
Æóðíàë îá÷èñëþâàëüíî¨ 2014
òà ïðèêëàäíî¨ ìàòåìàòèêè �2 (116)

Journal of Computational
& Applied Mathematics

UDC 519.6

EXTENSION OF A CLASS OF NONLINEAR
HAMMERSTAIN INTEGRAL EQUATIONS

WITH SOLUTIONS REPRESENTED
BY COMPLEX POLYNOMIALS

Olena Bulatsyk

Ðåçþìå. Â ðîáîòi ðîçãëÿäà¹òüñÿ íåëiíiéíå iíòåãðàëüíå ðiâíÿííÿ òèïó
Ãàììåðøòåéíà ç äîâiëüíîþ çàëåæíiñòþ âiä ìîäóëÿ íåâiäîìî¨ ôóíêöi¨.
Ðîçâ'ÿçêè ðiâíÿíü òàêîãî òèïó ïîäàþòüñÿ ÷åðåç ïîëiíîìè ñêií÷åíèõ ñòåïå-
íiâ, ïàðàìåòðè ÿêèõ âèçíà÷àþòüñÿ iç ñèñòåìè, ùî ñêëàäà¹òüñÿ iç îäíîãî
iíòåãðàëüíîãî i ñêií÷åííîãî ÷èñëà òðàíñöåíäåíòíèõ ðiâíÿíü. Âñòàíîâëåíî
iñíóâàííÿ åêâiâàëåíòíèõ ãðóï ðîçâ'ÿçêiâ íåëiíiéíèõ iíòåãðàëüíèõ ðiâíÿíü,
ùî ðîçãëÿäàþòüñÿ. Îäåðæàíî íåîáõiäíi óìîâè äëÿ òî÷îê ãàëóæåííÿ i
ñèñòåìè ðiâíÿíü äëÿ ¨õ îá÷èñëåííÿ. Íàâåäåíî ÷èñëîâi ðåçóëüòàòè äëÿ
êîíêðåòíî¨ çàäà÷i.
Abstract. An approach, developed before for nonlinear integral Hammer-
stein equations with the linear dependence on the modulus of unknown func-
tion, is generalized to the case of arbitrary di�erentiable dependency. The
approach is based on presentation of the solutions via a complex polynomials
of �nite degrees. The problem is reduced to a system of integro-transcendental
equations. The systems of linear homogeneous equations for the branching
points and integro-transcendental equations for the parameters of the solu-
tion branches are obtained. Numerical results for a concrete problem are
presented.

1. Introduction
Let us consider the nonlinear integral equation of the Hammerstein type

αf(ξ) = B[W (|f |)ei arg f ] ≡
b∫

a

K(ξ, ξ′)W (|f(ξ′)|) exp(i arg f(ξ′))dξ′ (1)

with the kernel

K(ξ, ξ′, c) =
s(ξ)q(ξ′)− s(ξ′)q(ξ)

τ(ξ)− τ(ξ′)
(2)

generated by the linear positive de�ned integral operator B : L2(a, b) →
L2(a, b),

(Bg, g) > 0 (3)
for any g ∈ L2(a, b);

Key words. Nonlinear integral equation of Hammerstein type, �nite-parametric solutions,
branching of solutions, phase optimization problem.
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s(ξ), q(ξ), τ(ξ) are real continuous functions such that the function sets
{τn(ξ)s(ξ)}, {τn(ξ)q(ξ)} (n = 0, 1, . . .) are linearly independent;

W (|f(ξ) | ∈ L2(a, b) is a given real piecewise di�erentiated function.
The general theory of nonlinear integral equations and numerical methods

for their solving was intensively developed in recent years (see e.g. [1], [7], [9],
[10] and the literature cited there). In previous papers we have considered the
nonlinear integral Hammerstein equations without any dependency of the in-
tegrand on the modulus of unknown function [11] or with a linear dependency
on the modulus [6]. Such types of equations arise in di�erent applications,
in particular, in the phase optimization problems of antennas or quasioptical
transmitting lines with di�erent restrictions on the solution phase. It was es-
tablished that the solutions to such equations depend on the �nite number of
complex parameters which are inverse zeros of polynomials of appropriate de-
grees (generating polynomials). These parameters are calculated from a system
of transcendental equations.

In this paper the approach is generalized to equations with a nonlinear de-
pendence of the integrand on the modulus of unknown function. The results
presented here were particularly annonced in [5] and [4].

