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NUMERICAL ANALYSIS OF THE GIRKMANN
PROBLEM WITH FEM/BEM COUPLING

USING DOMAIN DECOMPOSITION

Andriy Styahar

Ðåçþìå. Ìè ðîçãëÿäà¹ìî ïî¹äíàíó ìîäåëü äëÿ çàäà÷i Ãiðêìàíà. Öÿ
çàäà÷à ïîëÿãà¹ â îá÷èñëåííi ïëîñêîãî äåôîðìîâàíîãî ñòàíó äëÿ òiëà, ùî
ñêëàäà¹òüñÿ ç îñíîâíî¨ ÷àñòèíè òà òîíêî¨ ÷àñòèíè, ùî ïðèêðiïëåíà äî
îñíîâíî¨ ÷àñòèíè. Äëÿ ïîáóäîâè íàáëèæåíîãî ðîçâ'ÿçêó öi¹¨ çàäà÷i ìè
âèêîðèñòîâó¹ìî ìåòîä ãðàíè÷íèõ åëåìåíòiâ (ÌÃÅ) òà ìåòîä ñêií÷åííèõ
åëåìåíòiâ (ÌÑÅ), ïî¹äíàíi çà äîïîìîãîþ àëãîðèòìó äåêîìïîçèöi¨ îáëàñ-
òåé. Íàâåäåíî ðåçóëüòàòè ÷èñëîâèõ åêñïåðèìåíòiâ. Ïîðiâíÿíî íàïðóæå-
íî-äåôîðìîâàíèé ñòàí êîíñòðóêöié äëÿ ðiçíèõ ôîðì îáîëîíîê.
Abstract. We consider a coupled model for the Girkmann problem. The
problem involves computation of the plane strain state for the body which
consists of a massive part and a thin part, which is attached to the massive
part. For the numerical solution of this problem we use boundary element
method (BEM) and �nite element method (FEM) for di�erent parts of the
body, which are coupled using domain decomposition. We provide the re-
sults of some numerical simulations. The stress-strain state for the structures
having shells of di�erent shapes are compared.

1. Introduction
A lot of structures, that occur in engineering, are inhomogeneous and contain

thin parts and massive parts. Therefore, it is important to develop both ana-
lytical methods and numerical algorithms for the analysis of the stress-strain
state of such structures. Di�erent aspects of such problems were discussed in
[3, 6, 8, 2] (in [8] the case of the bodies with thin inclusions is considered; in
[2] the bodies with thin covers are considered). Papers [3] and [6] are devoted
to the numerical solution of the Girkmann problem.

In this article, we solve numerically the Girkmann problem which involves
computation of a plane strain state for the body consisting of a massive part
and a thin part, which is attached to the massive part. The thin part is modeled
using Timoshenko shell theory equations and its stress-strain state is numer-
ically computed using FEM with bubble shape functions. The massive part
is modeled using the theory of linear elasticity and the numerical solution is
obtained using boundary element method (BEM). The approximate solutions
in both parts are connected using domain decomposition algorithm.

The application of domain decomposition method allows us to decouple prob-
lems in both parts and solve the problems independently in each part. As a

Key words. Girkmann problem, elasticity theory, Timoshenko shell theory, �nite element
method, boundary element method, domain decomposition.
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result, it is possible to compute the stress-strain state accurately even for small
shell thicknesses without having problems with stability issues of the coupled
problem.

We compare the stress-strain state for di�erent shapes of the middle line of
the shells: circular, parabolic and of the form of chain curve. Although the
curves lie close to each other, the stress-strain states in these cases are very
di�erent from each other.

2. Problem statement
Let us consider a problem of plane strain of an elastic body which consists

of a massive part Ω1 with the thin part in Ω2 attached to Ω1 by its end face
(Fig. 1). Let us denote by Γi the outer boundary of the bodies in Ωi, i = 1, 2
and by ΓI the common boundary between bodies in Ω1 and Ω2.

Fig. 1. Elastic Body

The plane strain stress of the body in Ω1 can be described by

∂σ11

∂x1
+

∂σ12

∂x2
= f1

∂σ21

∂x1
+

∂σ22

∂x2
= f2

(1)

that holds for x ∈ Ω1, x = (x1, x2).
Here f = (f1, f2) denotes the volume forces that act on the body in Ω1.
From the Hook's law it follows that the components of the stress tensor can

be written as

σij =
1
2
E1

(
∂ui

∂xj
+

∂uj

∂xi

)
, i, j = 1, 2,
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where u(x) = (u1(x), u2(x)) is the displacement vector with ui being the dis-
placements in the directions xi for i = 1, 2; E1 is the Young's modulus of the
body in Ω1. In the following we assume that no volume forces act on the body
in Ω1.

