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MATRIX CONTINUED FRACTIONS FOR SOLVING
THE POLYNOMIAL MATRIX EQUATIONS

Anastasiya Nedashkovska

Ðåçþìå. Ðîçãëÿíóòî àëãîðèòì ðîçâ'ÿçóâàííÿ ïîëiíîìiàëüíèõ ìàòðè÷íèõ
ðiâíÿíü. Çàïðîïîíîâàíà ðåêóðåíòíà ôîðìóëà ðîçâèíåííÿ ðîçâ'ÿçêó â
ëàíöþãîâèé ìàòðè÷íèé äðiá. Äîâåäåíî çáiæíiñòü ìåòîäó. Íàâåäåíî ðåçó-
ëüòàòè ÷èñåëüíèõ åêñïåðèìåíòiâ, ùî ïiäòâåðäæóþòü ñïðàâåäëèâiñòü òåî-
ðåòè÷íèõ âèêëàäîê..
Abstract. The article deals with the algorithm for solving the polynomial
matrix equations. Recurrent formula for decomposition solution by the ma-
trix continued fractions is proposed. The convergence of the method is proved
and results of the numerical experiments that con�rm the validity of the cal-
culations are provided.

1. Introduction
The most simple matrix equations were being solved in the second half of the

nineteenth century [1]. In default of a common approach polynomial matrix
equations were resolved for a speci�c partial case.

A new approach for solving equations of the form
AnXn + An−1X

n−1 + . . . + A1X + A0 = 0, (1)
is proposed in this paper. Here the coe�cients Ai ∈ Rp×p

(
i = 1,m

)
and un-

knowns X ∈ Rp×p are set on the ring of no commutative matrices.
For example we can consider quadratic equation

XAX + X + B = 0, (2)
where A and B are nonzero square matrices of order n with constant coe�cients
and X is unknown square matrix of order n.

The equation can be written in the form
(XA + E) X = −B.

Or, assuming the existence of the inverse matrix, in form (XA + E)−1 ,

X = − (XA + E)−1 B.

For convenience here this notation will be used:

− (XA + E)−1 B = − B

E + XA
.

Key words. Polynomial matrix equations; The matrix continued fractions; The convergence
of the method.
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Then, using the insertion method to solve equation (2), the following expansion
of X into a continued fraction is written:

X = − B

E − BA

E − BA

E − BA

. . .

(3)

Using the similar transformations to solve the matrix equation
AX + XB + XFX + C = 0 (4)

we obtain formal expansion of X into the following continued fraction

X=−F−1B+
AF−1B − C

A−F−1BF +
AF−1BF − CF

−F−1BF +
AF−1B − C

. . .

A−F−1BF +
AF−1BF−CF

. . .

(5)

Or using the Prinhcheym's notation for continued fractions

X = −F−1B +
AF−1B − C

∣∣
|A− F−1BF

+
AF−1BF − CF

∣∣
|−F−1BF

+ . . . +
AF−1B − C

∣∣
|A− F−1BF

+ . . .

It is known [1] that the problem of optimal control for discrete stationary
control system is reduced to a discrete Riccati equation

AT XA−X −AT XB
(
R + BT XB

)−1
BT XA + Q = 0. (6)

Here matrices A with dimension n× n and B with dimension n×m describes
the state of the system

x (k + 1) = Ax (k) + Bu (k) .

And symmetric matrices Q and R de�nes quality criteria

J =
∞∑

k=0

[
xT (k) Qx (k) + uT (k)Ru (k)

]
.

Herewith R is positive de�ned and Q is positive semi de�ned.
It turns out that the matrix continued fractions can be used for solving the

discrete Riccati equation (6). After regrouping its members obtain

AT X
(
A− E −B

(
R + BT XB

)−1
BT XA

)
+ Q = 0,

or
AT X

(
A−E −B

(
R + BT XB

)−1
BT XBB−1A

)
+ Q = 0.

From this we obtain
AT X

[
A−E −B

(
R + BT XB

)−1 (
R + BT XB −R

)
B−1A

]
+ Q = 0
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and
AT X

[
A−E −BB−1A + B

(
R + BT XB

)−1
RB−1A

]
+ Q = 0.

So,

X = − (
A−1

)T
Q

[
A− E −BB−1A + B

(
R + BT XB

)−1
RB−1A

]−1
.

Thus, the following recurrent formula can be written for the Riccati equation:

X = −
(
A−1

)T
Q

∣∣∣
∣∣∣∣E + BB−1A−A−B

RB−1A

R + BT XB

. (7)

Using composition (7) for equation (6) with numerical or symbolic elements,
the following expansion of X into a continued fraction can be written:

X = −
(
A−1

)T
Q

∣∣∣
|E + BB−1A−A

−B
RB−1A

∣∣
|R −BT

(
A−1

)T
QB

∣∣∣
|E + BB−1A−A

−

− . . .−B
RB−1A

∣∣
|R −BT

(
A−1

)T
QB

∣∣∣
|E + BB−1A−A

− . . .

