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TWO-STEP COMBINED METHOD FOR
SOLVING NONLINEAR OPERATOR EQUATIONS

STEPAN SHAKHNO, HALYNA YARMOLA

PE3IOME. V¥ crarTi BUBUEHO HAMIBIOKAJIbHY 3012KHICTH JBOKPOKOBOrO KOMOI-
HOBAHOTO METO/Y JJIsT PO3B’SI3yBaHHs HETIHIHUX OTIEPATOPHUX PIBHSIHB, T00Y-
JOBAaHOTO Ha 0a3i BOX METO/IB 3 mMOpsakaMu 30ixKHOCTI 1 + V2. Amamnis
3012KHOCTI IIPOBEIEHO 32 y3araJibHEHUX YMOB JIIMIIAIS [UTs HePIuX 1 APyrux
MIOXITHUX Ta MOILTEHUX DI3HUIH MEPIIOTO MOPAIKY.

ABsTRACT. In this paper we study a semilocal convergence of the two-step
combined method for solving nonlinear operator equations. It method is based
on two methods of convergence orders 1 + /2. Convergence analysis is pro-
vided for generalized Lipschits condition for Frechet derivates of the first and
second orders and for divided differences of the first order.

1. INTRODUCTION
Consider the equation

H(z) = F(z) + G(z) =0, (1)

where F' and G are nonlinear operators, defined on a convex subset D of a
Banach space X with values in a Banach space Y. F'is a Fréchet-differentiable
operator, G is a continuous operator, differentiability of which is not required.

The well-known Newton’s method cannot be applied, as differentiability of
operator H is required. For solving nonlinear equation (1) very often use the
two-point iterative process [1]

o1 = Tn — AN (Fan) + Glzn)), n=0,1,..., 2)

where A, = A(xp_1,2,) € L(X,Y). The convergence analysis of the
method (2) in general and for A, = F'(x,), A, = F'(zn) + G(xn_1;24),
A, = H(xp—1;2y) and its modifications was provided by authors [1, 2, 3, 4, 5,
6, 18]. Here G(z;y) (H(x;y)) is a first order divided difference of the operator
G(H) at the points x and y [13, 14, 15|. In papers |7, 11] we researched a
semilocal convergence of the method (2) for A, = F'(x,) + G(xp—1;xy,) and
A, =F'(xp) + G2z, — xp—1;Tn—1).

In works [10, 12] we proposed a two-step method that is based on the methods
with the convergence orders 1+ /2 [9, 17]. Its iterative formula is:

Tp4+1 = Tn — |:F/<W) + G(ﬂﬁmyn)} _IH(x'fL)v ( )
3
Yn+1 = Tp4+1 — [F,(%T_'_yn> + G(Sﬂn, yn)} 71H(:Cn+1), n=0,1,....

Key words. Generalized Lipschitz condition, nondifferentiable operator, semilocal con-
vergence.
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We provided a local and a semilocal convergence analysis for method (3) under
classical Lipschitz conditions for the first and second order derivatives and
divided differences of the first order and established the convergence order.
Also we showed results of the numerical solving of the nonlinear equations and
systems of nonlinear equations by this iterative process. In paper [8] we proved
the local convergence theorem of the (3) under generalized Lipschitz conditions.

In this paper, we study the semilocal convergence of the method (3) under
generalized Lipschitz conditions for the first and second order derivatives and
divided differences of the first order. These conditions are more general and
include classical Lipschitz conditions. Therefore our results have the theoretical
interest.

2. PRELIMINARIES
We will need the following definition and lemmas |8, 16].

Definition 7. Let G be a nonlinear operator defined on a subset D of a linear
space X with values in a linear space Y and let z, y be two points of D. A
linear operator from X into Y, denoted as G(z;y), which satisfies the condition

G(z;y)(z —y) = G(z) — G(y)
is called a divided difference of the first order of G at the points x and y.

