Журнал обчислювальної та прикладної математики

УДК 519.71

МОДЕЛЮВАННЯ РОЗПОВСЮДЖЕННЯ РАДІОАКТИВНОГО ТРИТІЯ (TRITIUM 3H) ТА НЕРАДІОАКТИВНОГО ГЕЛІЯ-3 (HELIUM-3)

О. Ю. Грищенко, Д. А. Клюшин, В. В. Оноцький, Л. І. Потапенко, Г. М. Стешенко

РЕЗЮМЕ. В даній роботі було розглянуто задачу по ідентифікації параметрів джерел радіоактивного забруднення з врахуванням явища філіації, знаючи концентрації забруднення на досліджуваній території. Було проведено моделювання поширення радіоактивного забруднення на досліджуваній території з використанням псевдореальних даних.

Ключові слова: концентрація забруднення, ДС-алгоритм, задача оптимального керування, спряжена задача.

Вступ

Розв'язання задачі ідентифікації параметрів джерел суміші радіонуклідів, структурованих за віком, за допомогою варіаційного методу пов'язане із розв'язанням прямої та спряженої початково-крайових задач[5]. До того ж з формальної точки зору задача ідентифікації зосереджених джерел еквівалентна задачі узагальненого оптимального керування. Тому для розв'язання нашої варіаційної задачі нам необхідно розв'язати задачу оптимального керування системою[3, 4, 6, 7].

Математична модель переносу суміші радіонуклідів в пористому середовищі описана в роботі Шоке (Choquet) і Цимермана (Zimmerman) [13]. Слід зауважити, що моделюванню радіоактивного забруднення ґрунтових вод розчинами сумішей ізотопів із урахуванням трансмутації присвячено доволі мало робіт. В першу чергу слід назвати роботи Шоке (Choquet) [11, 12, 13], а також Дугласа (Douglas) і Спаньоло (Spagnuolo) [14].

Ідею двокрокового явно-неявного чисельного методу ще в 1962 році запропонував Шелдон для ітераційного розв'язування рівняння Пуассона. Грищенко О. Ю. поширив її для систем гіперболічних рівнянь, лінійних та нелінійних рівнянь переносу та систем рівнянь газової динаміки [1]. Для рівнянь параболічного типу Самарський [10] поставив проблему та отримали грунтовні результати про необхідні та достатні умови стійкості симетризованих різницевих схем, що не є самоспряженими, але приводяться до схем із симетричними операторами, зокрема, вибором спеціальних норм.

1. Моделювання розповсюдження радюактивного забруднення

Постановка прямої задачі. Нехай радіоактивна суміш складається з двох ізотопів: радіоактивного трітія (tritium 3H) та нерадіоактивного гелія-3 (helium-3), причому період піврозпаду трітія у гелій складає 4500 днів. Розглядаємо модель, запропоновану Дугласом (Douglas) та Спаньоло (Spagnuolo) [14], що описує процес переносу суміші через пористе середовище.

Позначимо стан системи (u, v), де $u = u(t, \xi_1, \xi_2)$, $v = v(t, \xi_1, \xi_2)$. Функції u та v визначені в циліндричній області $Q = (0, T) \times \Omega$, де $\Omega \subset R^2$ обмежена зв'язна область з регулярною границею $\partial\Omega$. Стан (u, v) системи, де u — концентрація трітія, v — концентрація гелія, описується системою параболічних рівнянь:

$$\frac{\partial u}{\partial t} - \sum_{m=1}^{2} \left(k_m^{(1)}(\xi) \frac{\partial^2 u}{\partial \xi_m^2} \right) + \sum_{m=1}^{2} \frac{\partial}{\partial \xi_m} \left(c_m^{(1)}(\xi) u \right) + a_1(\xi) u = f(t,\xi), \quad (1)$$

$$\frac{\partial \upsilon}{\partial t} - \sum_{m=1}^{2} \left(k_m^{(2)}(\xi) \frac{\partial^2 \upsilon}{\partial \xi_m^2} \right) + \sum_{m=1}^{2} \frac{\partial}{\partial \xi_m} \left(c_m^{(2)}(\xi) \upsilon \right) + a_2 \left(x \right) \left(\xi \right) \upsilon - a_1 \left(x \right) u = 0.$$
(2)

В операторному вигляді (1)–(2) можна переписати таким чином:

$$\frac{\partial u}{\partial t} - D_1 u + C_1 u + q_1 u = f,$$
$$\frac{\partial v}{\partial t} - D_2 v + C_2 v + a_2 v - a_1 u = 0,$$

де $\xi = (\xi_1, \xi_2) \in \Omega$, $(t, \xi) \in Q$, $a_i \ge 0$, i = 1, 2 — коефіцієнти розпаду, філіації; D_i — оператори дифузійного переносу, самоспряжені та додатньо визначені: $D_i = D_i^* \ge k_0^{(i)} E$, де E — тотожній оператор, C_i — оператори конвективного переносу, $C^{(i)} = -C^{(i)*}$, $c_m^{(i)}$ — швидкість переносу *i*-го ізотопа вздовж осі Ox_m . Вважаємо, що середовище є нестислим, тому маємо:

$$\sum_{k=1}^{2} \frac{\partial c_{k}^{(i)}}{\partial x_{k}}(\xi) = 0, \quad \xi \in \Omega,$$
$$f(t,\xi) = -\delta(\xi) V(t),$$

де $V(t) = (V_1(t), V_2(t), ..., V_p(t))$ — вектор невідомих інтенсивностей, $\delta(x) = (\delta(x - r_1), \delta(x - r_2), ..., \delta(x - r_p))$ — вектор δ -функцій Дірака, r_i — відомі положення джерел забруднень.

