As it
was shown above, conditions (125) — (127) led us to representation (155). Let
us take C' = E™ . To satisfy condition (130) we take vy = —% and according
to Corollary 7, whose conditions are fulfilled, obtain the matrix coefficients of
equation (128)

V = diag [V, V@],

V(l) _ 1 )\2 ng)\ — 2(4))\1J1
AL —ng)\ + 2wA1Jh )\2 ’
0 —1 (157)
2) _ 2w\
ve s

A J. A mga m

(% (3 -3) + 22+ 1)) BO LrEp®
m A2w?

I p(2) (% e ) E®?

S
[
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We see that, according to Corollary 7, the elimination of the non-conservative
positional structures is possible without any additional restrictions on the pa-
rameters of system (150).

Once the non-conservative positional structures are eliminated, we can try to
find the region of the asymptotic stability of the null solution of system (150).
Since systems (150) and (128), (157) are L-equivalent, that is, equivalent in the
sense of Lyapunov, their regions of the asymptotic stability coincide. Let us
find the region of the asymptotic stability of system (128), (157).

Unfortunately, the matrix V' (157) is not a positive definite matrix, that is,
the conditions of Theorem 8 are not fulfilled. However, this problem can be
overcame. First of all let us emphasize the fact that if the parameters of system
(150) are chosen in such a way that det (W) = 0 then the null solution of system
(150) is unstable. Thus, we can assume that the matrix W is nonsingular.

It is easy to verify that if

W >0 (158)

then function V (§) = ET¢ + TWE where € = &(t) represents an arbitrary so-
lution of system (128), (157), satisfies the conditions of the Krasovsky theorem
on asymptotic stability (see, for example, [17, p. 42]). On the other hand if
the symmetric matrix W (157) is nonsingular and has at least one negative
eigenvalue then the function —V (§) satisfies the conditions of the Krasovsky
theorem on instability (see, for example, [17, p. 51]). Thus, we can conclude
that condition (158) describes the required region of asymptotic stability.

The conditions of Sylvester’s criterion, when applied to the matrix W (157),
lead us to the following system of inequalities:

P>0, PS—R?>>0, (159)

where
M (T3 M mga g Aw? /mge
P=2 (2 22 1 S=|2Z— R = )
(3 E-3)mren) s=(-5) 50

Returning to the case of a heavy cylinder with a very small transverse section
and setting A\; = 0 we see that

mga a g ga/m
p="9(1,+2, 5=9 R= .
7 <+b>’ b’ T

Therefore, the first inequality of (159) is fulfilled and the second one reduces
to the form )
mg- a
70 > 0.

It is worth to emphasize that conditions (159) are in good agreement with the
similar conditions obtained in [9]. On the other hand, a sophisticated method
proposed in paper [19] for the stability investigation of the null solution of
system (150) results in a set of inequalities which do not describe the region of
asymptotic stability of the system (contrary to the expectations of the authors
of paper [19]). The reason for that is an essential error introduced in [19] by
the authors.
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7. CONCLUSIONS

In the present paper we have extended and generalized the results of a series
of papers devoted to the stability investigation of the null solution of systems of
second-order ODEs via the stability preserving structural transformations. The
series was started with D.L. Mingori [3] and then continued by Von P. C. Miiller
[4], V.N. Koshlyakov [8], V.N. Koshlyakov and V.L. Makarov [20, 5, 6, 7],
V.N. Koshlyakov and V.A. Storozhenko [9].

We have found the necessary and sufficient conditions providing that a given
autonomous (non-autonomous) system of second-order ODEs is equivalent in
the sense of Lyapunov to some autonomous (non-autonomous) system of second-
order ODEs which does not contain gyroscopic and/or non-conservative posi-
tional structures (see Theorems 2, 3, 4, 6).

Particularly, using Theorem 6 we managed to generalize the results of papers
[3, 4, 5,6, 7,8, 9] which are related to the ENPS problem for the autonomous
system (123). The results of the mentioned papers are applicable only when
the matrix D commutate with P whereas in the present paper we got rid of
this unnecessary constraint (see Example 1).

Theorem 8 proved in the paper generalizes the 3-rd and 4-th Kelvin — Tait
— Chetayev theorems as well as the Mingori’s [3| and Miiller’s [4] theorems.

In Section 5 we stated and briefly discussed the general problems of sym-
metrization (GPS). It was shown that the EGS and ENPS problems can be
considered as particular cases of the GPS. The solution of the latter problems
can provide us with essentially more powerful tools for the stability investiga-
tion of systems of ODEs than those obtained in the present paper. Due to the
significant complexity of the GPS we left them for the subsequent publications.

In Section 6 it was shown that the theoretical results presented in the paper
can be successfully applied to the stability investigation of real mechanical
systems.
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