In the study of iterative methods very often use the Lipschitz conditions with
constant L. Parameter L under Lipschitz conditions does not necessarily has
to be a constant, but may also be a positive integrable function. In work [16]
Wang suggested generalized Lipschitz conditions for the derivative operator in
which instead of constant there was used a certain positive integrable function.
In the work [9] we introduce analogous generalized Lipschitz conditions for the
divided difference of the first order operator.

Let us denote as Uy = {z : ||z — o] < 70} a closed ball of radius rg with
center at the point zg. If L in Lipschitz conditions is a positive integrable
function, we consider the conditions

|lz—yl|
IF'(@) — Fy)] < / L(u)du, 2,y € Up 4)
0
and
|z—ul|+[|y—vl|
1G(a:) — Glusv)| < / M(2)dz, 2y, u0€Uss  (5)
0

where L and M are positive integrable functions. Lipschitz conditions (4) and
(5) we will call generalized Lipschitz conditions or Lipschitz conditions with
the L (or M) average. Note that in the case of constants L and M we obtain
from (4) and (5) the classical Lipschitz conditions.

1 t
Lemma 1. [16]. Let h(t) = t/ L(u)du, 0 <t <r, where L(u) is a positive
0

integrable function that is nondecreasing monotonically in [0,7]. Then h(t) is
nondecreasing monotonically with respect to t.
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1 t
Lemma 2. [8]. Let g(t) = t3/ N(u)(t —u)?du, 0 <t <r, where N(u) is a
0

positive integrable function that is nondecreasing monotonically in [0,7]. Then
g(t) is a nondecreasing monotonically with respect to t.

3. SEMILOCAL CONVERGENCE ANALYSIS OF THE TWO-STEP
ITERATIVE PROCESS (3)
We can show the following semilocal convergence theorem for the method
(3). Imposed terms guarantee the convergence of the iterative process (3) to
the solution x* and its uniqueness.

Theorem 1. Let F' and G be nonlinear operators, defined on an open convex
subset D of a Banach space X with values in a Banach spaceY . F 1is a Fréchet-
differentiable operator, G is a continuous operator, differentiability of which is

M) + G(x0; yo),

where xo, yo € D, is invertible and in Uy = {z : ||z — x| < ro} C D the
Lipschitz conditions are fulfilled

le—yl
1A (F" () = F' ()] </ L(z)dz, (6)

not required. Assume that the linear operator Ag = F’

lz—y H
1A (F" (@)h — F"(y)h)|| < Hh!/ , heX, (7)
. lz—ull+lly—vll
145 (G(z;y) — Gu; 0))] S/O M(z)dz, (8)
where L, M, and N are positive integrable and nondecreasing monotonically
functions.
Let a, ¢ (¢ > a), 7o be nonnegative numbers such that
lzo = woll < a,  [|AG (F(=0) + G(wo))|| < ¢ (9)
c (2ro—a)/2 2ro—a
ro > 1 , / L(z )dz+/ M(z)dz < 1, (10)
-7 0

;c/OCN()(lc)dz+/(ca dz+/ M(z
1_f02r0 V2 L()dz — 2070 1(2)

Then the iterative process (3) is well—deﬁned and sequences {xn tn>0, {Yn}n>0
generated by it remain in Uy and converge to the solution x* of equation (1)
and, for alln > 0, the following inequalities are satisfied

vy = , 0~y <1

[Zn — Tng1ll < tn =ttty Yn — g1l < sp — o, (11)
[n — 2% <t — 1% lyn — 27| < sp — 17, (12)
where sequences {t, }n>0 and {sp}n>0 defined by the formulas

to=ro, so=ro—a, t1=ry9—c,

132



TWO-STEP COMBINED METHOD FOR NONLINEAR EQUATIONS

tnt1 = lng2 =
_1 Jo N(2)(c = 2)*d2(ty, — tns1)? N
— ]¢3 1— (tO_tn+1+SO—Sn+1)/2 ( )ClZ t0—tnt1+50—Snt1 M(Z)dz
fo(c—a)/Q h (13)
[fo 2)dz+ [y ° )dz} (tn = tnt1)(sn — tnt1)
c—aq_ fo(to—tn+1+so—sn+1)/2 L( )dz fto tnt1+50—Snt1 M(Z)dz’
n >0,
tpy1 — Spt1 =
= 1 fOCN(Z)(C - Z)2dz(tn —ta1)? I
8c3 1— (t()*tn+80*8n)/2 to—tn+50—5sn M( A=
Jo - Jo ) 1)

