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MATRIX CONTINUED FRACTIONS FOR SOLVING
THE POLYNOMIAL MATRIX EQUATIONS

ANASTASIYA NEDASHKOVSKA

PE3IOME. PosrusimyTo asroputM po3s’a3yBaHHS HOJIIHOMIAIBHAX MATPATHIX
piBHsIHB. 3amIpPONOHOBAHA pPEKypeHTHAa (HOpMyJsia PO3BHHEHHS DO3B’SI3KY B
JaHIoroBuit Mmarpuanawmii api6. Josememno 36ixkuicTs MeTomy. Hasemeno pesy-
JIbTaTU YUCEJIbHUX EKCIEPUMEHTIB, 110 HiATBEPIRKYIOTH CIPABEJIUBICTD TEO-
PETUYHUX BUKJIAIOK..

ABsTrACT. The article deals with the algorithm for solving the polynomial
matrix equations. Recurrent formula for decomposition solution by the ma-
trix continued fractions is proposed. The convergence of the method is proved
and results of the numerical experiments that confirm the validity of the cal-
culations are provided.

1. INTRODUCTION
The most simple matrix equations were being solved in the second half of the
nineteenth century [1]. In default of a common approach polynomial matrix
equations were resolved for a specific partial case.
A new approach for solving equations of the form

Ap X"+ Ay X" L AIX + A =0, (1)

is proposed in this paper. Here the coeflicients A; € RP*P (z = 1,m) and un-
knowns X € RP*P are set on the ring of no commutative matrices.
For example we can consider quadratic equation

XAX +X +B=0, (2)

where A and B are nonzero square matrices of order n with constant coefficients
and X is unknown square matrix of order n.
The equation can be written in the form

(XA+E)X = -B.

Or, assuming the existence of the inverse matrix, in form (XA + E)_1 )

X=—-(XA+E)'B.

For convenience here this notation will be used:
B

(XA+E)'B=—-_—___|
(XA+E) E+ XA

Key words. Polynomial matrix equations; The matrix continued fractions; The convergence
of the method.
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Then, using the insertion method to solve equation (2), the following expansion
of X into a continued fraction is written:
B
X = —E BA (3)
B BA

E —
g B4

Using the similar transformations to solve the matrix equation

AX+XB+XFX+C=0 (4)

we obtain formal expansion of X into the following continued fraction

AF~'B —
X—_F-1B4 —c (5)
AF~'BF — CF
A—-F-IBF+ AFB_C
—F-1BF+
AF~'BF-CF
A-F~'BF+ ¢

Or using the Prinhcheym’s notation for continued fractions
AF~'B — C\ AF~'BF — CF)| Ly AFT 'B - cy
|A— F- 1BF |-F-1BF |A— F~ 1BF

It is known [1] that the problem of optimal control for discrete stationary
control system is reduced to a discrete Riccati equation

ATXA—X - A"XB(R+B"XB) 'B"XA+Q=0. (6)

X=-F"'B+

Here matrices A with dimension n X n and B with dimension n x m describes
the state of the system

x(k+1) = Az (k) + Bu (k).

And symmetric matrices @ and R defines quality criteria
J = Z ) +u” (k) Ru (k)] .

Herewith R is positive deﬁned and @ is positive semi defined.
It turns out that the matrix continued fractions can be used for solving the
discrete Riccati equation (6). After regrouping its members obtain

ATX (A-E-B(R+B"XB) ' BTXA)+Q =0,
or
ATX (A—E-B(R+B"XB)"' B'XBB'4) +Q =0,
From this we obtain

ATX [A— E-B(R+B"XB)" (R+B"XB - R) B‘lA} +Q=0
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and
ATX[A-E-BB'A+B(R+B"XB) RB'A]+Q =0,
So,
X=-(4)'Q[A-E-BB'A+B(R+B"XB)  RB'A] o
Thus, the following recurrent formula can be written for the Riccati equation:
(4" q|

X =-
‘E—I—BBlA—A—B

. 7
RB~1A @
R+ BTXB

Using composition (7) for equation (6) with numerical or symbolic elements,
the following expansion of X into a continued fraction can be written:

e @ael epa () ep
T |E+BBlA-A IR 7 |[E+BBlA-A ®)
R4 . (A7) @B
a IR 7 |E+BB'A-A

It is easy to see, comparing the expansions in continued fractions for equa-
tions (2), (4) and (6), that all of them are derived from a certain kind of schemes
that does not fit into the framework of a single method. Moreover, algorithms
for expansions of solutions in continued fractions are not known for algebraic
numeric equations with two higher orders too.

