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A POSTERIORI ERROR ESTIMATIONS
FOR FINITE ELEMENT APPROXIMATIONS
ON QUADRILATERAL MESHES

HEORGIY SHYNKARENKO, OLEXANDR VOVK

PE3IOME. OcnoBHOIO MeToI0 1€l mpari € mofym0Ba IpPOCTUX aroCTePIOPHUX
OLIIHIOBAYIB MOXMOOK YACTHMHAMY OIMIHINHUX anmpOKCUMAIil METOIy CKiHTIeH-
HUX eJIeMEHTIB, 3/IaTHUX HAMNWHO Ta e(@eKTUBHO OOYMC/IIOBATU JBOCTOPOHHI
rpaauni noxubOK HAOIMKEHHsI PO3B’A3KIB einTuyHuX KpaiioBux 3amad. 3a
JIOTYIIEHHSI, [0 CXEMa METO/Iy CKiHYEHHUX €JIEMEHTIB CIIPOMOXKHA 00IHCINTH
TOYHI 3HAYEHHs PO3B 43Ky Y By3J1aX CITKHU, 3aIPOMIOHOBAHO MTOEJIEMEHTHO BU3-
HadeHi oniHoBadi noxuboxk lipixse ta Helimana, ski moc/1ijoBHO 009UC/TIOI0Tb-
cs1 Ik HAOJIMIKeHl PO3B’s13KM 334291 PO JINIIOK allPOKCUMAII] METO/ Ty CKiHIeH-
Hux esieMenTiB. [lepmuii 3 HEX 3HAXOAUTH HUKHIO I'PAHUITIO IIOXUOKU allPOKCH-
Mariil MeToqy CKIHYeHHUX €eJIEMEHTIB, a Jpyruil — BepxXHio rpammmio. Mmn
JIOTIOBHIOEMO XapaKTEPU3AIii0 WX OIHIOBAYIB E€TAJTHHUMU PE3yJIbTaTaMu
YHUCIOBUX EKCIEPUMEHTIB 3 CAa0K0 HesHIHOI0 Ta CHHTYASPHO 30ypeHuMn
3a/a9aM¥ 3 TIPUMEKEBUMU 1 BHY TPIITHIMY 1apamMu.

ABSTRACT. The main goal of this paper is to construct the simple a poste-
riori error estimators for piecewise bilinear approximations of finite element
method which are able to reliably and efficiently calculate the two-sided con-
fidence interval for the approximation error of the elliptic boundary value
problems. Under assumption that finite element method scheme can calcu-
late the exact values of a solution at mesh nodes, we propose the element-wise
error estimators of Dirihlet and Neuman, which are calculated in succession as
the approximated solutions of the residual problem of finite element method
approximations. The first of them evaluate the lower bound of the finite
element approximation error and second evaluate the upper bound. We sup-
plement the characteristics of this estimators by the detailed results of the
numerical experiments with semi-linear and singularly perturbed problems
with boundary and internal layers.

1. INTRODUCTION

A posteriori error estimations of finite element method (FEM) approxi-
mations is the important component of a modern science calculations. The
Babuska’s and Rheinboldt’s original conception of a posteriori error estimation
(1978) in the last decades generates a large family of various a posteriori error
estimators (AEEs), which are able to qualitatively describe the errors of ob-
tained approximations by FEM and create the foundation for local triangulation
refinement and\or local refinement of approximations rates such that to find

Key words. Semi-linear diffusion-advection-reaction equation, variational problem, finite
element method, Newton’s method, generalized minimum residual method, element-wise a
posteriori error estimator, efficiency index, convergence rate.
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approximative solutions with guaranteed accuracy and minimal computational
cost, see [2], [3], and also [4].