(8)

It is easy to see, comparing the expansions in continued fractions for equa-
tions (2), (4) and (6), that all of them are derived from a certain kind of schemes
that does not �t into the framework of a single method. Moreover, algorithms
for expansions of solutions in continued fractions are not known for algebraic
numeric equations with two higher orders too.

2. The computational scheme of the method
The algorithm of expansions into the periodic branched continued fraction

x = p0 +
n−1∑

i=1

pi|
|−qi

+
n−1∑

i=1

pi|
|−qi

+ . . . +
n−1∑

i=1

pi|
|−qi

+ . . . (9)

for polynomial numerical equations
xn + a1x

n−1 + a2x
n−2 + . . . + an−1x + an = 0 (10)

was proposed in [2]. Unknown coe�cients pi and qi of the fraction (10) are
de�ned as solutions of systems of linear algebraic equations. However, this
scheme cannot be trivially moved in case of solving matrix polynomial equations
because non commutative multiplication of matrices. But a similar algorithm
can be constructed.
Theorem 1. A solution to equation (1) of the n th order can be represented in
the form of an in�nite periodic continued fraction with (n− 1) branches.

Proof. Suppose that matrices (X −Qk)
−1 (

k = 1, n− 1
)
are invertibles and

consider the equality

X = P0 +
n−1∑

k=1

(X −Qk)
−1 Pk, (11)

115



ANASTASIYA NEDASHKOVSKA

were Pk ∈ Rp×p (k = 0, 1, . . . , n− 1) and Qk ∈ Rp×p (k = 1, 2, . . . , n− 1) are
square matrices with unknown elements. To de�ne them, the method of un-
determined coe�cients can be used. We will look for such items pk,i,j

(
i =

1, 2, . . . , p; j = 1, 2, . . . , p
)
and qk,i,j

(
i = 1, 2, . . . , p; j = 1, 2, . . . , p

)
of matrices

Pk and Qk accordingly, that equations (1) and (11) will be equivalent.
Put additional,

Qk = qk · E, (12)
where E identity matrices and their dimensions are equal p. Easy to see that
in this case

(X−Qk) (X−Q1)× . . .×(X−Qk−1) (X−Qk+1)× . . .×(X−Qn−1) =
n−1∏

k=1

(X −Qk) .

We reduce fractions in (11) to a common denominator and get

X =
[

n−1∏
k=1

(X −Qk)
]−1

·
[

n−1∏
k=1

(X −Qk) P0 +
n−1∏
k=2

(X −Qk) P1+

+(X −Q1)
n−1∏
k=3

(X −Qk)P2 + . . . +
l−1∏
k=1

(X −Qk)
n−1∏

k=l+1

(X −Qk) Pl + . . .+

+
n−2∏
k=1

(X −Qk) Pn−1

]
.

(13)
Whence we obtain the following equation:

[
n−1∏
k=1

(X −Qk)
]

X −
[

n−1∏
k=1

(X −Qk) P0 +
n−1∏
k=2

(X −Qk) P1+

+(X −Q1)
n−1∏
k=3

(X −Qk)P2 + . . . +
l−1∏
k=1

(X −Qk)
n−1∏

k=l+1

(X −Qk) Pl + . . .+

+
n−2∏
k=1

(X −Qk) Pn−1

]
.

For each of the products we can write:

−
n−1∏

k=1

(X −Qk) = −
[
Xn + Xn−1 (−1)n−1 Q1Q2 . . . Qn−1+

+ Xn−2(−1)n−2(Q1Q2 . . . Qn−2+Q1Q2 . . . Qn−3Qn−1+. . .+Q2Q3 . . . Qn−1)+

+ . . . + X2 (Q1Q2 + Q1Q3 + . . . + Qn−2Qn−1)−X (Q1 + Q2 + . . . + Qn−1)
]
;

n−1∏

k=1

(X −Qk) P0 = Xn−1P0 + Xn−2 (−1)n−1 Q1Q2 . . . Qn−1P0+

+ Xn−3(−1)n−3(Q1Q2 . . . Qn−2+Q1Q2 . . . Qn−3Qn−1+. . .+Q2Q3 . . . Qn−1)P0

+. . .+X(Q1Q2+Q1Q3+. . .+Qn−2Qn−1)P0−(Q1+Q2+. . .+Qn−1)P0;
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n−1∏