Задані початкові та граничні умови:

$$u|_{t=0} = \varphi_0^{(1)}(\xi),$$

 $v|_{t=0} = \varphi_0^{(2)}(\xi),$

$$u|_{t=0} = \varphi_0^{(1)}(\xi), \tag{3}$$

$$u|_{\xi\in\partial\Omega}=0.$$

Використовуючи методику, описану в [8, 9], переходимо до задачі оптимального керування, що полягає в мінімізації функціоналу

$$J_{\alpha}(V) = \sum_{m=1}^{M} \int_{0}^{T} \left(\left(\tilde{u}(t, V) - \varphi_{m}^{(1)}(t) \right)^{2} + \left(\tilde{v}(t, V) - \varphi_{m}^{(2)}(t) \right)^{2} \right) dt + \alpha \|V\|^{2},$$
(4)

 $\varphi_m^{(i)}(t)$ — значення концентрації забруднень в точках спостереження z_m , $m = \overline{1, ..., M}, i = 1, 2, \alpha$ — параметр регуляризації [10], що вважається відомим і підбирається експериментально з врахуванням похибки спостережень $\Delta \varphi_m^{(i)}$;

$$\tilde{u}(t,V) = \int_{\Omega} g_m(x) u(t,x,V) dx, \quad \widetilde{v}(t,V) = \int_{\Omega} g_m(x) v(t,x,V) dx,$$

 $g_m(x) = \frac{\chi_{\omega_m}}{diam\omega_m}$ — функція усереднення в деякому околі ϖ_m точки спостереження z_m [6].

Спряжена задача для постановки описаної виразами (1)–(3) має вигляд

$$-\frac{\partial\psi}{\partial t} + \sum_{m=1}^{2} \left(k_m^{(1)}(\xi) \frac{\partial^2 \psi}{\partial \xi_m^2} \right) - \sum_{m=1}^{2} \frac{\partial}{\partial \xi_m} \left(c_m^{(1)}(\xi) \psi \right) + a_1 \psi - a_1 \eta =$$

$$= 2 \sum_{m=1}^{M} \int_0^T \left(\tilde{u} \left(t, V \right) - \varphi_m^{(1)} \left(t \right) \right)^2 dt, \qquad (5)$$

$$-\frac{\partial\eta}{\partial t} + \sum_{m=1}^{2} \left(k_m^{(2)}(\xi) \frac{\partial^2 \eta}{\partial \xi_m^2} \right) - \sum_{m=1}^{2} \frac{\partial}{\partial \xi_m} \left(c_m^{(1)}(\xi) \eta \right) + a_2 \eta =$$

$$\sum_{m=1}^{M} \binom{n_m(\xi)}{\partial \xi_m^2} \sum_{m=1}^{M} \frac{1}{\partial \xi_m} \binom{m(\xi)}{\partial t} + \frac{\omega_2}{\omega_2}$$
$$= 2 \sum_{m=1}^{M} \int_0^T \left(\widetilde{\upsilon}(t, V) - \varphi_m^{(2)}(t) \right)^2 dt,$$
(6)

з наступними початково-крайовими умовами:

$$\psi|_{t=T} = 0; \psi|_{\xi \in \partial \Omega} = 0,$$

$$\zeta|_{t=T} = 0; \zeta|_{\xi \in \partial \Omega} = 0, \tag{7}$$

Ітераційний процес має вигляд

$$V_{i,n}^{k+1} = V_{i,n}^k - s_k(\psi^{(i),k}(r_i,\tau n) - \alpha V_{i,n}^k),$$
(8)

де k — номер ітерації, $i = \overline{1, p}, n = \overline{1, N_t}, N_t = [T/\tau], \alpha = 0.001.$

Як відомо, процес збіжний при $s_k \to 0, \, k \to \infty$ та $\sum_{k=1}^{\infty} s_k = \infty.$

2. ЧИСЕЛЬНА РЕАЛІЗАЦІЯ МОДЕЛІ РОЗПОВСЮДЖЕННЯ РАДІОАКТИВНОГО ЗАБРУДНЕННЯ

Застосуємо описаний вище метод до нашої конкретної задачі для її чисельної реалізації. На кожній ітерації послідовно розв'язуємо прямі задачі (1), (2), з врахуванням умов (3) для основного стану системи та задачі (5)–(7) для спряженого стану з використанням ДС-алгоритму [1, 2].

Розглянемо загальний випадок, коли $\Omega = [a_1, b_1] \times [a_2, b_2] \subset \mathbb{R}^2 - 2$ -вимірний паралелепіпед. Область Ω покриваємо сіткою:

$$\Omega_{h,\tau} = \{ (x_{1,k_1}, x_{2,k_2}, t) | x_{s,k_s} = a_s + k_s h_s, \\ t = n\tau, k_s = \overline{0, M_s}, n = \overline{0, N_t}, h_s = (b_s - a_s) / M_s, s = \overline{1, 2}, \ \tau > 0 \},$$

яку розбиваємо на дві підмножини: $\Omega_{h,\tau}^{(1,n)}$ та $\Omega_{h,\tau}^{(2,n)}$. До першої з них відносимо всі точки $(x_{1,k_1}, x_{2,k_2}, t_n) \in \Omega_{h,\tau}$, для яких $(k_1 + k_2 + n)$ — непарне, а до другої — $(k_1 + k_2 + n)$ — парне. Покладемо

$$k_1 \pm 1 = (k_1 \pm 1, k_2), k_2 \pm 1 = (k_1, k_2 \pm 1), k = (k_1, k_2).$$

На внутрішніх точках сітковій множин
и $\Omega_{h,\tau}^{(1,n+1)}$ задамо сімейство різницевих схем

$$u_k^{n+1} = u_k^n - \tau \left(C_1 u_k^n - D_1 u_k^n + a_1 u_k^n \right) + \tau F_k^n V_k^n, \tag{9}$$

а на внутрішніх точках множини $\Omega_{h,\tau}^{(2,n+1)}$

$$u_k^{n+1} = u_k^n - \tau \left(C_1 u_k^{n+1} - D_1 u_k^{n+1} + a_1 u_k^{n+1} \right) + \tau F_k^{n+1} V_k^{n+1}.$$
(10)
свою чергу $C_1 u_k^n$ та $D_1 u_k^n$ вираховуємо за формулами

$$C_{1}u_{k}^{n} = \sum_{s=1}^{2} c_{s,k_{s}}^{(1)} \frac{u_{k_{s}+1}^{n} - u_{k_{s}-1}^{n}}{2h_{s}},$$
$$D_{1}u_{k}^{n} = \sum_{s=1}^{2} k_{k_{s}}^{(1)} \frac{u_{k_{s}+1}^{n} - 2u_{k}^{n} + u_{k_{s}-1}^{n}}{h_{s}^{2}},$$

 $F_k^{n+1}V_k^{n+1} = \begin{cases} V(\tau n), \text{ якщо точка співпадає з джерелом,} \\ 0, \text{ в іншому випадку.} \end{cases}$

Схеми доповнюються початковою умовою

$$u_k^0 = \varphi_0^{(1)}(k_1h_1, k_2h_2), k_s = \overline{0, M_s}, s = \overline{1, 2},$$

та граничними умовами $u_k^{n+1} = 0$, де $k_s = 0$ або $k_s = M_s$, $s = \overline{1, 2}$.