Following the previous work [8] we build element-wise Dirihlet eP™ and Neu-
man sflve“ a posteriori error estimators for piece-wise bilinear finite element
approximations on quadrilateral meshes. These estimators are able to quali-
tatively calculate the lower and upper bounds of exact error in terms of the
following inequality

er " <l u—un [ < ey (1)

This paper is structured in the following manner. In Section 2 we formulate
the variational problem for elliptic diffusion-advection-reaction equation with
semi-linearity and describe its features. The numerical scheme with quadrilat-
eral finite elements is presented in Section 3. The next (Section 4) is devoted
to the problem of the error estimation of FEM approximations. In Sections
5 and 6 we present element-wise solutions of this problem as the polynomial
Dirihlet and Neuman indicator functions. The rest of the paper is devoted to
the analysis of numerical experiments with the boundary value problems which
require some efforts for solving because they are semi-linear or singularly per-
turbed. A comparison of characteristics of the estimators and they analogues,
which are calculated for exact values of errors confirms the possibility of the
calculation of two-sided error estimates (1) and expected convergence rates of
FEM approximations.

2. PROBLEM STATEMENT
To construct the cheap a posteriori error estimators for two-sided error esti-
mates of finite element approximations we consider a singular perturbed and\or
semi-linear boundary value problems with second order elliptic equation

—V.(uVu) + B.Vu+ ou = flu] in
u=0onTIp, (2)
—(uVu).v =qon 'y = 0Q\I'p.

This semi-linear boundary value problem has the following variational formu-
lation
findueV ={ve H(Q): v=0o0nTp} such that )
a(u,v) = (Nu],v) YveV,

where

a(u,v) : = /Q [(uVu). Vv +v(8.Vu + ou)lde,

(Nul,o) s = [ flulode— [ vy

Below we assume that the domain £ C R? is a bounded polygon and other prob-
lem data are sufficiently regular functions to guarantee existence and unique-
ness of the solution u = wu(x,y) that satisfies (3). We note here that the
problem (3) becomes singularly perturbed in the case ||3|| (o) — +00 or/and
||| oo () — +00, for the details we refer to [7].



A POSTERIORI ERROR ESTIMATIONS FOR FINITE ELEMENT ... 109

3. FINITE ELEMENT APPROXIMATIONS
In order to obtain approximations of the solution u of the variational problem
(3) we use the family of quasiuniform meshes {73}, which are composed of
quadrilateral elements @, 7, = {Q}, hg = diam Q, h = max hg. Now for each
m € N we can construct the finite element space

1._ C — pla)d .
vi={vevncw:v= S ey Vay €R,

Y(e.y) € Q. YQ €T}
with usual basis functions

P1y - PM € Vhla sSupp @i = Qz = {U Q : Az c Q}v SDJ(AZ) = 52]7 (4)

where M is a number of nodes A; = (z;,y;) of the mesh 73, which does not lie
on a boundary patch I'p.

Then, using Galerkin discretization procedure, we reduce (3) to the following
problem

{ find up, € V3! such that 5)

a(up,v) = (Nup],v) Yo e V!
or in the algebraic form:
M
find up = Z qip; such that
i=1 6
the coefficients {q;}}L, € RM satisfy (6)

M .
Zj:l a(@]v(pz)(b = (N[Uh],@z>, 1= 17 >M

In order to unify computing process of the coefficients ¢; € R, ¢+ =1, ..., M, we
use the so called 'master element’ Qo = {(a,8) € R? : |al,|3| < 1} with the
mapping ® : Qp — Q as follows

z(a, B) = Z 151957y (1 +10)(1 +70),
ij=t1

y(a, B) = Z y%(5+2j—ij)(1 +ia)(1+jB),
ij==1
where A,, = (Zm,Ym), m = 1,...,4 are the vertices of the quadrilateral Q. The
integrals from (6) that defined in the variational problem (3) are calculated
numerically by using Gauss quadratures on master element (.
To solve the problem (6) we rewrite it in the following matrix form:

find vector g € RM such that Sq = Flq, (7)
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where the matrix S = {Sk,, 1! _, and the vector Flg] = {F[g]}IL, are ob-
tained in the following rules