[fo(c_a)/QL z dz—i—fc aM z)dz} (t —tn+1)(3n _tn+1)

+C—a 1— O(to tn+so— Sn)/2 ( )dZ fto tn+s0—sn M( )d
n>0

)

are nonincreasing nonnegative and converge to certain t* such that

C
To—ligt*<t0.

Proof. Let us show by the mathematical induction method that, for all £ > 0

Bept > ka1 > trsa > 70 — ﬁ >0, (15)
te1 — ter2 < (e — the1)s e — Sk1 < V(k — tht1) (16)
are satisfied. For k = 0, from (13) and (14), we get
o 1 foc N(2)(c— 2)%dz(ty — t1)?
1—te=—=
1 fo(to—t1+80—81)/2 L(Z dZ . fgo_tl+30_31 M(z)dz
[fc V2 L()dz + f50 M(2)d2] (to — t1)(s0 — 1)
+
c—al_— f0t07t1+80781)/2 L(z)dz _ f507t1+80*81 M(z)dz
and
c 1—72d+ (c=a)/2 z)dz + dz
ta=ro—c— [ fo (2ro a)/2 f 2r0 anr f ) }CZ
11—/ L(z)dz — M(z)dz
(1-~%)ec

C
> g — —— > 0.

>rg— (1 =17y —
> m = (1o =m— o g -

Similarly, we have

1 C
t1 — s = 803/ N(z)(c— z)de(to — t1)3—|-
0

+ 1 [/0(ca)/2 L(z)dz + /Oca M(z)dz} (to —t1)(s0 — t1)

c—a
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and

s1=rg—c— [éc/oc N(z) <1 — E)de + /O(C_a)/2 L(z)dz + /Oc—a M(z)dz} c.

Cc

From the last equalities it follows that

C
t1 = t2, s1 2 to, t12812t227’0—1720-
-

Assume that that inequalities (15) and (16) are satisfied for k = 0,n — 1.
Then, for k = n, we obtain

lnt1 —tny2 =
i N (e - 2)Pda(ty — o)
8c3 1 _ fo(toftn+1+8078n+1)/2 L(z)dz — 50*t7b+1+5075"+1 M(z)dz
5" 1) + f5" M=] tn — ) o — i)
c—aq_ fo(to*tn+1+50*5n+1)/2 L(z)dz — fgoftnﬂ“ofs*”“ M(z)dz

- %c foc N(2)(1 - %)de + focfa)/Q L(z)dz + focfa M(z)dz

_|_

(tn —tn 1) —
1-— f()(2m_a)/2 L(z)dz — f;ro_a M (z)dz i
=Y(tn — tnt1),
1 Jo N(2)(c = 2)%dz(tn — tns1)?

tnt1 — Spi1 = +

8?1 _ fo(tofthrsofsn)/Q L(z)dz — f(;fofthrsofsn M(2)dz
LT L+ f M)zt~ ) (50— tas)

c—a 1_ f()(to_t"+so_8")/2L(z)dz _ fgo—tn+so—sn M(2)dz <

_ Sy N1~ 2)%dz + Jlem O L)z + [0 M(2)d2

N 1-— fO(QTO*a)/Q L(z)dz — fosza M(z)dz

=7(tn — tnt1)

+

(tn - thrl) —

and

tnt1l = Snt1 2 tngo 2ty — Y(tn — thy1) 2
1— n+2 c
> > —— >0
11— 1—7
So, we prove, that {t,}n>0 and {s,}n>0 are nonincreasing, nonnegative se-
quences and converge to t* > 0.
Let us prove, by mathematical induction, that the iterative process (3) is
well-defined and inequalities (11) are satisfied for all n > 0.