Let us denote by n the outer normal vector to Ω1, and by τ � the tangent
vector.

Equations (1) are considered together with the boundary conditions

un = 0, uτ = 0, x ∈ ΓD

and

σnn = 0, σnτ = 0, x ∈ ΓN ,

where Γ1 = ΓD ∪ ΓN , ΓD ∩ ΓN = ∅; un and uτ are the components of the
displacement vector in the coordinate system n, τ . Similarly, σnn and σnτ are
the components of the stress tensor in the n, τ coordinate system.

For the description of the thin part in Ω2 we use the equations of Timoshenko
shell theory of the form [4]

− 1
A1

dT11

dξ1
− k1T13 = p1,

− 1
A1

dT13

dξ1
+ k1T11 = p3,

− 1
A1

dM11

dξ1
+ T13 = m1, 0 ≤ ξ1 ≤ 1,

(2)

where v1, w, γ1 are the displacements and angle of revolution in the shell; T11,
T13, M11 are the forces and momentum in the shell; A1 = A1 (ξ1), k1 = k1 (ξ1)
correspond to Lame parameter and middle line curvature parameter; p1, p3,
m1 are given functions; it holds

T11 =
E2h

1− v2
2

ε11, T13 = k′G′hε13, M11 =
E2h

3

12
(
1− v2

2

)χ11,

ε11 =
1

A1

dv1

dξ1
+ k1w, ε13 =

1
A1

dw

dξ1
+ γ1 − k1v1, χ11 =

1
A1

dγ1

dξ1
,

p1 =
(
1 + k1

h
2

)
σ+

13 −
(
1− k1

h
2

)
σ−13,

p3 =
(
1 + k1

h
2

)
σ+

33 −
(
1− k1

h
2

)
σ−33,

m1 = h
2

((
1 + k1

h
2

)
σ+

13 −
(
1− k1

h
2

)
σ−13

)
.

Here E2 is the Young's modulus for the shell, v2 is the Poisson's ratio; σ+
ij , σ

−
ij ,

i, j = 1, 3 are the components of the stress tensor on the outer (ξ3 = h
2 ) and

inner (ξ3 = −h
2 ) boundaries of the shell. It is known, that in the case of

isotropic bodies we have k′ = 5
6 , G′ = E2

2(1+v2) .
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At the free end of the thin part we impose boundary conditions either on the
displacements v1, w and γ1 or on the forces T11, T13 and momentum M11 in
the shell (if the end is subjected to load or free). At the top and bottom outer
boundaries of the shell we prescribe to σ+

13 and σ+
33 some given stresses.

Remark. The choice of 2D curvilinear coordinate system for the shell as
ξ1, ξ3 (instead of ξ1, ξ2) is based on the fact, that 2D problem is obtained from
the 3D case by assuming the body being in�nite in the direction of ξ2.

On the boundary ΓI , common to both Ω1 and Ω2 we prescribe the following
coupling conditions:

un = v1 + ξ3γ1, uτ = w,

∫ h
2

−h
2

σnndξ3 = T11,

∫ h
2

−h
2

σnτdξ3 = T13,

∫ h
2

−h
2

σnnξ3dξ3 = M11.
(3)

3. Numerical Approximation of the Model
For the numerical solution of the model domain decomposition algorithm

is used. Inside the main part we construct the approximate solution using
boundary element method (BEM) applied to the integral equations based on
the Green's representation formula for the solution of the following form [1]

1
2
uj(x0)

∫

Γ
(ti(x)Gij(x, x0)− Fij(x, x0)ui(x))dΓ(x), (4)

where Γ = Γ1 ∪ ΓI , x0 ∈ Γ;
Gij(x, ζ) = C1(C2δij log r − yiyj

r2 ) is the matrix Green's function;
Fij(x, ζ) = C3

r2 (C4(δikyj + δjkyi − δijyk) + 2yiyjyk

r2 ) is a co-normal derivative
of the matrix Green's function;

r2 = yiyi;
yi = xi − ζi;
µ1 = E1

2(1+ν1) is a shear modulus of the body in Ω1;
C1 = − 1

8πµ(1−ν1) ,
C2 = 3− 4ν1,
C3 = − 1

4π(1−ν1) ,
C4 = 1− 2ν1,
In order to apply BEM we divide the boundary Γ1 ∪ ΓI of Ω1 into the

elements and then choose the appropriate shape functions φj(ξ), j = 1, 2, ..., m,
to construct the approximation.