Skm = /Q (uVOm).Vor + (BN om 4+ 0bm)dr]de, Qi := Qpy N Qg

mk

N
F[w] ::/Q f [szsz‘

The last one can be solved by Newton’s method which is written as the following
iterative process with the initial guess ¢° € RM and the relaxation parameter
T

gbkda:—l—/ gordy, km=1,.. M.
Fqﬂaﬂk

given vector ¢" € RM + = const > 0;
find vector r € RM such that
{S —7Flq"}r = Flg"] - Sq",

" =q"+1r, n=01,..,

(8)

M
where Fy[q] := {%FT’M} is the Jacobi matrix with components
m ) km=1

OFylq) _ / of
8qm Qs ou
At each iteration of the Newton’s method we solve the system of linearized
equations (8) by the iterative solver, namely the generalized minimal residual

method (GMRES) [14]. A preconditioner for this linear system is constructed
using incomplete LU factorization.

M
Zqz¢Z] d)mgbkdxa kvm = 17 ceey Ma qc RM
=1

4. RESIDUAT, ELEMENT-BASED ESTIMATOR
We define the error e;, = u — uy, which is the solution of the following
nonlinear error problem |1, 4, 5|:
finde, € B, CE, V =FE®Vy such that
{a(eh,v) = (Nlup + ep],v) — a(up,v) Yo € Ep.
Applying Taylor’s formula fle, +up] = flun] + fulunlen + O(€3), we obtain
the linear problem
{ﬁnd error estimator ey, € Ey, such that

b(up; en,v) = (plup],v) Vv € By, (9)

where
b(w; z,v) : = a(z,v) —/ fulw]zvde,
Q

(plw],v) : = (Nw],v) — a(w,v) Yw,z,v € V.
In order to obtain the two-sided confidence interval for the approximation
error we introduce both Dirihlet ehD“" and Neuman ehNeu element-based residual
error indicator functions that get lower and upper error bounds correspondingly.

They are the approximate solutions of the problem (9) for two different finite
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dimensional subspaces E,?i’” C Ej and E,?" C FEj and are obtained as the
solutions of the following local problems:

find 68” € EP"M(Q) :={ve H(Q): v=0o0ndQ} such that
{ b(uh;egir,v) = (plup],v) Yv e E,?"(Q), YQ € Ty,
and
find ege" € ENUQ) = {v e H(Q) : v(4;) =0YA; € Q} such that
{ bun; 3%, 0) = (plunl,v) Yo € EYU(Q), YQ € T,

corispondingly. The solutions of the problems (10) and (11) are unique and exist
on each finite element ) € 75, . Also, we can define the single element indicator
nq = llegllg VQ € Ty and the global estimator ||en||T = Y ger. 15 V7h
for both of them. This a posteriori error estimators come from the original
concept of a posteriori error estimation, which was proposed in |2, 3], and is
similar to the residual estimators based on a local Dirichlet boundary value
problem, see [4]. The novelty is in the behaviour of interpolation on the edges

of elements: the constructed Dirihlet error estimator 68" (10) vanishes at all

Neu

boundary of finite element ) and Neuman estimator €0 (11) vanishes only

at the nodes of ) € 7;,. The similar idea was proposed in |8, 9| for triangular
meshes.

5. COMPUTABLE ESTIMATOR FOR PIECEWISE BILINEAR APPROXIMATIONS
Now we consider the finite element approximation u;, € Vhl, which is written
in local coordinates («, 3) of the quadrilateral @ € 7}, as follows

uplq = ug(a, B) = Zi,j:il uh(A%(5+2j—ij))(1 +ia)(1+jB).