k=2

(X −Qk)P1 =Xn−2P1+Xn−3 (−1)n−2 Q2Q3 . . . Qn−2P1 + Xn−4(−1)n−3·

· (Q2Q3 . . . Qn−2 + Q2Q3 . . . Qn−3Qn−1 + . . . + Q3Q4 . . . Qn−1) P1 + . . .+

+ (Q2Q3 + Q2Q4 + . . . Qn−2Qn−1) P1 − (Q2 + Q3 + . . . + Qn−1) P1;
l−1∏

k=2

(X −Qk)
n−1∏

k=l+1

(X −Qk)Pl = Xn−2Pl + Xn−3 (−1)n−2 ·

·Q1Q2 . . . Ql−1Ql+1 . . . Qn−1Pl+Xn−4 (−1)n−3(Q1Q2 . . . Ql−1Ql+1 . . . Qn−2+

+ Q1Q2 . . . Ql−1Ql+1 . . . Qn−3Qn−1+. . .+Q2Q3 . . . Ql−1Ql+1 . . . Qn−2Qn−1) Pl

+ . . . +X (Q2Q3+Q2Q4+. . .+Ql−1Ql+1+Ql−1Ql+2+. . .+Qn−2Qn−1)Pl−
− (Q1 + Q2 + . . . + Ql−1 + Ql+1 + . . . + Qn−1) Pl;
n−2∏

k=1

(X −Qk) Pn−1 = Xn−2Pn−1 + Xn−3 (−1)n−2 Q1Q2 . . . Qn−2Qn−1Pn−1+

+Xn−4(−1)n−3(Q1Q2. . .Qn−3+Q1Q2. . .Qn−4Qn−2+. . .+Q2Q3. . .Qn−2)Pn−1

+ . . . +X(Q1Q2+Q2Q3+. . .+Qn−3Qn−2)Pn−1−(Q1+Q2+. . .+Qn−2)Pn−1.

We now sum up the right sides of the equalities above, with simultaneously
grouping the coe�cients of identical powers of X. Equating coe�cients of
identical powers of X, we obtain the following system of equations for the
determination of Pk (k = 0, 1, 2, . . . , n− 1) and Qk (k = 1, 2, . . . , n− 1) :

(−1)n−1 Q1Q2 . . . Qn−1 + P0 = A1;

(−1)n−2
n−1∏
k=1

k−1∏
l=1

Ql

n−1∏
l=k+1

Ql −
n−1∑
k=1

Pk+

+ (−1)n−1 Q1Q2 . . . Qn−1P0 = A2;

(−1)n−3
n−2∑
k=1

n−2∑
l=k+1

(1−δkl)
k−1∏
r=1

Qr

l−1∏
r=k+1

Qr

n−2∏
r=l+1

Qr+

+
n−1∑
k=1

k−1∏
r=1

Qr

n−1∏
r=k+1

QrPk + (−1)n−1
n−1∑
k=1

k−1∏
r=1

QrP0 = A3;

. . .
n−1∑
k=1

Qk +
n−1∑
k=2

n−1∑
l=k+1

QkQlP1 + . . . +
n−1∑
k=1

n−1∑
l=k+1

(1− δkr) QkQlPr+

+ . . . +
n−2∑
k=1

n−2∑
l=k+1

QkQlPn−1 = An−1;

. . .
n−1∑
k=1

QkP1 + . . . +
n−1∑
k=1

(1− δkr)QrPr + . . . +
n−2∑
k=1

QkPn−1+

+
n−1∑
k=1

QkP0 = An,

(14)

where δkl =
{

1 if k = l,
0 if k 6= l.
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If all the chosen Qk are pairwise di�erent, then the latter system
of n equations in n unknowns (14) will become linear relatively unknown
Pk (k = 0, 1, 2, . . . , n− 1) and will have a unique solution. Using composition
law (11) for X, we obtain the following expansion in terms of matrix branched
continued fractions. If the left matrix multiplication (X −Qk)

−1 Pr is denoted
as Pr

X −Qk
, the recurrent formula for X will look as such:

X = P0 +
n−1∑

k=1

Pr

X −Qk
. (15)

Applying now the composition (14), we obtain the expanse of matrix bran-
ched continued fraction

X=P0+
n−1∑

k1=1

Pk1

P0−Qk1 +
n−1∑
k2=1

Pk2

P0−Qk2 +
n−1∑
k3=1 . . .+

n−1∑
km=1

Pkm

P0−Qkm + . . .

(16)

which is what had to be proved. 2

To calculate the solution on the computer systems the recurrent formula (15)
is su�cient. But for analytical writing solution and research of its existence
and convergence approaching fractions shall use the theory of branched con-
tinued fraction for expanse (16). But solving equations (1) and (2), (4) and
(6) requires a detailed study of convergence and computational stability of the
matrix branched continued fraction.

Some su�cient signs of convergence for matrix branched continued fractions
have been proposed in [3].