Taking into account (9) and that ¢ty — t; = ¢, we establish that x1 € Uy and
(11) are satisfied for n = 0.
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Denote A,, = F’(

and (8), we have

T ‘21‘ yn) + G(2n; yn). Using the Lipschitz conditions (6)

I — A" Anal| = 145 [Ao — Ana]l| <

< HAal[F'(xOTW) - F’(M) + G(z03y0) — G($n+1;yn+1)]H =

2
(lzo=zn+1ll+llyo—yn+1ll)/2 lzo—@nt1ll+yo—yn+1ll
§/ L(z)dz—l—/ M(z)dz <
0 0
(t07t7L+1+3073n+1)/2 t07t7L+1+3073n+1
§/ L(z)dz—l—/ M(z)dz <
0 0

(to+s0)/2 to+so
< / L(z)dz +/ M(z)dz < 1.
0 0

According to the Banach lemma on the invertible operator, 4,41 is invertible
and

[Ani Aol <
< (1 _ fo(llxo—xn+1||+||yo—yn+1||)/2 L(z)dz — fono—In+1H+Hyo—yn+1H M(z)dz)

Let us prove that iterative process (3) is well-defined for k = n 4 1. Taking
into account the definition of the first order divided difference, conditions (6),
(8) and identity [17]

Fw) - F) - P e -n =1 [a-0[F (S b -v)-
e +y+t@—xDLMx—mm—yx

2 2
we obtain
|Ag  H (z011)]| =
_ Tpn + X
~ 145" [Fanin) = Fla) = /(205050 (00— )+
Tn + @ +
+ Fl( = 2 n+1>(xn+1 _xn) - Fl(xn 9 yn>($n+1 _xn)+

(xn-‘,-l) (xn) - G(xn;yn)(xn-&-l - xn)] H <
1 flen—znll )
i/ N0 = sl = )Pdz+
lyn—xn+1ll/2
+/’ L(2)dz e — wosa |+
0

lyn—2n+1l|
+/ M (2)dz||xn — zpi1 |-
0

<
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Denote

1

[
A, = 8/0 N (|2 — 2nsa || — 2)%dz,

B, = fOHyn*In+1”/2 L(2)dz, Cp = fOHyn*In+1“ M(z)dz,
Qni1=1-— fO(HIO_$n+1H+Hy0—yn+1H)/2 L(z)dz — follﬂﬁo—wn+1\|+|ly0—yn+1ll M (2)dz.

Hence, taking into account lemmas 1, 2 and inequalities (11), we have

|Zn+1 = @nsall = 1A H (@)l < A7 Aol A5 H (s || <
< Ap + [Bn + Colllen — zpa || _
N Qn+1
_ Apllzn — $n+1||3 [Bn + Chlllzn — Znt1llllyn — Tl <
Qniillzn — Tnya]? Qn+1llyn — Tnsa | N

Aollzn = znia|l> | [Bo+ Colllen = zniallllyn = zniall _
~ Qnitllwo — 1|3 Qnt1llyo — 21 -
< 1 fg()ih N(z)(to — t1 — Z)de(tn - tn+1)3
< 8(t0 — t1)3 1_ fo(tgftn+1+sofsn+1)/2 L(z)dz . fgoftn+1+sofsn+1 M(z)dz
) [ O(so—tl)/2 L(z)dz + fOSO—tl L(Z)dZ:| (tn — tn+1)(sn — tn+1)
so—1t11— f()(toftn+1+5075n+1)/2 L(z)dz - ng*tn-l»l‘i’SO*Sn-ﬁ-l M(z)dz =
1 foc N(2)(c— 2)%dz(tn — tni1)?
T 83 1_ f()(to—tn+1+80—8n+1)/2 L(z)dz _ go_t”+1+80_8”+1 M(z)dz
[focfa)m L(z)dz+ [;° M(z)dz} (tn, — tnt1)(Sn — tnt1)