To compute the solutions of of the problems (10) and (11), in a general case
we define the indicator function €, on each finite element ) in the local manner

€h|Q = gQ(Oé,ﬁ) = )\qu)Q(Oé,ﬂ) € Eh(Q) V(Ox,ﬁ) € Qo, )\Q e R, (12)

where ¢q(a, 3) is the quadratic function on master element Q. Then, from
local problem (10) or (11) we can obtain the coefficients Ag on each finite
element of the following general kind

rg = P PQ) o o g

and define the element error indicator 7jg and the global error estimation ||€, /1,0

o = leolie = Mallldellie YQ € Th llenlia= ZQeTh T VT

From the general view of error estimator (12) we construct the following
Dirihlet estimator

{ €q" (. ) = A5 90" (. B) = G (1 = o®)(1 = 5%) € B

o (13)
V(a,8) € Qo. @: Qo — Q, AB" € R, ¥Q € T,
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and Neuman estimator
& (o, B) = Agog (o B) = AGU[L - 5(a® + 57)) € B
V(CV?/B) € QOa D QO - Qa )\geu € R) VQ € ﬁh

see also Fig.1.

(14)

-0

=10
(K]

00 < iy

Fia. 1. Indicator functions: qﬁg"(a,ﬁ) = (1—-a?)(1—3?) (left),
o5 (a, B) = 1 —0.5(a® + 3?) (right)

6. CONVERGENCE ANALYSIS OF NUMERICAL RESULTS
To investigate abilities and features of the constructed Dirihlet ef" (13)
and Neuman ehNe“ (14) AEEs, we solve the model problems with known exact
solutions. We present results of the numerical experiments for bilinear finite
elements approximations on uniform quadrilateral meshes.
Example 1. Problem with Helmholtz equation

—Au—10%* = f in Q = (0,1),
u =0 on 0f,

that has the exact solution u(x) = sin(37z) sin(37y).

At first we solve this problem using bilinear approximation on 10 x 10 quadri-
lateral mesh to illustrate the exact solution, it’s approximation, error magnitude
and distribution, see Fig. 2.

n is
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o I
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Fi1a. 2. Plot of the exact solution u (left), it’s approximation uy,

(middle) and the error |u — up| (right) on 10 x 10 quadrilateral
mesh for Example 1
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Fig. 2 shows that even coarse 10 x 10 quadrilateral mesh gives the approxi-
mation with a good precision. But what about a posteriori estimation of this
solving precision? To explore the bilinear approximations error and it’s esti-
mation more precisely, hereinafter we construct the convergence tables which
include numerical results for uniform meshes with the variable mesh size h
by rows. The columns of this tables correspond to the following character-
istics: k denotes the refinement step of the solution process with estimation,
Nod 7j, is the number of nodes in the mesh, Card 7} is the number of finite

elements in the mesh, ¢ := ||ju — uhHI,QHUHi%ﬂOO% is the exact relative error,
ebr = HefiTHl,QHuhHiéloO% is the relative error estimate by Dirihlet AEE,
glev .= ||€hN€uH17Q||UhHi51]100% is the relative error estimate by Neuman AEE,
KPI = HEEZTH]_QHU—U}ZH;%) is the efficiency index of the Dirihlet error estima-
tor, KNCU = [|eNeu| qlu — uhH;é is the efficiency index of the Neuman error
estimator,

O e AT (P VI

In M1 — In My, ' ' In M1 — In My,

denote the convergence rate of the Dirihlet and Neuman error estimators norms
correspondingly.

TaBL. 1. Convergence of bilinear approximations, it’s errors
and a posteriori error estimators (13), (14) for Example 1 on
uniform quadrilateral meshes

Nod 771 Card 771 Egir e E}JLVEU’ KDir KNeu pDir pNeu
1 681 1600 | 8.025 | 6.796 | 66.045 | 1.19 | 1.73 - -
6 561 6 400 | 3.268 | 3.393 | 9.336 | 0.96 | 2.77 1.3 3.2

25 921 25600 | 1.568 | 1.696 | 3.638 | 0.93 | 2.16 | 1.1 1.4
103 041 102 400 | 0.776 | 0.848 | 1.725 | 0.92 | 2.04 | 1.0 1.1
410 881 409 600 | 0.387 | 0.424 | 0.851] 091 | 2.01 | 1.0 1.0