2. Finite-parametric representation of the solutions
We con�ne ourselves to the case when the solutions to (1) have no zeros at

ξ ∈ (a, b), and assume that they can be represented in the form

f(ξ) = β
|f(ξ)|PN (τ)
|PN (τ)| , (4)

where β is any complex constant with |β| = 1 (without loss of generality, we
further put β = 1);

τ = τ(ξ), τ ′ = τ(ξ′);

PN (τ) =
N∏

k=1

(1−ηNkτ) (5)

is a polynomial of a �nite degree N with complex pairwise non-conjugated zeros
η−1

Nk:

ηNk − η̄Nm 6= 0, k, m = 1, 2, ..., N. (6)
We call PN (τ) as the generating polynomial.

It follows from (4) that

exp(i arg f(ξ)) = β
PN (τ)
|PN (τ)| . (7)

Introduce the symmetrical polynomial of two real variables

RN−1(τ, τ ′) =
2i[PN (τ ′)P̄N (τ)]

(τ − τ ′)
=

N∑

n,m=1

dnmτn−1(τ ′)m−1 (8)
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and denote the matrix of its coe�cients by D = {dnm}. The determinant of D
equals

detD = (−1)[N/2]
N∏

k,m=1

(η̄Nm − ηNk), (9)

where the square brackets mean the integer part of the value. This fact follows
from the condition 40 of the Bezudiant from [8]. Its immediate proof is given
in [11]. Due to condition (6), det D 6= 0.

The conditions for the function f(ξ) of the form (4) to be a solution to
equation (1) are stated by the following theorem.
Theorem 1. Let a function f(ξ) of the form (4) have no zeros at ξ ∈ [a, b]. In
order that it is a solution to equation (1), it is necessary and su�cient that the
parameters ηNk satisfy the following system of the transcendental equations:

|f(ξ)| =
b∫

a

K(ξ, ξ′)W (|f(ξ′)|)Re[PN (τ ′)P̄N (τ)]
|PN (τ ′)||PN (τ)| dξ′, (10a)

ΦNn(|f(ξ)|,ηN1,ηN2,...ηNN ) = 0, n = 1, 2, ..., N, (10b)
ΨNn(|f(ξ)|,ηN1,ηN2,...ηNN ) = 0, n = 1, 2, ..., N, (10c)

where

ΦNn =

b∫

a

τn−1s(ξ)
W (|f(ξ)|)
|PN (τ)| dξ, (11a)

ΨNn =

b∫

a

τn−1q(ξ)
W (|f(ξ)|)
|PN (τ)| dξ. (11b)

Proof. Necessity. Let function (4) be a solution to equation (1). Substituting
(4) into (1) and multiplying the both sides of this equality by P̄N (τ), we have

α
|f(ξ)| |PN (τ)|2

|PN (τ)| = P̄N (τ)

b∫

a

K(ξ, ξ′)W (|f(ξ)|) PN (τ ′)
|PN (τ ′)|dξ′. (12)

After dividing both its sides by |PN (τ)| this equation becomes of the form (10a).
On the other hand, after taking the imaginary part from the same result, we
have

b∫

a

[s(ξ)q(ξ′)− s(ξ′)q(ξ)]RN−1(τ, τ ′)
|PN (τ ′)| W (|f(ξ)|) ≡ 0. (13)

Then, substituting (8) into (13) with interchanging the variables ξ and ξ′, we
have
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N∑

n,m=1

dnm

[
q(ξ′)

b∫

a

τn−1s(ξ)W (|f(ξ)|)
|PN (τ)| dξ−

− s(ξ′)

b∫

a

τn−1q(ξ)W (|f(ξ)|)
|PN (τ)| dξ

]
(τ ′)m−1 ≡ 0.

(14)

Since the functions {τns}, {τnq}, n = 0, . . . , N − 1, are linearly independent,
(14) gives

N∑

n=1

dnm

b∫

a

τn−1s (ξ) W (|f(ξ)|)
|PN (τ)| dξ = 0, n = 1, 2, ..., N, (15a)

N∑

n=1

dnm

b∫

a

τn−1q (ξ) W (|f(ξ)|)
|PN (τ)| dξ = 0, n = 1, 2, ..., N. (15b)

Equalities (15) can be considered as two independent systems of linear algebraic
equations with respect to the unknown integrals. The determinant of their
common matrix D does not equal zero owing to conditions (6), so that the
systems have only zero solutions, that is, the transcendental equations (10) are
satis�ed.