На внутрішніх точках сітковій множин
и $\Omega_{h,\tau}^{(1,n+1)}$ задамо сімейство різницевих схем

$$v_k^{n+1} = v_k^n - \tau \left(C_2 v_k^n - D_2 v_k^n + a_2 v_k^n \right) + \tau a_1 u_k^n, \tag{11}$$

80

В

а на внутрішніх точках множин
и $\Omega_{h,\tau}^{(2,n+1)}$ —

$$v_k^{n+1} = v_k^n - \tau \left(C_2 v_k^{n+1} - D_2 v_k^{n+1} + a_2 v_k^{n+1} \right) + \tau a_1 u_k^{n+1}.$$
(12)
 $C_2 u_k^n$ та $D_2 u_k^n$ вираховуємо за формулами

$$C_2 v_k^n = \sum_{s=1}^2 c_{s,k_s}^{(2)} \frac{v_{k_s+1}^n - v_{k_s-1}^n}{2h_s},$$
$$D_2 v_k^n = \sum_{s=1}^p k_{k_s}^{(2)} \frac{v_{k_s+1}^n - 2v_k^n + v_{k_s-1}^n}{h_s^2}.$$

Схеми доповнюються початковою умовою

$$v_k^0 = \varphi_0^{(2)}(k_1h_1, k_2h_2), k_s = \overline{0, M_s}, s = \overline{1, 2},$$
(13)

та граничними умовами

$$v_k^{n+1} = 0, \text{ ge } k_s = 0 \text{ also } k_s = M_s, s = \overline{1, 2}.$$
 (14)

Розв'язок задачі знаходимо послідовно при $n = 0, 1, 2, ..., N_t - 1$ таким чином: знаходимо u_k^{n+1} , використовуючи спочатку явне різницеве рівняння (9) в усіх точках множини $\Omega_{h,\tau}^{(1,n+1)}$, а потім неявне (10) в усіх точках множини $\Omega_{h,\tau}^{(2,n+1)}$, далі, використовуючи вже знайдене значення u_k^{n+1} , знаходимо v_k^{n+1} , використовуючи явне різницеве рівняння (11) в усіх точках множини $\Omega_{h,\tau}^{(2,n+1)}$, а потім неявне (12) в усіх точках множини $\Omega_{h,\tau}^{(2,n+1)}$.

Аналогічно для спряженого стану схеми ДС-алгоритму мають такий вигляд. Зокрема для функції ψ з рівняння (5)

$$\psi_k^{n-1} = \psi_k^n + \tau \left(C_1 \psi_k^n + D_1 \psi_k^n - a_1 \psi_k^{i,n} \right) + \tau a_1 \eta_k^n + \tau Z_k^{1,n},$$
$$(x_{1,k_1}, x_{2,k_2}, \dots, x_{p,k_p}, t_{n-1}) \in \Omega_{h,\tau}^{(1,n-1)},$$
(15)

$$\psi_k^{n-1} = \psi_k^n + \tau (C_1 \psi_k^{n-1} + D_1 \psi_k^{n-1} - a_1 \psi_k^{n-1}) + \tau q_1 \eta_k^{1,n-1} + \tau Z_k^{1,n-1},$$

$$(x_{1,k_1}, x_{2,k_2}, t_{n-1}) \in \Omega_{h,\tau}^{(2,n-1)},$$
(16)

де

$$Z_k^{1,n} = 2\chi_h(u_k^n - \varphi^{(1)}(t_n)).$$

В свою чергу $\chi_h(x)$ приймає значення

$$\chi_h(x) = \frac{1}{h_1 h_2} \sum_{m=1}^M \int_{D_0} \delta(x - z_m) dx,$$

та виконуються умови

$$D_0 = [-h_1, h_1] \times [-h_2, h_2],$$

$$\psi_k^T = 0, k_s = \overline{0, M_s}, s = \overline{1, 2}, \tag{17}$$

 $\psi_k^{n-1} = 0,$

де $k_s = 0$ або $k_s = M_s, s = \overline{1, 2}.$

Зокрема для функції η з рівняння (6):

$$\eta_{k}^{n-1} = \eta_{k}^{n} + \tau \left(C_{2}\eta_{k}^{n} + D_{2}\eta_{k}^{n} - q_{2}\eta_{k}^{n}\right) + \tau Z_{k}^{2,n},$$
(18)
$$(x_{1,k_{1}}, x_{2,k_{2}}, t_{n-1}) \in \Omega_{h,\tau}^{(1,n-1)},$$
$$\eta_{k}^{n-1} = \eta_{k}^{n} + \tau \left(C_{2}\eta_{k}^{n-1} + D_{2}\eta_{k}^{n-1} - q_{2}\eta_{k}^{n-1}\right) + \tau Z_{k}^{2,n-1},$$
(19)
$$(x_{1,k_{1}}, x_{2,k_{2}}, t_{n-1}) \in \Omega_{h,\tau}^{(2,n-1)},$$

де:

$$Z_k^{2,n} = 2\chi_h(v_k^n - \varphi^{(2)}(t_n)),$$
$$\chi_h(x) = \frac{1}{h_1 h_2} \sum_{m=1}^M \int_{D_0} \delta(x - z_m) dx,$$

та виконуються наступні умови

$$\zeta_k^T = 0, k_s = \overline{0, ..., M_s}, s = 1, 2,$$
(20)

$$\zeta_k^{n-1} = 0, \ \text{de } k_s = 0 \ \text{afo} \ k_s = M_s, s = \overline{1, 2}.$$
 (21)

За цими схемами розв'язок знаходиться послідовно починаючи з $n = N_t, N_t - 1, ..., 1$ таким чином: знаходимо ζ_k^{n-1} , використовуючи спочатку явне різницеве рівняння (18) в усіх точках множини $\Omega_{h,\tau}^{(1,n-1)}$, а потім неявне (19) в усіх точках множини $\Omega_{h,\tau}^{(2,n-1)}$, далі, використовуючи вже знайдене значення ζ_k^{n-1} , знаходимо ψ_k^{n-1} , використовуючи явне різницеве рівняння (15) в усіх точках множини $\Omega_{h,\tau}^{(1,n-1)}$, а потім неявне (16) в усіх точках множини $\Omega_{h,\tau}^{(2,n-1)}$.