The approximate solution can be written in the form

ui(ξ) =
∑m

j=1 uijφj(ξ), i = 1, 2,

ti(ξ) =
∑m

j=1 tijφj(ξ), i = 1, 2, ξ ∈ Γ1 ∪ ΓI ,

where uij and tij are the unknown coe�cients that are found by applying
Galerkin method to the integral equation (4) (see [1]).
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The approximate solution of the boundary value problem inside Ω2 is found
using �nite element method with bubble shape functions. On each element the
shape functions are given by

Φ0(ξ) =
1− ξ

2
, Φ1(ξ) =

1 + ξ

2
,

Φj(ξ) =

√
2j − 1

2

∫ ξ

−1
Pj−1(t)dt, j = 2, 3, ...,

where ξ ∈ [−1, 1] is the local coordinate, obtained by mapping each element
onto the inverval [-1,1]; Pj(t) are the Legendre polynomials.

In order to �nd the approximate solution of the boundary-value problem (2),
we apply to the system (2) Galerkin approach.

The approximate solutions in both domains are connected using domain
decomposition algorithm (Dirichlet-Neumann scheme) [5]. The domain decom-
position algorithm has the following form:

1) set an initial guess λ0 for the unknown displacements on the interface ΓI ,
set ε > 0;

2) for k=0,1,... solve the boundary value problem in Ω2 with the displace-
ments equal to λk to obtain the apporimation for the loads in Ω1 using (3);

3) solve the corresponding integral equations in Ω1 to �nd the displacements
u1

n and u1
τ on ΓI ;

4) update the displacements λk on ΓI :

λk+1
1 = λk

1 + θu1
n,

λk+1
2 = λk

2 + θu1
τ ,

where θ > 0 is a relaxation parameter;
5) if ‖λk+1 − λk‖ ≥ ε then go to step 2, otherwise the algorithm ends.
It is known, that the Steklov-Poincare equation that corresponds to our

problem, possesses a unique solution [7]. Moreover, domain decomposition al-
gorithm converges for appropriately chosen (empirically) relaxation parameter
θ (0 ≤ θ ≤ θmax) [7].

4. Numerical experiments
Let Ω1 be a polygon with xb

1 = −1, xb
2 = −1, xe

1 = 1, xe
2 = 1. To the main

part in Ω1 a thin body in Ω2 is attached on its edge. The thickness of the body
in Ω2 is h = 0.01 (Fig. 1).

On the boundaries AC and AB the structure is �xed (the displacements are
equal to zero); we prescribe a load of p = 1Pa/m on the outer boundary of the
body in Ω2 (Fig. 1); on the edge with the point E the symmetry conditions are
set; all the other parts of the outer boundary are traction-free.

We consider the following physical parameters of the bodies: Young's mod-
ulus of the main part in Ω1 is equal to E1 = 25000 MPa, which corresponds to
concrete; the Young's modulus of the thin part in Ω2 is equal to E2 = 20580

145



ANDRIY STYAHAR

MPa, which corresponds to cork. Poisson's ratio of the body in Ω1 is equal to
ν1 = 0.33, in Ω2 � ν2 = 0.

For the numerical solution we use FEM in the shell with bubble shape func-
tions. For the main part we use boundary element method with quadratic shape
functions. Problems in both parts are connected using domain decomposition
algorithm (Dirichlet-Neumann scheme) [5].

In all the cases under consideration the convergence is obtained in around 5
iterations. The results correspond to a case of 202 boundary elements, 32 �nite
elements of the fourth order. We �nd, that the mesh re�nement or the change
of the order of the shape functions don't change the solution signi�cantly.

Let us consider di�erent cases of the curve shapes, that describe middle line of
the body in Ω2: circle arc, parabola and chain curve. The unknown coe�cients
of the parametric representation of the curves are chosen in such a way, that
all the curves have the same endpoints D and E. Moreover, all the curves are
symmetric with respect to the axis, which passes through the point E and is
colinear to AB.

In the case of the circle arc the parametric representation has the form

x1(α) = R sinα,

x2(α) = R cosα, π
4 ≤ α ≤ π

2 .

Let us choose R = 5.005.
In the case of parabola parametric representation has the form

x1(α) = −2−√2
R x2

2 + R,

x2(α) = R cosα, π
4 ≤ α ≤ π

2 .

