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EXTENSION OF A CLASS OF NONLINEAR
HAMMERSTAIN INTEGRAL EQUATIONS
WITH SOLUTIONS REPRESENTED
BY COMPLEX POLYNOMIALS

OLENA BULATSYK

PE3IOME. B poborti po3risimaerscst HesiHiiiHe iHTerpasibHe DIBHSHHS THILY
lammepriTeiina 3 AOBIIPHOIO 3aJI€KHICTIO Bif MOIy/Ist HeBimOMOl (yHKII.
Po3B’s13k1 PIBHSIHB TAKOTO THUITY ITOIAIOTHCS UI€Pe3 MOJIHOMY CKiHYIEHUX CTere-
HIB, TTapaMeTpy SKUX BU3HAYUAIOTHCI 13 CUCTEMHU, IO CKJIQTAETHCI 13 OTHOTO
IHTErpaJIbHOIO 1 CKIHYEHHOrO YHCJIa TPAHCIEHIEHTHUX PiBHSAHD. BCTaHOBJIEHO
ICHYBaHHS €KBIBAJIEHTHNUX TPYT PO3B’SI3KiB HETIHIHHUX IHTETPAIHLHIX PIBHSIHb,
mo po3rasaaoTbesa. (Omep:kaHO HEOOXiTHI YMOBH JjIs TOYOK TaJIy’KeHHS i
cucTeMu PIBHAHB i ix obumciennsi. HapemeHo wmcioBi pesymbrartw Iist
KOHKPETHOI 3a/ai.

ABsTRACT. An approach, developed before for nonlinear integral Hammer-
stein equations with the linear dependence on the modulus of unknown func-
tion, is generalized to the case of arbitrary differentiable dependency. The
approach is based on presentation of the solutions via a complex polynomials
of finite degrees. The problem is reduced to a system of integro-transcendental
equations. The systems of linear homogeneous equations for the branching
points and integro-transcendental equations for the parameters of the solu-
tion branches are obtained. Numerical results for a concrete problem are
presented.

1. INTRODUCTION
Let us consider the nonlinear integral equation of the Hammerstein type

b

af(€) = BIW(|f])e' ] E/K(&&’)W(\f(é’)l)exp(iargf(f’))dﬁ’ (1)

a

with the kernel

oy @) — s(€)q(S)
HE89 =" @) 2

generated by the linear positive defined integral operator B : Ls(a,b) —
LZ(av b)7

(Bg,g) >0 (3)
for any g € La(a,b);

Key words. Nonlinear integral equation of Hammerstein type, finite-parametric solutions,
branching of solutions, phase optimization problem.
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s(&), q(§), 7(&) are real continuous functions such that the function sets
{7(&)s(§)}, {7™(&)q(&)} (n=10,1,...) are linearly independent;

W (|f(€)] € La(a,b) is a given real piecewise differentiated function.

The general theory of nonlinear integral equations and numerical methods
for their solving was intensively developed in recent years (see e.g. [1], [7], [9].
[10] and the literature cited there). In previous papers we have considered the
nonlinear integral Hammerstein equations without any dependency of the in-
tegrand on the modulus of unknown function [11] or with a linear dependency
on the modulus [6]. Such types of equations arise in different applications,
in particular, in the phase optimization problems of antennas or quasioptical
transmitting lines with different restrictions on the solution phase. It was es-
tablished that the solutions to such equations depend on the finite number of
complex parameters which are inverse zeros of polynomials of appropriate de-
grees (generating polynomials). These parameters are calculated from a system
of transcendental equations.

In this paper the approach is generalized to equations with a nonlinear de-
pendence of the integrand on the modulus of unknown function. The results
presented here were particularly annonced in [5] and [4].

2. FINITE-PARAMETRIC REPRESENTATION OF THE SOLUTIONS
We confine ourselves to the case when the solutions to (1) have no zeros at
¢ € (a,b), and assume that they can be represented in the form

EINGILNG
O =85 (4)

where (3 is any complex constant with |3| = 1 (without loss of generality, we

further put g = 1);
r=7(e), 7' = 7€)

N

Py(7) =[] @=nww7) (5)
k=1
is a polynomial of a finite degree N with complex pairwise non-conjugated zeros
1

NNE:

NINE — INm #0, km=1,2, ... N. (6)
We call Py(7) as the generating polynomial.
It follows from (4) that

, _ L, Pr(r)
exp(iarg f(€)) = B|PN(7)\'