3. Обчислювальний експеримент

Нехай задані наступні дані для проведення обчислювального експерименту. Область дослідження $\Omega = [0, 500] \times [0, 300]$ є прямокутною областю розмірами 500 на 300 метрів. Часовий проміжок, на якому відбувається моделювання T = 920 часових кроків. Коефіцієнти системи приймають наступні значення:

$$k_m^{(1)} = 4.755, c_m^{(1)} = 3.17,$$

$$k_m^{(2)} = 10^{-5}, c_m^{(2)} = 1,$$

$$q_1 = 1/4500, q_2 = 0.$$

На всій області Ω ми маємо 24 точки спостереження за нашою системою (свердловини для проведення контрольних замірів). Дані про місцеположення точок спостереження наведені нижче в таблиці 1. Так N це порядковий номер свердловини, х та у координати її положення (в метрах) відповідно.

Ν	х	У
1	107.50	186.50
2	148.00	191.00
3	200.00	220.00
4	140.00	110.00
5	148.50	181.00
6	213.50	191.50
7	276.00	218.00
8	193.50	104.00
9	220.00	140.00
10	250.00	180.00
11	484.00	239.00
12	302.50	127.50
13	330.00	171.50
14	341.00	216.00
15	146.50	227.50
16	345.00	128.00
17	361.00	195.00
18	388.50	218.00
19	380.00	165.50
20	378.50	126.50
21	425.00	105.00
22	448.50	160.50
23	441.50	214.00
24	112.50	230.00

Таблиця 1. Координати точок спостереження.

Також у нас за умовою є 92 джерела, з їх координатами (в метрах) та потужністю. Дані про них наведені в таблиці 2.