1640961 | 1 638 400 | 0.194 | 0.212 | 0.424 | 0.91 | 2.00 | 1.0 1.0

DO | || N | =T

Table 1 shows that the efficiency index xPI' is less then 1.0 and N is
greater then 1.0. It means that Dirihlet (13) and Neuman (14) estimators
provide the lower and upper bounds of exact error correspondingly. The same
result can be observed for the relative errors ¢, 85 " and ahN €. Simultaneously,
the efficiency indices are in a close neighbourhood of 1.0 and, consequently, are
close to each other. So the constructed a posteriori error estimators provide a
narrow interval that contain an exact error. The convergence rates p”*" and
pVe" are equal to the expected theoretical rate 1.0. Note that, hereinafter,
all conclusions from the convergence tables are true for sufficient fine meshes
and, consequently, small approximation errors. In other words, they are true

starting from certain table row.
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Example 2. Problem with a boundary layer
—107%Au+ {2,3}.Vu = f in Q = (0,1)?,
u = 0 on 01,
with the solution u(z,y) = zy* — y*g(2,2) + 9(3,9)[9(2,2) — 2], g(,t) =
exp(10%5(t — 1)).
This problem is singularly perturbed with Peclet number Pe = 361. That is
why we solve it on more fine mesh with 40 x 40 quadrilaterals.
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Fi1a. 3. Plot of the exact solution u (left), it’s approximation uy,
(middle) and the error |u — up| (right) on 40 x 40 quadrilateral
mesh for Example 2

Fig. 3 shows that the largest errors are concentrated in the boundary layer
and a global error still large for such mesh density.

Now we create the following convergence table by the similar way as the
previous

TABL. 2. Convergence of bilinear approximations, it’s errors
and a posteriori error estimators (13), (14) for Example 2 on
uniform quadrilateral meshes

Nod 771 Card 771 E}[l)ir c E;I\feu HDir KNeu pDir pNeu
1 681 1600 | 78.972 | 104.717 | 94.245 | 1.2 2.7 - -
6 561 6 400 | 54.332 | 76.446 | 81.712 | 0.8 1.9 1.0 1.0

25 921 25 600 | 30.804 | 45.964 | 57.855 | 0.7 1.5 1.0 1.0
103 041 102 400 | 15.981 | 24.446 | 33.427 | 0.7 1.5 1.0 1.0
410 881 409 600 | 8.068 | 12.432 | 17.461 | 0.7 1.4 1.0 1.0

1640 961 | 1 638 400 | 4.044 6.243 | 8832 | 0.6 14 1.0 1.0

OO [ | W | DN | =T

Table 2 confirms the conclusions (see. Table 1) about two-sided error estimates
that are obtained by Dirihlet and Neuman AEEs. We also note that this
problem is more difficult to solve and estimate an error than previous (Example
1.).

Example 3. Problem with two internal layers

—puAu — (B, B2).Vu =0in Q = (0,1)?,
u = U on 01,
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with the solution U = U(x,y) = G[mp1(z)+vB2(y)|Gmpb2(y) —vPi(x)], where
p=10"% Bi(z) = = — 0.6, Bo(y) = y — 0.3, m = cos(n/6), v = sin(r/6),
G(z) = 0.5[1 —er f(z/v/2p)].

The solution of this problem include two internal layers. Peclet number for
this singularly perturbed problem is approximately 8062.

Then, as before, we solve Example 1 on 40 x 40 mesh, plot exact solution,
it’s approximation, error and calculate the convergence table.

F1G. 4. Plot of the exact solution u (left), it’s approximation uy,
(middle) and the error |u — up| (right) on 40 x 40 quadrilateral
mesh for Example 3

Fig. 4 shows that the largest errors are concentrated in the internal layers.
And the internal layers problem is less difficult to solve than the previous prob-
lem with boundary layer despite the fact that Peclet number in the latter is by
one order of magnitude smaller.