Introduce the symmetrical polynomial of two real variables

. = N
RNfl(T, 7_/) _ QZ[PN(T )SJ)V(T)] _ Z dann—l(T/)m—l (8)

(7- o n,m=1

168



EXTENSION OF A CLASS OF NONLINEAR HAMMERSTAIN ...

and denote the matrix of its coefficients by D = {dp,}. The determinant of D

equals
N

det D = (_1)[N/2} H (ﬁNm - 77Nk:>a (9)
km=1
where the square brackets mean the integer part of the value. This fact follows
from the condition 4° of the Bezudiant from [8]. Its immediate proof is given
in [11]. Due to condition (6), det D # 0.
The conditions for the function f(§) of the form (4) to be a solution to
equation (1) are stated by the following theorem.

Theorem 1. Let a function f(&) of the form (4) have no zeros at £ € [a,b]. In
order that it is a solution to equation (1), it is necessary and sufficient that the
parameters Ny satisfy the following system of the transcendental equations:

b _

- [KeemwarenTpg e o
(I)Nn(‘f(g)‘77]N1,77N2,...77NN) = 0, n = 1, 2, ceny N, (10b)
qan(’f(ﬁ)’;77N1,77N2,...77NN) = 0, n = 1, 2, veey N, (10(3)

where
b
o= [0 L e (11a)
b
v, = [ T e (a1b)

Proof. Necessity. Let function (4) be a solution to equation (1). Substituting
(4) into (1) and multiplying the both sides of this equality by Px(7), we have

[f P (T / Pn(T)
T - v K(& W) dg’. (12)
| Pr (T ) [P (7')]

After dividing both its sides by | Py (7 )| this equation becomes of the form (10a).
On the other hand, after taking the imaginary part from the same result, we

have

jb@«@—xw«MRm«nﬂ
) |Pn(T")]

Then, substituting (8) into (13) with interchanging the variables £ and &', we
have

W(lFEh =0 (13)
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N b —1
n [T s@OWFE))
S don [q@ )| e e
| . (14)
n [T QWD nm-1 _
—5(5)/ Py (7)) ¢ | (") =0.
Since the functions {7"s}, {r"q}, n = 0,..., N — 1, are linearly independent,

(14) gives

N b 1
™ s(OWAFOD L. . )
Zd”‘/ Py 6 = 0 n=L2..N, (15

N b n—1
Zdnm/T q’(]i])vz)(’!f(ﬁ)!)dg = 0, n=12..,N. (15b)
n=1 a

Equalities (15) can be considered as two independent systems of linear algebraic
equations with respect to the unknown integrals. The determinant of their
common matrix D does not equal zero owing to conditions (6), so that the
systems have only zero solutions, that is, the transcendental equations (10) are
satisfied.

Sufficiency. Let (10) hold at a certain integer N and complex nyg, k =
1,2,..., N, satisfying conditions (6). Then, of course, equalities (15) are satis-
fied, too, and, hence, the identities (14) and (13) hold as well. With the aid of
(8), we obtain from (13)

b
5 W&
Im | Py(r) [ K(¢,¢) 2N pocnger| = o 16
w | Patr) [ (&) LE P (e (16
or, after adding the real function a|f(€)||Pn(7)| under the imaginary sign,

W&
[Py ()]

Dividing the both sides of (17) by the real positive function |Px(7)|, we obtain

b
Im Oélf(f)lIPN(T)|+PN(T)/K(£7£') Py(r)dg| = 0. (17)

Im | o f(§)] +

_ b
Pu(r) WUSED b ger|
VPN(T)|G/K(£’£) Pa ()] Pyn(r)de'| =0.  (18)

On the other hand, integral equation (10a) can be written in the form

Re | a|f(€)| +

_ b
Py(r) SWUREN o]
N(T)|G/K(€’£)|PN(PN(T)(ZE =0. (19)

P )|
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Equalities (18) and (19) together imply that the expression in their square
brackets equals zero, that is, function (4) solves integral equation (1).
End of proof.

Theorem 2. If the function f(&) of the form (4) with = 1 solves equation
(1), then the functions

_ f©IPN(T) 1 = finaT
fn(g) - ‘PN(T)| 1_77Nn7_7

solve this equation, too.

n=12..,N,

Proof. The proof of this theorem is analogous to the proof of the Theorem
2.2 in [6] with substitution W (|f(¢)|) = F(&) — |f(&)].
In the simplest case, the theorem is complitely adjusted with the obvious

property that if the function f(§) solves equation (1), then f(§) solves this
equation, too.