2. THE COMPUTATIONAL SCHEME OF THE METHOD
The algorithm of expansions into the periodic branched continued fraction

n—1 ) n—1 ‘ n—1 |
x:p0+z|_’ +Z|_"+...+Z oy (9)
i=1 i=1 v =1

|
a q |~
for polynomial numerical equations
"4 a " P+ a2+ . Hap1x+a, =0 (10)

was proposed in [2]. Unknown coefficients p; and ¢; of the fraction (10) are
defined as solutions of systems of linear algebraic equations. However, this
scheme cannot be trivially moved in case of solving matrix polynomial equations
because non commutative multiplication of matrices. But a similar algorithm
can be constructed.

Theorem 1. A solution to equation (1) of the n th order can be represented in
the form of an infinite periodic continued fraction with (n — 1) branches.

Proof. Suppose that matrices (X — Qk)_l (k: =1n— 1) are invertibles and
consider the equality

n—1
X=P+Y (X-Qn " P (11)
k=1
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were P, € RP*P(k=0,1,...,n—1) and Qp € RP*P(k=1,2,...,n—1) are
square matrices with unknown elements. To define them, the method of un-
determined coefficients can be used. We will look for such items py; ; (z =
1,2,...,p;i=1,2,...,p) and qr;; (i=1,2,...,p; j =1,2,...,p) of matrices
Py, and Q) accordingly, that equations (1) and (11) will be equivalent.

Put additional,

Qr=ar E, (12)
where E' identity matrices and their dimensions are equal p. Easy to see that

in this case

n—1

X—Qr X =Q) X ... x (X =Qp—) X =Qp) X ... x X =Qn-1) = [[&X — Q0.

k=1

We reduce fractions in (11) to a common denominator and get

n—1 -1 n—1 n—1
X = [H (X—Qk)] : {H (X = Qi) o+ [ (X —Qk) Pt

k=1 k=1 k=2
n—1 -1 n—1
X =-Q) [ X=Qp)Po+...+ [ (X =Q) ] X-Qx)P+...+
k=3 o k=1 k=l+1
+ kljl (X - Qk:) Pn1:| .
) (13)
Whence we obtain the following equation:
n—1 n—1 n—1
T or-ou|x - T -on+ T - Qure
:n—l - -1 :n—l
X - X-Qu)Po+..+[[(X-Qr) [I X—-Qu)P+...+
k=3 ., k=l+1
=1

For each of the products we can write:
n—1
~JIx-Qu)=—|X"+ X" (-1)" ' Q1Q2... Qu1+
k=1

+ X" 1) H(Q1Q2 - Qo2+ Q1Q2 . Qu3Quo1+. . +Q2Q5 .. Quo1)+
o+ X (Q1Q2+ Q1Qs+ .+ Qne2Qno1) = X (Q1+ Q2+ ... + Qu_1)];
n—1

[IX =@k =X""P+X"?(=1)""QQ2...Qu-1Po+

k=1

+ X" 31D (Q1Q2 - QuatQ1Q2 ... Qu3Qu1+. . +Q2Qs ... Qu_1)Po
+o A X(Q1Q2+Q1Q3+. . A+ Qn2Qn 1) Po— (Q1+Q2+. . . +Qn_1)Fo;
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n—1

[[ X —Q)P=X"2P+ X" (-1)"Q2Qs5... Qu-2Py + X" (=1)" %
k=2

(Q2Q3 ... Qna+Q2Q3...Qn3Qn_1+...+Q3Qs...Qn_1) P+ ...+
+(Q2Q3+ Q2Qs + ... Qn—2Qn_1)P1 — (Q2+ Q3+ ...+ Qn_1) Pi;