A A A J A J	N	v	v	V	N	v	v	V
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	1	160.0	y 170.0	• 1252.1	47	A	y 185.0	v 280.64
2 100.0 100.0 1252.1 40 100.0 100.0 1253.1 4 175.0 170.0 1252.1 50 205.0 185.0 215.88 5 180.0 170.0 280.64 51 210.0 185.0 215.88 6 185.0 170.0 280.64 52 215.0 185.0 215.88 7 190.0 170.0 280.64 54 160.0 190.0 1252.1 9 200.0 170.0 215.88 56 170.0 190.0 1252.1 10 205.0 170.0 215.88 58 180.0 190.0 1252.1 11 210.0 170.0 215.88 59 185.0 190.0 280.64 13 220.0 175.0 1252.1 60 190.0 215.88 14 160.0 175.0 1252.1 62 200.0 190.0 215.88 14 160.0 175.0	2	165.0	170.0	1252.1	48	195.0	185.0	280.64
3 110.5 110.5 125.1 40 120.5 120.5 121.5 5 180.0 170.0 1252.1 50 205.0 185.0 215.88 5 180.0 170.0 280.64 51 210.0 185.0 215.88 6 185.0 170.0 280.64 53 220.0 185.0 215.88 7 190.0 170.0 280.64 54 160.0 190.0 1252.1 9 200.0 170.0 215.88 55 165.0 190.0 1252.1 11 215.0 170.0 215.88 57 175.0 190.0 280.64 13 220.0 170.0 215.88 59 185.0 190.0 280.64 14 160.0 175.0 1252.1 62 200.0 190.0 215.88 17 175.0 1252.1 63 205.0 190.0 215.88 16 170.0 175.0 <t< td=""><td>2</td><td>100.0 170.0</td><td>170.0</td><td>1252.1</td><td>40</td><td>200.0</td><td>185.0</td><td>200.04</td></t<>	2	100.0 170.0	170.0	1252.1	40	200.0	185.0	200.04
1 1	- J	175.0	170.0	1252.1 1252.1	50	200.0	185.0	215.88
3 180.0 170.0 280.64 51 210.0 185.0 215.88 7 190.0 170.0 280.64 52 215.0 185.0 215.88 8 195.0 170.0 280.64 54 160.0 190.0 1252.1 9 200.0 170.0 215.88 55 165.0 190.0 1252.1 10 205.0 170.0 215.88 56 170.0 190.0 1252.1 11 210.0 170.0 215.88 57 175.0 190.0 280.64 13 220.0 170.0 215.88 59 185.0 190.0 280.64 14 160.0 175.0 1252.1 61 195.0 190.0 280.64 15 165.0 175.0 1252.1 63 200.0 190.0 215.88 17 175.0 175.0 1252.1 63 205.0 190.0 215.88 19 185.0 175.0 280.64 65 215.0 190.0 215.88 19 <td>5</td> <td>180.0</td> <td>170.0</td> <td>280.64</td> <td>51</td> <td>200.0</td> <td>185.0</td> <td>215.00</td>	5	180.0	170.0	280.64	51	200.0	185.0	215.00
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	5	185.0	170.0	280.04	52	210.0	185.0	215.00
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	0	100.0	170.0	280.04	52	210.0	105.0	215.00
8 193.0 170.0 280.04 54 160.0 190.0 1252.1 10 205.0 170.0 215.88 55 165.0 190.0 1252.1 11 210.0 170.0 215.88 57 175.0 190.0 225.1 12 215.0 170.0 215.88 58 185.0 190.0 280.64 13 220.0 170.0 215.88 59 185.0 190.0 280.64 14 166.0 175.0 1252.1 61 195.0 190.0 280.64 15 165.0 175.0 1252.1 63 205.0 190.0 215.88 17 175.0 175.0 280.64 64 210.0 190.0 215.88 19 185.0 175.0 280.64 67 160.0 195.0 1252.1 22 200.0 175.0 215.88 69 170.0 195.0 1252.1 23 205.0	1 0	190.0	170.0	200.04	54	220.0	100.0	210.00 1959 1
9 200.0 170.0 213.88 55 105.0 170.0 1252.1 11 210.0 170.0 215.88 56 170.0 190.0 1252.1 12 215.0 170.0 215.88 58 180.0 190.0 280.64 13 220.0 170.0 215.88 59 185.0 190.0 280.64 14 160.0 175.0 1252.1 61 195.0 190.0 280.64 16 170.0 175.0 1252.1 62 200.0 190.0 215.88 17 175.0 1252.1 63 205.0 190.0 215.88 18 180.0 175.0 280.64 65 215.0 190.0 215.88 21 195.0 175.0 280.64 66 220.0 195.0 1252.1 22 200.0 175.0 215.88 68 165.0 195.0 1252.1 23 205.0 175.0	0	195.0	170.0	200.04	55	165.0	190.0	1202.1
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	9	200.0	170.0	210.00	50	105.0	190.0	1202.1
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	10	205.0	170.0	210.00	57	170.0	190.0	1202.1
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	11	210.0	170.0	210.00	57	175.0	190.0	1202.1
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	12	210.0	170.0	210.00	50	100.0	190.0	280.04
14160.0175.01252.160190.0190.0280.6415165.0175.01252.161195.0190.0215.8816170.0175.01252.163205.0190.0215.8818180.0175.0280.6464210.0190.0215.8819185.0175.0280.6465215.0190.0215.8820190.0175.0280.6466220.0190.0215.8821195.0175.0280.6466220.0195.01252.122200.0175.0215.8868165.0195.01252.123205.0175.0215.8869170.0195.01252.124210.0175.0215.8870175.0195.01252.125215.0175.0215.8871180.0195.0280.6426220.0175.0215.8872185.0195.0280.6427150.0180.0300.0073190.0195.0280.6428160.0180.01252.174195.0195.0215.8830170.0180.01252.175200.0195.0215.8831175.0180.01252.176205.0195.0215.8833185.0180.01252.177210.0195.0215.8833185.0180.02	13	220.0	175.0	215.88	- <u>59</u>	185.0	190.0	280.04
15165.0175.01252.161195.0190.0280.6416170.0175.01252.163205.0190.0215.8817175.0175.0280.6464210.0190.0215.8819185.0175.0280.6465215.0190.0215.8820190.0175.0280.6466220.0190.0215.8821195.0175.0280.6466220.0190.0215.8821195.0175.0280.6467160.0195.01252.122200.0175.0215.8868165.0195.01252.123205.0175.0215.8869170.0195.01252.124210.0175.0215.8871180.0195.0280.6426220.0175.0215.8872185.0195.0280.6427150.0180.0300.0073190.0195.0280.6428160.0180.01252.174195.0195.0280.6429165.0180.01252.175200.0195.0215.8831175.0180.01252.176205.0195.0215.8832180.0180.0225.177210.0195.0215.8833185.0180.0280.6478215.0195.0215.8834190.0180.028	14	160.0	175.0	1252.1	00 C1	190.0	190.0	280.64
16 170.0 175.0 1252.1 62 200.0 190.0 215.88 17 175.0 175.0 1252.1 63 205.0 190.0 215.88 18 180.0 175.0 280.64 64 210.0 190.0 215.88 19 185.0 175.0 280.64 65 215.0 190.0 215.88 20 190.0 175.0 280.64 66 220.0 190.0 215.88 21 195.0 175.0 280.64 67 160.0 195.0 1252.1 22 200.0 175.0 215.88 68 165.0 195.0 1252.1 23 205.0 175.0 215.88 69 170.0 195.0 1252.1 24 210.0 175.0 215.88 70 175.0 195.0 1252.1 24 210.0 175.0 215.88 71 180.0 195.0 280.64 26 220.0 175.0 215.88 71 180.0 195.0 280.64 27 150.0 180.0 300.00 73 190.0 195.0 280.64 28 160.0 180.0 1252.1 74 195.0 195.0 215.88 30 170.0 180.0 1252.1 77 210.0 195.0 215.88 31 175.0 180.0 280.64 79 220.0 195.0 215.88 32 180.0 $180.$	15	165.0	175.0	1252.1	61	195.0	190.0	280.64
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	16	170.0	175.0	1252.1	62	200.0	190.0	215.88