Corollary 1. The solutions to integral equation (10a) and the system of tran-
scendental equations (10b,10c) make up the equivalent groups inside which the
function | f(§)| remains the same and the polynomials Pn(7) differ only by sub-
stitution of any number s < N of the parameters ny by the complex conjugated
ones:

S N
Py =TI =) [T @),
m=1 m=s+1

where Ny, 7# Numy, 4f M1 # ma. Such polynomials generate the solutions to (1)
with the same | f(£)].

Corollary 2. If there is a solution to equation (1) with two parameters n; =
—no in the polynomial Py, which give an even polynomial argument addend,
then a solution exists in the same equivalent group, which has an odd argument.
In particular, if all parameters of the polynomial Py can be devided into such
symmetrical pairs, what means that the polynomial argument is an even func-
tion, then another solution exists in the same equivalent group, which have an
odd argument.

This corollary is justyfied by the following logical considerations. The argu-
ment of the factor p1(7) = (1 —m7)(1 —m27) = 1 — 372 is obviously the even
function of 7. Substituting 12 with 7, according to above theorem gives the
factor po(7) = (1 —mr) (1 +7,7) = 1 — |m|* 72 — (n — 7;)7. Tts argument is :

2Immy 7

arg pp = arctan 5
1 — |m]

T2
N/2
If N is even integer and Py (7) = [] (1 —n272), then
n=1
N/2
Py(r) =[] @ =lml*7* = (90 — 7,)7)

n=1
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and its argument is

N/2
I
arg Py (1) = Z arctan mnn; 5
n=1 - |77 | T

which is the odd function of .

3. BRANCHING OF SOLUTIONS

For N = 0 (real positive solutions) the transcendental equations (10b, 10c)
disappear and the only integral equation (10a) remains, which coincides with
(1), in which f(£) must be substituted by |f(£)|. This equation has the non-
trivial solution but not for all values c and N.

The number of solutions to (1) may change at some values ¢ = ¢;. Such
values are called the branching points. The branching points of solutions to
equation (1) are found from the condition that the system of the homogeneous
integral equations

wulil = B |wiig) D, (200)
+W’(If!)lfﬁjg(l?v(”‘)PN(())R ]

alf] = B | WD e 200
WD wﬂ]

has multiple eigenvalues A, = 1.  Here {wn,v,} are vector-functions;

W' =dW/d(|f]). Tt is easy to check that Ay = 1, {v1 = 1, w; = 0} is always
the eigenpair of (20). These equations are obtained by application of usual
pertrubations technique to equation (1) (see e.g. [6]).

There is an obvious way to obtain the transcendental equation system for
calculation of the branching points and the polynomial parameters in them.
As a rule, the branching of solutions to equation (1) is caused by changing the
degree N of the polynomial Py by one. At the branching points the parame-
ters nny of the initial polynomial Py and parameters 1y of the branched
polynomial P41 are connected by the equalities

Py(t) _ Pyny(7)
= s TINE = TIN+1,k> k:1727"'7N7
|Pn(T)] |PNa(7)] " (21)
Im?’]N_;'_LN_Fl = O

At the branching points two new unknown ¢y and Renn1,n+1 occur. Besides
(10), system
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b

- ’ sy Re[Pyi1 (7)) Pyia(7)]
(€)= / K& WS TR (2a)
/T”—ls(g)mczgz 0, n=1,2,..,N+1, (22b)
/T"—ls(g)mclg: 0, n=12,..,N+1 (22¢)

a

should hold. Since the new parameter ny1 n+1 is real, the integral equation
(22a) coincides with (10a) and the kth equation of system (22b) (22c) k =
1,2,..., N, is a linear combination of the corresponding equation of system
(10b), (10c) and (k + 1)th equation of (22b) (22c). Hence, at the branching
point, besides system (10) only two additional equations

b

|Pn(T)|(1 = nng1,n417)

a

b

F(§) = Blf )] dé =0 (23b)
\

N
/T a©) |Pn(T)[(1 = Ny1,N417)

a

should hold. On the whole, we have one real integral equation and 2N + 2 tran-
scendental ones for determining the real function |f(£)|, N complex parameters
NNk, k=1,2,..., N and real nyy1,n4+1 and c;.