-1 n—1

H (X—Qk) H (X Qk) = X" QB —f—X” 3( )n72'

k=2 k=141

Q1Q2 . QuaQrir - Quoa X" (1) X Q1Q2 - Qi Quyr -+ Quoat

+ Q1Q2... Qi-1Qi41 ... Qn3Qn1+...+Q2Q3...Q1_1Qi41 ... Qn_2Qn_1) P,

+ .+ X (QQ3+Q2Qu+. . +Qi1Qi1 +Qi—1Qiy2+. . +Qn—2Qn_1)P—

—(Qi+Q+.. Q1+ Qi+ ... +Qun1) P

n—2

[[X=Qu) Pt = X" PP + X" (1) Qi Q2 - Qu2Qur Par +

k=1

+X"74(— D" HQ1Q2. - .Qu3+Q1Q2...Qpn-a4Qn-a+...+Q2Qs...Qn_2)P,
X (Q1Q2+Q2Q3+. . A+ Qn—3Qn—2)P1—(Q1+Q2+. . . +Qn_2)P,

We now sum up the right sides of the equalities above, with 81multaneously
grouping the coefficients of identical powers of X. Equating coefficients of
identical powers of X, we obtain the following system of equations for the
determination of Py (k=0,1,2,...,n—1) and Qx (k=1,2,...,n —1):

(-1 )”*1621@2 Qn1+P0:A1;

—1k-1 n— —1
(=)™ H IT @ H Q- ZPk+
k=1 =1 1=kt =1

+ (1) Q1Q2. .. Quo1Py = As;
n—3 n—2 n—2 k-1 [-1 n—2
(_1) Z Z (1_5kl)HQT‘ HQT H Qr+

k=11=k+1 r=1 r=k+1 T*l-l—l
n—1k—1 n—1 —1k—-1
+ 3 M@ TQPet (1™ ' Z 1 QP = As;
=1r=1 r=k+1 =1r=1
.. (14)
Z Qr + Z Z QP+ ...+ Z Z (1 = 0pr) QrpQiPr+
k=2 1=k+1 =11=k+1
-2 n—2
+...+ Z Yo QrQiPn—1 = Ap_1;
k=11=k+1
n—1 n—1 n—2
Y QkPiA A Y (1= 0k) QrPr 4 4 Y QP+
k=1 k=1 k=1

n—1
+ Z QrPy=A
k=1

Lif k=1,
where 5’“:{ O;fk:;él.
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If all the chosen (@i are pairwise different, then the latter system
of n equations in n unknowns (14) will become linear relatively unknown
P (k=0,1,2, ...,n—1) and will have a unique solution. Using composition
law (11) for X, we obtain the following expansion in terms of matrix branched
continued fractions. If the left matrix multiplication (X — Q)" P, is denoted

P,
s ———— the recurrent formula for X will look as such:
X — Qg
n—1
X=FP+ E 15
! « X - Qk: (15)

Applying now the composition (14), we obtain the expanse of matrix bran-
ched continued fraction

Py
X=PF, 1 16
O+Z n—1 Pk2 ( )
M= Py —Qpy + 3 P
2= B — Qe+ Y

k’;l.__|_

n—1 Pk
> 0,
ka1 20— Qk,, +

which is what had to be proved. O

To calculate the solution on the computer systems the recurrent formula (15)
is sufficient. But for analytical writing solution and research of its existence
and convergence approaching fractions shall use the theory of branched con-
tinued fraction for expanse (16). But solving equations (1) and (2), (4) and
(6) requires a detailed study of convergence and computational stability of the
matrix branched continued fraction.

Some sufficient signs of convergence for matrix branched continued fractions
have been proposed in [3].

But the convergence of the branched fraction does not necessarily mean the
convergence to the solution of the corresponding equation (1), (3) or (5). So
we will focus on this aspect in more detail and consider the branched continued
fraction

Z ’C;)k:l Z akle Z akleks i Z Ok koks...k; | k’ (17)
ky

‘ bkl ko |bk1 koks |bk1 koks...k;

Here Ay koks.. k; and bk1k2k3,_ki are square matrices of dimension p x p. In [2]
and [3] the following sufficient signs have been obtained.