18180.0175.0280.6464210.0190.0215.8819185.0175.0280.6465215.0190.0215.8820190.0175.0280.6466220.0190.0215.8821195.0175.0280.6467160.0195.01252.122200.0175.0215.8868165.0195.01252.123205.0175.0215.8869170.0195.01252.124210.0175.0215.8870175.0195.01252.125215.0175.0215.8871180.0195.0280.6426220.0175.0215.8872185.0195.0280.6427150.0180.0300.0073190.0195.0280.6428160.0180.01252.174195.0195.0215.8830170.0180.01252.175200.0195.0215.8831175.0180.01252.177210.0195.0215.8832180.0180.0280.6478215.0195.0215.8833185.0180.0280.6479220.0195.0215.8834190.0180.0280.6480160.0200.01252.135195.0180.0215.8883175.0200.01252.136200.0180.02	17	175.0	175.0	1252.1	63	205.0	190.0	215.88
19185.0175.0280.6465215.0190.0215.8820190.0175.0280.6466220.0190.0215.8821195.0175.0280.6467160.0195.01252.122200.0175.0215.8868165.0195.01252.123205.0175.0215.8869170.0195.01252.124210.0175.0215.8870175.0195.01252.125215.0175.0215.8872185.0195.0280.6426220.0175.0215.8872185.0195.0280.6427150.0180.0300.0073190.0195.0280.6428160.0180.01252.174195.0195.0280.6429165.0180.01252.175200.0195.0215.8830170.0180.01252.176205.0195.0215.8831175.0180.0280.6478215.0195.0215.8833185.0180.0280.6479220.0195.0215.8834190.0180.0280.6480160.0200.01252.135195.0180.0215.8883175.0200.01252.136200.0180.0215.8883175.0200.0225.137205.0180.021	18	180.0	175.0	280.64	64	210.0	190.0	215.88
20 190.0 175.0 280.64 66 220.0 190.0 215.88 21 195.0 175.0 280.64 67 160.0 195.0 1252.1 22 200.0 175.0 215.88 68 165.0 195.0 1252.1 23 205.0 175.0 215.88 69 170.0 195.0 1252.1 24 210.0 175.0 215.88 70 175.0 195.0 1252.1 25 215.0 175.0 215.88 71 180.0 195.0 280.64 26 220.0 175.0 215.88 72 185.0 195.0 280.64 27 150.0 180.0 300.00 73 190.0 195.0 280.64 28 160.0 180.0 1252.1 74 195.0 195.0 280.64 29 165.0 180.0 1252.1 75 200.0 195.0 215.88 30 170.0 180.0 1252.1 77 210.0 195.0 215.88 31 175.0 180.0 1252.1 77 210.0 195.0 215.88 31 175.0 180.0 280.64 78 215.0 195.0 215.88 33 185.0 180.0 280.64 80 160.0 200.0 1252.1 35 195.0 180.0 215.88 83 175.0 200.0 1252.1 36 200.0 $180.$	19	185.0	175.0	280.64	65	215.0	190.0	215.88
21 195.0 175.0 280.64 67 160.0 195.0 1252.1 22 200.0 175.0 215.88 68 165.0 195.0 1252.1 23 205.0 175.0 215.88 69 170.0 195.0 1252.1 24 210.0 175.0 215.88 70 175.0 195.0 1252.1 25 215.0 175.0 215.88 71 180.0 195.0 280.64 26 220.0 175.0 215.88 72 185.0 195.0 280.64 27 150.0 180.0 300.00 73 190.0 195.0 280.64 28 160.0 180.0 1252.1 74 195.0 195.0 280.64 29 165.0 180.0 1252.1 75 200.0 195.0 215.88 30 170.0 180.0 1252.1 77 210.0 195.0 215.88 31 175.0 180.0 1252.1 77 210.0 195.0 215.88 32 180.0 180.0 280.64 78 215.0 195.0 215.88 33 185.0 180.0 280.64 80 160.0 200.0 1252.1 36 200.0 180.0 215.88 82 170.0 105.0 215.88 34 190.0 180.0 215.88 83 175.0 200.0 1252.1 37 205.0 $180.$	20	190.0	175.0	280.64	66	220.0	190.0	215.88
22 200.0 175.0 215.88 68 165.0 195.0 1252.1 23 205.0 175.0 215.88 69 170.0 195.0 1252.1 24 210.0 175.0 215.88 70 175.0 195.0 1252.1 25 215.0 175.0 215.88 71 180.0 195.0 280.64 26 220.0 175.0 215.88 72 185.0 195.0 280.64 27 150.0 180.0 300.00 73 190.0 195.0 280.64 28 160.0 180.0 1252.1 74 195.0 195.0 280.64 29 165.0 180.0 1252.1 75 200.0 195.0 215.88 30 170.0 180.0 1252.1 76 205.0 195.0 215.88 31 175.0 180.0 1252.1 77 210.0 195.0 215.88 32 180.0 180.0 280.64 78 215.0 195.0 215.88 33 185.0 180.0 280.64 80 160.0 200.0 1252.1 35 195.0 180.0 280.64 81 165.0 200.0 1252.1 36 200.0 180.0 215.88 83 175.0 200.0 1252.1 37 205.0 180.0 215.88 85 185.0 200.0 280.64 40 220.0 $180.$	21	195.0	175.0	280.64	67	160.0	195.0	1252.1
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	22	200.0	175.0	215.88	68	165.0	195.0	1252.1
24 210.0 175.0 215.88 70 175.0 195.0 1252.1 25 215.0 175.0 215.88 71 180.0 195.0 280.64 26 220.0 175.0 215.88 72 185.0 195.0 280.64 27 150.0 180.0 300.00 73 190.0 195.0 280.64 28 160.0 180.0 1252.1 74 195.0 195.0 280.64 29 165.0 180.0 1252.1 75 200.0 195.0 215.88 30 170.0 180.0 1252.1 76 205.0 195.0 215.88 31 175.0 180.0 1252.1 77 210.0 195.0 215.88 31 175.0 180.0 280.64 78 215.0 195.0 215.88 33 185.0 180.0 280.64 79 220.0 195.0 215.88 34 190.0 180.0 280.64 80 160.0 200.0 1252.1 35 195.0 180.0 215.88 82 170.0 200.0 1252.1 36 200.0 180.0 215.88 83 175.0 200.0 1252.1 37 205.0 180.0 215.88 84 180.0 200.0 280.64 39 215.0 180.0 215.88 86 190.0 200.0 280.64 40 220.0 $185.$	23	205.0	175.0	215.88	69	170.0	195.0	1252.1
25 215.0 175.0 215.88 71 180.0 195.0 280.64 26 220.0 175.0 215.88 72 185.0 195.0 280.64 27 150.0 180.0 300.00 73 190.0 195.0 280.64 28 160.0 180.0 1252.1 74 195.0 195.0 280.64 29 165.0 180.0 1252.1 75 200.0 195.0 215.88 30 170.0 180.0 1252.1 76 205.0 195.0 215.88 31 175.0 180.0 1252.1 77 210.0 195.0 215.88 32 180.0 180.0 280.64 78 215.0 195.0 215.88 33 185.0 180.0 280.64 79 220.0 195.0 215.88 34 190.0 180.0 280.64 80 160.0 200.0 1252.1 35 195.0 180.0 280.64 81 165.0 200.0 1252.1 36 200.0 180.0 215.88 83 175.0 200.0 1252.1 37 205.0 180.0 215.88 84 180.0 200.0 280.64 39 215.0 180.0 215.88 85 185.0 200.0 280.64 40 220.0 180.0 215.88 86 190.0 200.0 280.64 41 160.0 $185.$	24	210.0	175.0	215.88	70	175.0	195.0	1252.1
26 220.0 175.0 215.88 72 185.0 195.0 280.64 27 150.0 180.0 300.00 73 190.0 195.0 280.64 28 160.0 180.0 1252.1 74 195.0 195.0 280.64 29 165.0 180.0 1252.1 75 200.0 195.0 215.88 30 170.0 180.0 1252.1 76 205.0 195.0 215.88 31 175.0 180.0 1252.1 77 210.0 195.0 215.88 32 180.0 180.0 280.64 78 215.0 195.0 215.88 33 185.0 180.0 280.64 79 220.0 195.0 215.88 34 190.0 180.0 280.64 80 160.0 200.0 1252.1 35 195.0 180.0 280.64 81 165.0 200.0 1252.1 36 200.0 180.0 215.88 82 170.0 200.0 1252.1 37 205.0 180.0 215.88 83 175.0 200.0 280.64 40 220.0 180.0 215.88 86 190.0 200.0 280.64 41 160.0 185.0 1252.1 87 195.0 200.0 280.64 41 160.0 185.0 1252.1 87 195.0 200.0 280.64 42 165.0 $185.$	25	215.0	175.0	215.88	71	180.0	195.0	280.64
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	26	220.0	175.0	215.88	72	185.0	195.0	280.64