In the case of chain curve parametric representation has the form

x1(α) = −4.497
2 (e

x2
4.497 + e−

x2
4.497 ) + 9.502,

x2(α) = R cosα, π
4 ≤ α ≤ π

2 .

The graphs of three curves are shown on Fig. 2
We can conclude from Fig. 2, that the graphs of the curves lie close to each

other.
Formulae for the calculation of Lame parameter A1 and curvatures k1 of the

middle line of the shells have the form

A1 =
√

x
′2
1 + x

′2
2 ,

k1 = x
′′
1 x
′
2−x

′
1x
′′
2

A3
1

.

Let us calculate the stress-strain state for the body depicted on the Fig. 1.
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Fig. 2. Middle Line of Di�erent Curves

Fig. 3, 4 show the displacements in the case of di�erent shapes of middle
lines, Fig. 5-7 show the momenta that arise on the middle line of Ω2 in the
case of di�erent shapes of middle lines.

Curve 1 on Fig. 3 corresponds to the case of the middle line having the shape
of part of the parabola, curve 2 � middle line being the chain curve.

Fig. 3. Displacements w on the middle line of the shell in the
case of the circle-shaped shell

On the interface 0 ≤ x2 ≤ h, x1 = xe
1 we have to set the Neumann condition

for the problem in main part, and Dirichlet condition for the problem in the
shell. The displacements on the interface for the shell are found using the
conditions

un = v1 + ξ3γ1,

uτ = w.
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Fig. 4. Displacements w on the middle line of the shell in the
case of parabola and chain curve

Fig. 5. Momentum m11 on the middle line of the shell in the
case of the circle-shaped shell

Applying the �rst condition at the points ξ3 = 0 and ξ3 = h/2, we �nd that
v1|ξ1=0 = −un|ξ3=0,

γ1|ξ1=0 =
2
h

(un|ξ3=h
2
− un|ξ3=0).

Applying the second condition at the point ξ3 = 0, we �nd that

w|ξ1=0 = uτ |ξ3=0.

Let us consider the conditions on the loads, that need to be imposed on the
interface for the problem in the main part. In order to express σnτ we use
conditions
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Fig. 6. Momentum m11 on the middle line of the shell in the
case of parabola

Fig. 7. Momentum m11 on the middle line of the shell in the
case of chain curve

∫ h
2

−h
2

σnτdξ3 = T13, σnτ (ξ3) = σ−13|ξ1=0, σnτ (ξ3) = −σ+
13|ξ1=0.

In order to express σnn we use conditions
∫ h

2

−h
2

σnndξ3 = T11,

∫ h
2

−h
2

σnnξ3dξ3 = M11.

Let us assume that on the interface σnτ = aξ2
3 +bξ3 +c, σnn = eξ3 +f , where

a, b, c, e, f are the unknown coe�cients. These assumptions are based on the
fact, that we have three conditions for σnτ and two conditions on σnn.

The computations yield
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σnn(ξ3) = M11
12
h3

ξ3 +
T11

h
,

σnτ = (
3
h2

(σ−13|ξ1=0 − σ+
13|ξ1=0)− 6

h3
T13)ξ2

3−

−1
h

(σ−13|ξ1=0 + σ+
13|ξ1=0)ξ3 +

1
h

(T13 − 1
4
(h(σ−13|ξ1=0 − σ+

13|ξ1=0)− 2T13).

From Fig. 3-4 we can conclude, that the smallest displacement in the normal
direction is achieved when the middle line of the thin part of the body is a chain
curve. The largest displacement in the normal direction arises when the middle
line of the thin part is a circle segment.

Fig. 5-7 show, that the smallest momentum is achieved when the middle line
of the thin part of the body is a chain curve. The largest momentum arises
when the middle line of the thin part is a circle segment.

Therefore, the stress-strain state of the bodies inside the thin part in the
case of the Girkmann problem heavily depends on the geometrical parameters
of the middle line of the shell (shape, curvature).

5. Conclusions
We conclude, that the stress-strain state of the bodies inside the shell in the

case of the Girkmann problem heavily depends on the geometrical parameters
of the middle line of the shell (shape, curvature). The elastic body where the
shell has the shape of the chain curve, is the best since almost no momentum
arises in this case.

The convergence of our algorithm is obtained in around 5 iterations. There-
fore, the proposed algorithm can be e�ciently applied for the numerical solution
of the Girkmann problem.
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