Theorem 2. If the solution of polynomial matriz equation exists and belongs
to the interval [—N, N, then the expansion by some iterative procedure into the
matriz branched continued fraction (17) with elements that satisfy the conditions
1
Hb < = (k(s)€[1,N];5=1,2,3,...)
&+~

converges to this solution.
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Theorem 3. If the solution of polynomial matriz equation exists and belongs to

N N
the interval |— > Hak(s) Y Hak(s)H , then the expansion by some iter-
k(s)=1 s)=1

ative procedure into the matriz branched continued fraction (17) with elements
that satisfy the conditions

o | < 1

(s=1,2,3,...)

N
1+ 3 larey])
k(s+1)=1

converges to this solution.

These signs can be used to analyze the convergence of matrix continued
fractions (3), (5), (8) and (16). Also, they are simple and easy to use. The
theorems 2 and 3 can be used in practice, particularly in computer algebra
systems, and serve as a basis for other sufficient signs for matrix branched
continued fraction.

Note also, that if signs of convergence are valid, the iterative process (16)
can finish if the inequality

HXkH - XkH <e€

is valid. Here € — given calculation accuracy. This follows from the fact that
in conditions of the theorem 2 and the theorem 3 the absolutely convergent
numerical majorizing branched fractions build for matrix branched continued
fractions (16). And its approach fractions form a monotone sequence.

Estimate the complexity of the algorithm. To obtain Py (k =0,n— 1) and
Qr (k = 1,7) for the system of equations (14) we need to specify the pair-
wise different values for all matrix elements of (Qx. Then, doing generally up
to the principal term n°p? operations of multiplication and n°p?® operations of
addition, we obtain the block system of linear algebraic equations with order
n to determine Pj,. For its solution need to complete an additional n3p3 oper-
ations of multiplication and n3p3 operations of addition. One iteration using
the recurrent formula (11) requires the implementation of 2np® operations of
multiplication and np? operations of addition.

3. NUMERICAL EXPERIMENTS
To verify the practical effectiveness of this approach, a series of numerical
experiments were done in Mat Lab environment. In particular matrix equation

X3+A2X2+A1X—|—A0:O,

was being solved. Here matrix coefficients were equal

2.0000 —3.0000 —5.0000 1.0000  6.0000 —5.0000
As=1 0.2200 0.2510  0.2500 |; A;={ 0.2500  0.2200  0.2510 [;
0.2200 —-0.2340 —0.1300 0.2340 —0.1300  0.2200
136.0000  139.0000  134.0000
Ag=| —272.0240 —-269.0270 —282.0490

—350.2980 —358.7900 —336.5740
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The recurrent formula X = Py + (Q1 + X) ' P14+ (Q2 + X) ' P, was being
used to calculate X.
The matrix coefficients were set as

0.96 0 0 1.92 0 0
Q1= 0 0.96 0], Q1= 0 1.92 0
0 0 0.96 0 0 1.92

Then from equations (15) the following values were calculated
139.9739 121.2717  130.3833

Py = [—285.0969 —287.0854 —293.3430 |;
—364.5170 —374.3781 —358.9099
—141.6651 —135.9117 —139.7833 0.8800 3.0000  5.0000
P = 2854805 281.1371  293.8120 |; Po={—0.2200 2.6290 —0.2500 [;
364.9166  373.8342  351.8643 —0.2200 0.2340  3.0100

For the initial approximation Xy was chosen zero matrix and the following
approximate value of the unknown matrix was received

12.3600 147.9411 -107.2121
X =1 —28.9221 -—-290.3746  224.4685
—36.9221 —363.6585  282.0369

with the following results

Number

S 30 10 50 60 70
of iteration
Norm of ) 5015 | 6.1725E—04 | 9.0636E—06 | 4.9470E—08 | 6.9768E—09
difference

Thus, this approach can be applied to solve scientific and technical problems
in generalized models of V.Leontyev and so on. However, the task of build-
ing a more subtle signs of convergence for periodic matrix branched continued
fractions with broader areas of convergence is still open.
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