28 160.0 180.0 1252.1 74 195.0 195.0 280.64 29 165.0 180.0 1252.1 75 200.0 195.0 215.88 30 170.0 180.0 1252.1 76 205.0 195.0 215.88 31 175.0 180.0 1252.1 77 210.0 195.0 215.88 32 180.0 180.0 280.64 78 215.0 195.0 215.88 33 185.0 180.0 280.64 79 220.0 195.0 215.88 34 190.0 180.0 280.64 80 160.0 200.0 1252.1 35 195.0 180.0 280.64 81 165.0 200.0 1252.1 36 200.0 180.0 215.88 82 170.0 200.0 1252.1 37 205.0 180.0 215.88 83 175.0 200.0 1252.1 38 210.0 180.0 215.88 84 180.0 200.0 280.64 40 220.0 180.0 215.88 86 190.0 200.0 280.64 41 160.0 185.0 1252.1 87 195.0 200.0 280.64 42 165.0 185.0 1252.1 87 195.0 200.0 280.64 41 160.0 185.0 1252.1 89 205.0 200.0 215.88 43 170.0 $185.$	27	150.0	180.0	300.00	73	190.0	195.0	280.64
29 165.0 180.0 1252.1 75 200.0 195.0 215.88 30 170.0 180.0 1252.1 76 205.0 195.0 215.88 31 175.0 180.0 1252.1 77 210.0 195.0 215.88 32 180.0 180.0 280.64 78 215.0 195.0 215.88 33 185.0 180.0 280.64 79 220.0 195.0 215.88 34 190.0 180.0 280.64 80 160.0 200.0 1252.1 35 195.0 180.0 280.64 81 165.0 200.0 1252.1 36 200.0 180.0 215.88 82 170.0 200.0 1252.1 36 200.0 180.0 215.88 83 175.0 200.0 1252.1 37 205.0 180.0 215.88 83 175.0 200.0 1252.1 38 210.0 180.0 215.88 84 180.0 200.0 280.64 40 220.0 180.0 215.88 86 190.0 200.0 280.64 41 160.0 185.0 1252.1 87 195.0 200.0 215.88 43 170.0 185.0 1252.1 89 205.0 200.0 215.88 44 175.0 185.0 1252.1 89 205.0 200.0 215.88 44 175.0 $185.$	28	160.0	180.0	1252.1	74	195.0	195.0	280.64
30 170.0 180.0 1252.1 76 205.0 195.0 215.88 31 175.0 180.0 1252.1 77 210.0 195.0 215.88 32 180.0 180.0 280.64 78 215.0 195.0 215.88 33 185.0 180.0 280.64 79 220.0 195.0 215.88 34 190.0 180.0 280.64 80 160.0 200.0 1252.1 35 195.0 180.0 280.64 81 165.0 200.0 1252.1 36 200.0 180.0 215.88 82 170.0 200.0 1252.1 36 200.0 180.0 215.88 83 175.0 200.0 1252.1 37 205.0 180.0 215.88 84 180.0 200.0 280.64 39 215.0 180.0 215.88 84 180.0 200.0 280.64 40 220.0 180.0 215.88 86 190.0 200.0 280.64 41 160.0 185.0 1252.1 87 195.0 200.0 215.88 43 170.0 185.0 1252.1 89 205.0 200.0 215.88 44 175.0 185.0 1252.1 89 205.0 200.0 215.88 44 175.0 185.0 1252.1 90 210.0 200.0 215.88 45 180.0 $185.$	29	165.0	180.0	1252.1	75	200.0	195.0	215.88
31 175.0 180.0 1252.1 77 210.0 195.0 215.88 32 180.0 180.0 280.64 78 215.0 195.0 215.88 33 185.0 180.0 280.64 79 220.0 195.0 215.88 34 190.0 180.0 280.64 80 160.0 200.0 1252.1 35 195.0 180.0 280.64 81 165.0 200.0 1252.1 36 200.0 180.0 215.88 82 170.0 200.0 1252.1 37 205.0 180.0 215.88 83 175.0 200.0 1252.1 38 210.0 180.0 215.88 84 180.0 200.0 280.64 40 220.0 180.0 215.88 85 185.0 200.0 280.64 41 160.0 185.0 1252.1 87 195.0 200.0 280.64 41 160.0 185.0 1252.1 87 195.0 200.0 280.64 42 165.0 185.0 1252.1 89 205.0 200.0 215.88 43 170.0 185.0 1252.1 89 205.0 200.0 215.88 44 175.0 185.0 1252.1 90 210.0 200.0 215.88 45 180.0 185.0 280.64 91 215.0 200.0 215.88 46 185.0 $185.$	30	170.0	180.0	1252.1	76	205.0	195.0	215.88
32 180.0 180.0 280.64 78 215.0 195.0 215.88 33 185.0 180.0 280.64 79 220.0 195.0 215.88 34 190.0 180.0 280.64 80 160.0 200.0 1252.1 35 195.0 180.0 280.64 81 165.0 200.0 1252.1 36 200.0 180.0 215.88 82 170.0 200.0 1252.1 37 205.0 180.0 215.88 83 175.0 200.0 1252.1 38 210.0 180.0 215.88 83 175.0 200.0 280.64 39 215.0 180.0 215.88 84 180.0 200.0 280.64 40 220.0 180.0 215.88 85 185.0 200.0 280.64 41 160.0 185.0 1252.1 87 195.0 200.0 280.64 41 160.0 185.0 1252.1 87 195.0 200.0 215.88 43 170.0 185.0 1252.1 89 205.0 200.0 215.88 44 175.0 185.0 1252.1 90 210.0 200.0 215.88 45 180.0 185.0 280.64 91 215.0 200.0 215.88 46 185.0 185.0 280.64 92 220.0 200.0 215.88	31	175.0	180.0	1252.1	77	210.0	195.0	215.88
33 185.0 180.0 280.64 79 220.0 195.0 215.88 34 190.0 180.0 280.64 80 160.0 200.0 1252.1 35 195.0 180.0 280.64 81 165.0 200.0 1252.1 36 200.0 180.0 215.88 82 170.0 200.0 1252.1 37 205.0 180.0 215.88 83 175.0 200.0 1252.1 38 210.0 180.0 215.88 83 175.0 200.0 280.64 39 215.0 180.0 215.88 84 180.0 200.0 280.64 40 220.0 180.0 215.88 85 185.0 200.0 280.64 41 160.0 185.0 1252.1 87 195.0 200.0 280.64 41 160.0 185.0 1252.1 87 195.0 200.0 215.88 43 170.0 185.0 1252.1 89 205.0 200.0 215.88 44 175.0 185.0 1252.1 90 210.0 200.0 215.88 44 175.0 185.0 1252.1 90 210.0 200.0 215.88 45 180.0 185.0 280.64 91 215.0 200.0 215.88 46 185.0 185.0 280.64 92 220.0 200.0 215.88	32	180.0	180.0	280.64	78	215.0	195.0	215.88
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	33	185.0	180.0	280.64	79	220.0	195.0	215.88
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	34	190.0	180.0	280.64	80	160.0	200.0	1252.1
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	35	195.0	180.0	280.64	81	165.0	200.0	1252.1
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	36	200.0	180.0	215.88	82	170.0	200.0	1252.1
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	37	205.0	180.0	215.88	83	175.0	200.0	1252.1
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	38	210.0	180.0	215.88	84	180.0	200.0	280.64
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	39	215.0	180.0	215.88	85	185.0	200.0	280.64
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	40	220.0	180.0	215.88	86	190.0	200.0	280.64
42165.0185.01252.188200.0200.0215.8843170.0185.01252.189205.0200.0215.8844175.0185.01252.190210.0200.0215.8845180.0185.0280.6491215.0200.0215.8846185.0185.0280.6492220.0200.0215.88	41	160.0	185.0	1252.1	87	195.0	200.0	280.64
43170.0185.01252.189205.0200.0215.8844175.0185.01252.190210.0200.0215.8845180.0185.0280.6491215.0200.0215.8846185.0185.0280.6492220.0200.0215.88	42	165.0	185.0	1252.1	88	200.0	200.0	215.88
44175.0185.01252.190210.0200.0215.8845180.0185.0280.6491215.0200.0215.8846185.0185.0280.6492220.0200.0215.88	43	170.0	185.0	1252.1	89	205.0	200.0	215.88
45180.0185.0280.6491215.0200.0215.8846185.0185.0280.6492220.0200.0215.88	44	175.0	185.0	1252.1	90	210.0	200.0	215.88
46 185.0 185.0 280.64 92 220.0 200.0 215.88	45	180.0	185.0	280.64	91	215.0	200.0	215.88
	46	185.0	185.0	280.64	92	220.0	200.0	215.88