TaBL. 3. Convergence of bilinear approximations, it’s errors
and a posteriori error estimators (13), (14) for Example 3 on
uniform quadrilateral meshes

Nod ,];7, Card ,];7, Egir c 6hNeu HD’iT HNeu pDir pNeu
1681 1600 | 87.528 | 51.380 | 94.319 | 34 5.3 - -
6 561 6 400 | 29.316 | 22.044 | 51412 | 14 2.7 2.5 2.2

25921 25600 | 8.565 | 10.136 | 17.955 | 0.8 1.8 1.8 1.7
103 041 102 400 | 4.106 | 5.057 | 8.896 | 0.8 1.8 1.1 1.0
410 881 409 600 | 2.055 | 2.529 | 4.489 | 0.8 1.8 1.0 1.0

1640 961 | 1638 400 | 1.028 | 1.264 | 2.251| 0.8 1.8 1.0 1.0

DO | [ [N | = | T

Table 3 confirms the two-sided error estimates for FEM approximations of
the internal layers problem in Example 3.
Example 4. Semi-linear problem [11]

—Au = au® +bu? in Q = (0,1)?,
u=Uonsidesx =1,y =1;
Vu.v =0 on sides x = 0,y = 0,

with the solution U = (sinr? + 2)~! and the coefficients r?2 = 1%(2% + 3?),
a = —81%r2cos®r?, b = 4l*(cos r? — r?sinr?), [ = 3.0.
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Finally, we demonstrate that the devised AEEs and FEM schemes are suit-
able to solve the semi-linear problems, see Fig. 5 and Table 4.

F1G. 5. Plot of the exact solution u (left), it’s approximation uy,
(middle) and the error |u — up| (right) on 40 x 40 quadrilateral
mesh for Example 4

TaBL. 4. Convergence of bilinear approximations, it’s errors
and a posteriori error estimators (13), (14) for Example 4 on
uniform quadrilateral meshes

Nod % Card 77% Egir € EhNeu K/Di’r‘ HNeu pDir pNeu
1 681 1600 | 10.857 | 18.234 | 23.704 | 0.5 1.2 - -
6 561 6 400 | 5.577 | 7.869 | 12.210 | 0.7 1.5 0.9 0.9

25921 25600 | 2.812| 3.590| 6.159 | 0.8 1.7 1.0 1.0
103 041 102 400 | 1.409 | 1.739| 3.087| 0.8 1.8 1.0 1.0
410 881 409 600 | 0.705| 0.862 | 1.544| 0.8 1.8 1.0 1.0

1640 961 | 1 638 400 | 0.353 | 0430 | 0.772 | 0.8 1.8 1.0 1.0

S| O s | W N =

7. CONLUSIONS

In this paper we have constructed the Dirihlet and Neuman estimators for
two-sided error estimates of FEM approximations. This estimators are suit-
able for solving of the singularly perturbed and semi-linear diffusion-advection-
reaction problems with a priori set accuracy. We use the classic Galerkin
method with the piecewise linear bases of approximation spaces for uniform
quadrilateral meshes. The calculation of both error indicators requires only
the interior residual in the quadrilateral. The efficiency and reliability of the
proposed Dirihlet and Neuman error estimators are shown by the numerical re-
sults for the boundary value problem with semi-linearity, Helmholtz equation,
a boundary and interior layers.

Finally, the suggested Dirihlet and Neuman error estimators can be nat-
urally extended to 3D case. We assume that the domain Q € R3 is parti-
tioned into finite hexahedral elements {H}. Then, for the 'master element’
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Hy = {(a, 3,7) € R3: |al,|B], 7] < 1} we obtain the local Dirihlet

Dir _ <p[uh]7 ¢gir(a’ ﬂa 7)> Dir
e’ (@ F7) = b(un; dR" (a, B,7), 607 (v, B,7)) (@6:)

PR (0, Byy) =1 = L(@®+ 32 ++)  V(a,B,7) € Ho,

and Neuman

b(uh;¢geu(a>67’7)v¢%eu(a7/@77))
e 8,7) = (1—=a®)(1=B*)(1—7%)  V(a,8,7) € Ho,

estimators, where H is the arbitrary finite hexahedral element from the parti-
tion {H} which is obtained from the master element Hj using an appropriate
mapping ¥ : Hy — H.

Neu
N0, By) = - Ph O AT en(, 5,1)
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