At the branching points where the polynomial degree changes by two, the
equalities

nNk:nN—i-Q,kak: 1,...,N (24)

are valid. Besides (10), the four additional equations

/b AW
J |PN(T)[(1 = nngo,N+17) (1 — nngo,N42T)
b

dé=0,n=N—+1,N +2;

(25)
k—1 w
/ g W(SE) KOm N LN+
[P (T)[(1 = nv42,v417) (1 — NN 42,N42T)
a
should be fulfilled with ny42 N+1, IN+2,N+2 satisfying the conditions
NIN+2,N+1 = TIN+2,N+2 (26)
or
Imnyi2,n+1 = Imny 42, N42 = 0. (27)
Hence, we have 2N + 5 equation for 2N + 4 real unknown: N complex nyg,
n = 1,2,...,N, one real ¢;, one complex nny2 N1 Or two real N2 N41,
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nNN+t2,N+2, and [f(€)]. As it was mentioned in the preceding subsection, the
existence of solutions to such a system is low-probable in general case. However,
they may exist in the case when

W) = W(lF (=& (28)

Then the solutions are possible, which generate the polynomials with the even
modulus

|Pn(T)| = [Pn(=7)|,  [Pn42(7)] = [Pnga(=T7)]. (29)
This equality decreases the number of unknowns twice: the parameters ny42
become imaginary or appear by couples with opposite signs and nn42.,, 7 =
N + 1, N 4+ 2 are always imaginary with opposite signs:

Rennianv+1 = Rennyani2 =0, (30a)
NN4+2,N+1 = T7TNt2,N+2- (30b)

On the other hand, conditions (29) decrease the number of equations twice,
as well: N equations of system (10b), (10c¢) and two additional equations (25)
become identities, because they have odd integrands in the left-hand side.

Finally, at fulfilling (28), (29) the solution branching is possible with de-
creasing the polynomial degree by two if the following transcendental equation
system holds:

b
/TQn—ls(g)Wdfz 0, n=12,...[N/2], (31a)

a

b
/Tzn—Qq(g)dez 0, n=1,2,...[(N+1)/2], (31b)
|Pn(7)]

a

b

2[(N42)/2]-1
|PN(T)I(1 = nn42,v417) (1 — N 42,N42T)
’ 2A(N+1)/2] o £\ 77
e COWUFED 4o g
|PN(T)|(1 = nn42,v417) (1 — N 42,N42T)
where nyk, k= 1,..., N, are either imaginary or appear by couples with alter-

native signs, and nn42%, k = N + 1, N 4 2 are subject to conditions (30). As
a result, we have N + 3 real equations with respect to N + 3 real unknowns.

4. NUMERICAL RESULTS
As an example, we show the numerical results obtained for W (|f(£)]) =
1/2 — |f(€)]? and a = 0.5. This problem arises in the case when the linear
antenna should create the uniform power pattern F? = 1/2. The calculations
were carried out by the Newton method.

174



EXTENSION OF A CLASS OF NONLINEAR HAMMERSTAIN ...

The real and imaginary parts of nyy are shown in Fig. 1. The real parts of
solutions are drawn by the dashed lines, the imaginary ones — by the solid lines.
The curve numbering corresponds to the indexes Nk at these parameters.

4 Remy, Immy,

L = 21%22_\ _______ :
. 0 22 ,,/\;;
\\\/\\‘§
26 » Al - 4
-4 | | | | | | C
€1 2 36 4 €5 €5 6Cac, 7

Fia. 1. Real and imag parts of parametrs nyy;

W(f© ) =1/2=1f(&I* a=05

For ¢ < ¢y = 0.84 there are no nontrivial solutions to equation (1) at this
a. At ¢ = ¢ the solution fy(§) with N = 0 arises (curve 0). It starts from
fol€) =o0.

At the point ¢; = 3.05 two complex conjugate solutions f1(£), fi/(§) with
N =1 and imaginary 111, n1/1 respectively, branch off from fy(£) (curves 11,
1'1). At the point co = 4.95, two solutions with N = 2 branch off from each
solution with NV = 1. All they make up an equivalent group; we analyze only
one of them denoted by f2(§). The solutions f1(§), fi/(§) continue to exist.
Two more characteristic points, related to them, are ¢4 and cs.

The solution f2(€), arising at ¢ = ¢ has two imaginary parameters 721, 722
(curves 21,22). At ¢3 = 5.16 the solution fo(€) transforms into for(€), which
has two complex parameters 1%, 75 with Renh, = —Renby, Imnh, = Imnbh,.
Curves 21, 2”1, correspond to Renh, Imnb, and curves 2'2, 2”72, — to Renb,,
Imn,, respectively.

When c increases, the solutions with larger N appear, similarly as in the
problem of antenna synthesis according to the amplitude pattern [3].
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