Таблиця 2. Опис джерел забруднення.

Для моделювання були використані наступні значення для параметрів ДС-алгоритму:

$$h_x = 5, h_y = 5, \tau = 0, 5.$$

На рисунку 1 зображено значення функціоналу якості, що використовувався в нашій задачі, на 20 ітераціях.

Рис. 1. Функціонал якості на 20 ітераціях

Висновки

В даному розділі авторами була розглянута практична задача розповсюдження радіоактивної суміші ізотопів: радіоактивного тритію (tritium 3H) та нерадіоактивного гелія-3 (helium-3). Було продемонстровано практичну значущість розроблених методів на прикладі чисельного моделювання розповсюдження радіоактивної суміші радіоактивного тритію (tritium 3H) та нерадіоактивного гелію-3 (helium-3) та ідентификації їх точкових джерел.

Література

 Грищенко О. Ю. Про один двокроковий скінченно-різнецевий алгоритм моделювання процесів переносу // Вісник Київського національного університету імені Тараса Шевченка. Кібернетика. — 2006. — №7. — С. 7–10.

- Грищенко О. Ю., Клюшин Д. А., Оноцький В. В., Стешенко Г. М. Ідентифікація точкових структурованих за віком джерел забруднень з використанням двокрокового симетризованого алгоритму // Журн. обчисл. та прикл. матем. — 2011. — Вып. 104. — С. 40–48.
- 3. Клюшин Д. А., Кущан А. А., Ляшко С. И., Номировский Д. А., Петунин Ю. И. Обобщенное решение некоторых операторных уравнений в банаховых пространствах // Журн. обчисл. та прикл. матем. №1 (81). 1997.— С. 93–99.
- 4. Ляшко С. И. Обобщенное управление линейными системами. К. Наукова думка, 1998. 472 с.
- 5. Пененко В. В. Вариационное усвоение данных в реальном времени // Вычислительные технологии. Специальный выпуск, часть 1. — 2005. — Т. 10. — С. 9–20.
- 6. Семенов В. В. Про глобально оптимальні керування в нелінійних операторних системах // Вісник Київського університету. Сер. фіз.-мат. науки. 2003. №4. С. 294–296.
- Стеля О. Б., Тригуб О. С. Чисельна процедура відтворення невідомих параметрів джерел для задач масопереносу // Наукові записки. Комп'ютерні науки / Національний університет "Києво-Могилянська академія". —2000. Т. 18. С. 40–46.
- Стешенко Г. М. Дослідження існування і єдності розв'язку для параболічних систем з сингулярними правими частинами // Вісник Київського університету. Серія: фіз.-мат. науки. — 2010. — Вип. 1. — С. 144–151.
- Стешенко Г. М. Дослідження існування і єдності розв'язку для параболічних систем з сингулярними правими частинами // Вісник Київського університету. Серія: фіз.-мат. науки. — 2010. — №2.— С. 172–179.
- Самарский А. А., Вабищевич П. Н. Аддитивные схемы для задач математической физики // М.: Наука. — 2001. — 345 с.
- 11. Choquet C. Existence result for a radionuclide transport model with unbounded viscosity // Journal of Mathematics and Fluid Mechanics. 2004. V. 6. P. 365–388.
- 12. Choquet C. Radionuclide transport model with wells // Asymptotic Analysis. 2004. V. 37. P. 57–78.
- 13. Choquet C., Zimmermann S. Study of a finite volume-finite element scheme for a nuclear transport model // Mode of access: WWW.URL: arxiv.org/abs/0704.1286. Last access: 2009.
- 14. Douglas J., Spagnuolo A. The transport of nuclear contamination in fractured porous media // Journal of Korean Mathematical Society. V. 38. P. 723-761.

Факультет кібернетики, Київський національний університет імені Тараса Шевченка, вул., Володимирська 64, Київ, 01601, Україна

Надійшла 15.10.13