c—aq_ fo(tO_tn+1+50_5n+1)/2 L(z)dz _ [to—tnt+1+S0—Sn+1 M(z)dz -

+

+

0
=1tpt+1 — tnt2
and
[Znt2 — Yntall = 1A, L H(zng2) || < 14,1 Aol AG H (2 42) || <
< Apy1 + [Bpyr + Cogall|zn — 2paa| _
o Qn—H
_ Aptal|Tn — $n+2||3 [Brt1+ CoialllTnit — znrallllyny1 — o2l <
Qni1llTn — Tpir]3 Qnt1lYn+1 — Tnt2|| -
Aollzni1 — zni2ll® | [Bo+ Colllznis — zniolllynt1 — Tniol]
= Qnyillzo — 21 ? Qn+1llyo — 1] -
1 Jo' T NE) (o = 1) = 2)%d2(tatr — taga)?

—+

S8(75 —75)3 _ r(to—tnt1+so—snt+1)/2 _ [to—tnt1+S0—Sn+1
0= h)"1— ) L(z)dz — [, M (z)dz
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1 {f()(swtl)/z L(z)dz + f(fo*tl M(z)dz} (tn1 — tnt2)(tng2 — Snt1)
%—SU T 47Jgto—tn+1+so—sn+1wﬂ_L(Z)dz 4—jg°_¢”+1+6°_5”*‘.ﬂl(z)dz
1 Jo N(2)(c = 2)°dz(tns1 — tnr2)®
831 _ fo(to—tn+1+so—sn+1)/2 L(z)dz — [lo~tmsFo=sni Np()d,
LR L)z + [ M) (it — o) (Smi1 — tuse)

c—a 1_ fo(to—tn+1+so—8n+1)/2 L(z)dz . OtO_tn+1+SO_Sn+l M(z)dz

+

=tpi2 — Spi2.
Thus, the iterative process (3) is well-defined for all n > 0. Hence it follows
that
HZEn—l‘kH < tp =g, ||yn_xl€|| < Sp— 1k, ”yn_ka <sp—sk, 0<n< k? (17)

i.e., the sequence {zy}n>0 and {y,}n>0 are fundamental in a Banach space X
and convergence to x*. From (17) for k — oo it follows inequalities (12). Let
us show that z* is the solution of the equation (1). Indeed,

1 1 |7 —2nt1ll 9
45 Hen)l < 5 [ N()(lan — wniall - 2)2dz+
_|_f0||yn—xn+1H/2 L(2)dz||zn — o || + follyn—anH M(2)dz||zn — Tns| <
1 5 lyn—antall/2
< 3N Ulen = zasilDllen = enall+ [ L(2)del|n — nsa |+
0

[Yn =2t
—|—/ M(z)dz||xyn — pt1]| — 0, when n — oo.
0

Thus, H(z*) = 0. The theorem is proven. O

Theorem 2. Let F' and G be nonlinear operators, defined on an open convez
subset D of a Banach space X with values in a Banach space Y. F is a Fréchet-
differentiable operator, G is a continuous operator, differentiability of which is
not required. Assume that:

1) conditions of Theorem 1 are satisfied;

2) ro from Theorem 1 additionally satisfies condition

1 T 27\ 2 (ro—a)/2 ro—a
7“0/ N(z)(l - —) dz—l—/ L(z)dz—l—/ M(z)dz
8 " Jo 0 0

"= "0 < 1.

1— [Prom®2 L) dz — [2707 M(2)dz

(18)

Then the iterative process (3) is well-defined and generated by it {xn}n>0

belongs to Uy and converges to the unique solution x* of the equation F(z) =0
mn U().