But the convergence of the branched fraction does not necessarily mean the
convergence to the solution of the corresponding equation (1), (3) or (5). So
we will focus on this aspect in more detail and consider the branched continued
fraction

N∑

kl=1

akl
|

|bkl

+
N∑

k2=l

ak1k2 |
|bk1k2

+
N∑

k3=1

ak1k2k3 |
|bk1k2k3

+ . . . +
N∑

ki=1

ak1k2k3...ki |
|bk1k2k3...ki

+ . . . (17)

Here ak1k2k3...ki and bk1k2k3...ki are square matrices of dimension p × p. In [2]
and [3] the following su�cient signs have been obtained.
Theorem 2. If the solution of polynomial matrix equation exists and belongs
to the interval [−N, N ], then the expansion by some iterative procedure into the
matrix branched continued fraction (17) with elements that satisfy the conditions

∥∥∥b−1
k(s)

∥∥∥ ≤ 1∥∥ak(s)+N

∥∥ (k (s) ∈ [1, N ] ; s = 1, 2, 3, . . .)

converges to this solution.
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Theorem 3. If the solution of polynomial matrix equation exists and belongs to

the interval
[
−

N∑
k(s)=1

∥∥ak(s)

∥∥ ,
N∑

k(s)=1

∥∥ak(s)

∥∥
]
, then the expansion by some iter-

ative procedure into the matrix branched continued fraction (17) with elements
that satisfy the conditions

∥∥∥b−1
k(s)

∥∥∥ ≤ 1

1 +
N∑

k(s+1)=1

∥∥ak(s+1)

∥∥
(s = 1, 2, 3, . . .)

converges to this solution.
These signs can be used to analyze the convergence of matrix continued

fractions (3), (5), (8) and (16). Also, they are simple and easy to use. The
theorems 2 and 3 can be used in practice, particularly in computer algebra
systems, and serve as a basis for other su�cient signs for matrix branched
continued fraction.

Note also, that if signs of convergence are valid, the iterative process (16)
can �nish if the inequality

‖Xk+1 −Xk‖ ≤ ε

is valid. Here ε � given calculation accuracy. This follows from the fact that
in conditions of the theorem 2 and the theorem 3 the absolutely convergent
numerical majorizing branched fractions build for matrix branched continued
fractions (16). And its approach fractions form a monotone sequence.

Estimate the complexity of the algorithm. To obtain Pk

(
k = 0, n− 1

)
and

Qk

(
k = 1, n

)
for the system of equations (14) we need to specify the pair-

wise di�erent values for all matrix elements of Qk. Then, doing generally up
to the principal term n5p3 operations of multiplication and n5p3 operations of
addition, we obtain the block system of linear algebraic equations with order
n to determine Pk. For its solution need to complete an additional n3p3 oper-
ations of multiplication and n3p3 operations of addition. One iteration using
the recurrent formula (11) requires the implementation of 2np3 operations of
multiplication and np3 operations of addition.

3. Numerical experiments
To verify the practical e�ectiveness of this approach, a series of numerical

experiments were done in Mat Lab environment. In particular matrix equation
X3 + A2X

2 + A1X + A0 = 0,

was being solved. Here matrix coe�cients were equal

A2 =




2.0000 −3.0000 −5.0000
0.2200 0.2510 0.2500
0.2200 −0.2340 −0.1300


; A1 =




1.0000 6.0000 −5.0000
0.2500 0.2200 0.2510
0.2340 −0.1300 0.2200


;

A0 =




136.0000 139.0000 134.0000
−272.0240 −269.0270 −282.0490
−350.2980 −358.7900 −336.5740


.
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The recurrent formula X = P0 + (Q1 + X)−1 P1 + (Q2 + X)−1 P2 was being
used to calculate X.

The matrix coe�cients were set as

Q1 =




0.96 0 0
0 0.96 0
0 0 0.96


; Q1 =




1.92 0 0
0 1.92 0
0 0 1.92


.

Then from equations (15) the following values were calculated

P2 =




139.9739 121.2717 130.3833
−285.0969 −287.0854 −293.3430
−364.5170 −374.3781 −358.9099


;

P1 =



−141.6651 −135.9117 −139.7833

285.4805 281.1371 293.8120
364.9166 373.8342 351.8643


;P0 =




0.8800 3.0000 5.0000
−0.2200 2.6290 −0.2500
−0.2200 0.2340 3.0100


;

For the initial approximation X0 was chosen zero matrix and the following
approximate value of the unknown matrix was received

X =




12.3600 147.9411 −107.2121
−28.9221 −290.3746 224.4685
−36.9221 −363.6585 282.0369




with the following results
Number
of iteration 30 40 50 60 70

Norm of
di�erence 0.3015 6.1725E−04 9.0636E−06 4.9470E−08 6.9768E−09

Thus, this approach can be applied to solve scienti�c and technical problems
in generalized models of V. Leontyev and so on. However, the task of build-
ing a more subtle signs of convergence for periodic matrix branched continued
fractions with broader areas of convergence is still open.
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