Proof. To show the uniqueness, we assume that there exists a second solution

.
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Using the approximation

Tpy1 — o =2, — 2% — AV H () — H(2*)] =

n

_ A w(@) (n — ) — F(zn) + F(z*)] +

+ A, G (n; yn) — Glan; )] (2n — 2*%),

we obtain
lonss — 2l < [| 45" [F(W) (20— 2™) = F(an) + F@™)] |+
A G (@ns yn) — Glan; x* )] (@n —2™)| <
<[l [P () Fon) +Fa™)| |+
)-
) —

"11

) (5

+||A [ (%0} Yn G(zp; x* )](w —$**)H§

< 1451 Aol 45 [ @)~ F@) = P (P o)+

2
_ Ty + Ty + 2" sk
tagtad g [ (2) < (5 -1
+HA_1A0H||A*1[ (@3 Yn) = G(zn; )] [[l|lzn — 2| <
tllxn x|
1 N(z)dzdt e
Q@n
||yn*95**||/2 L(z)dz llyn—a™|| M( )d
+=0 Ty — |+ 20 T, — | =
. |2 | on £ |
B 4 0||xn | N(z )fz/”mn I**“( t)dzdt”xn—x**”2+
Qn
j‘”yn—z**H/ZL dZ—i—nyn_z |l M( )d
+=0 [an — 2™ <
Q@n
B 8 0||9cn—m || N( )( m)2d2|’xn_x**”2
Qn
||yn*95**“/2 d lyn—a* ”M dz
+h Ll O 2 <
Q@n
<yl — 2| < o < APl — 27,
which implies 2** = lim x,, = «*. The theorem is proven. a
n—oo

Let L(z) = L = const, N(z) = N = const and M(z) = M = const. Then
we get the following result.

Theorem 3. Let F' and G be nonlinear operators, defined on an open convex
subset D of a Banach space X with values in a Banach spaceY . F is a Fréchet-
differentiable operator, G is a continuous operator, differentiability of which is
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o + Yo

not required. Assume that the linear operator Ag = F’ ) + G(x0;90),

where xo, yo € D, is invertible and in Uy = {z : ||x — x| < ro} C D the
Lipschitz conditions are fulfilled

1A (F" () = F' ()l < Lz — yll,
1A (F"(2)h — F"(y)h)|l < Nz = yllAl, b€ X,
145 (G(z3y) = G(w )|l < M(Jlz —ull + |y — l)),

where L, M and N are positive numbers.
Let a, ¢ (¢ > a), 7o be nonnegative numbers such that

lzo — yoll < a, || Ay (Fwo) + G(x0))|| < ¢,
ro > ﬁ (L/2 + M)(2ro —a) < 1,

_ AENJ24+ (L)24 M)(c— a)

- 1—(L/24+ M)(2rg—a)

Then the iterative process (3) is well-defined and sequences {xy }n>0, {yn}n>0
generated by it remain in Uy and converge to the solution x* of equation (1)
and, for all n > 0, the following inequalilies are satisfied

0<~y<1.

Hxn - xn—l—l” <tn— tn+1, Hyn - xn—l—lH < sy — tn+1;
[wn —2*|| <tn =t |lyn — 2" < 50—t

where sequences {ty}n>0 and {sp}tn>0 defined by the formulas

to=ro, So=r9—a, t1=ry9—c,

tnt1 —tpt2 =
N(tn — tn+1)3/24 + (L/2 + M)(tn — tn+1)(3n — tn+1) n>0
1—(L/24 M)(to — tnt1 + S0 — Sn+1) ’ -7 (19)
lnt1 — Snt1 =
N(tn - tn+1)3/24 + (L/2 + M)(tn - tn+1)(3n - tn—H) n>0

1—(L/2+M)(to—tn+80—8n) ’
c
are nonincreasing nonnegative and converge to certain t* such that ro—li <
-
<t < 1.

Remark 1. If F(z) =0, L =0 and N = 0 then the sequences {t,}n>0 and
{sn}n>0, defined by the formulas (19), reduce to similar ones in [9] for the case
a=1.
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