Su�ciency. Let (10) hold at a certain integer N and complex ηNk, k =
1, 2, ..., N , satisfying conditions (6). Then, of course, equalities (15) are satis-
�ed, too, and, hence, the identities (14) and (13) hold as well. With the aid of
(8), we obtain from (13)

Im


P̄N (τ)

b∫

a

K(ξ, ξ′)
W (|f(ξ′)|)
|PN (τ ′)| PN (τ ′)dξ′


 = 0 (16)

or, after adding the real function α|f(ξ)| |PN (τ)| under the imaginary sign,

Im


α|f(ξ)| |PN (τ)|+ P̄N (τ)

b∫

a

K(ξ, ξ′)
W (|f(ξ′)|)
|PN (τ ′)| PN (τ ′)dξ′


 = 0. (17)

Dividing the both sides of (17) by the real positive function |PN (τ)|, we obtain

Im


α|f(ξ)|+ P̄N (τ)

|PN (τ)|

b∫

a

K(ξ, ξ′)
W (|f(ξ′)|)
|PN (τ ′)| PN (τ ′)dξ′


 = 0. (18)

On the other hand, integral equation (10a) can be written in the form

Re


α |f(ξ)|+ P̄N (τ)

|PN (τ)|

b∫

a

K(ξ, ξ′)
W (|f(ξ′)|)
|PN (τ ′)| PN (τ ′)dξ′


 = 0. (19)
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Equalities (18) and (19) together imply that the expression in their square
brackets equals zero, that is, function (4) solves integral equation (1).

End of proof.
Theorem 2. If the function f(ξ) of the form (4) with β = 1 solves equation
(1), then the functions

fn(ξ) =
|f(ξ)|PN (τ)
|PN (τ)|

1− η̄Nnτ

1− ηNnτ
, n = 1, 2, ..., N,

solve this equation, too.
Proof. The proof of this theorem is analogous to the proof of the Theorem

2.2 in [6] with substitution W (|f(ξ)|) = F (ξ)− |f(ξ)|.
In the simplest case, the theorem is complitely adjusted with the obvious

property that if the function f(ξ) solves equation (1), then f̄(ξ) solves this
equation, too.
Corollary 1. The solutions to integral equation (10a) and the system of tran-
scendental equations (10b,10c) make up the equivalent groups inside which the
function |f(ξ)| remains the same and the polynomials PN (τ) di�er only by sub-
stitution of any number s < N of the parameters ηk by the complex conjugated
ones:

P
(s)
N (τ) =

s∏

m=1

(1− ηnmτ)
N∏

m=s+1

(1− η̄nmτ),

where nm1 6= nm2 if m1 6= m2. Such polynomials generate the solutions to (1)
with the same |f(ξ)|.
Corollary 2. If there is a solution to equation (1) with two parameters η1 =
−η2 in the polynomial PN , which give an even polynomial argument addend,
then a solution exists in the same equivalent group, which has an odd argument.
In particular, if all parameters of the polynomial PN can be devided into such
symmetrical pairs, what means that the polynomial argument is an even func-
tion, then another solution exists in the same equivalent group, which have an
odd argument.

This corollary is justy�ed by the following logical considerations. The argu-
ment of the factor p1(τ) = (1− η1τ)(1− η2τ) = 1− η2

1τ
2 is obviously the even

function of τ . Substituting η2 with η2 according to above theorem gives the
factor p2(τ) = (1− η1τ)(1 + η1τ) = 1− |η1|2 τ2 − (η1 − η1)τ. Its argument is :

arg p2 = arctan 2Imη1τ

1− |η1|2 τ2
.

If N is even integer and PN (τ) =
N/2∏
n=1

(1− η2
nτ2), then

P̃N (τ) =
N/2∏

n=1

(1− |ηn|2 τ2 − (ηn − ηn)τ)
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and its argument is

arg P̃N (τ) =
N/2∑

n=1

arctan 2Imηnτ

1− |ηn|2 τ2
,

which is the odd function of τ.

3. Branching of solutions
For N = 0 (real positive solutions) the transcendental equations (10b, 10c)

disappear and the only integral equation (10a) remains, which coincides with
(1), in which f(ξ) must be substituted by |f(ξ)|. This equation has the non-
trivial solution but not for all values c and N .

The number of solutions to (1) may change at some values c = cj . Such
values are called the branching points. The branching points of solutions to
equation (1) are found from the condition that the system of the homogeneous
integral equations

λnwn|f | = B

[
W (|f |) Im

(
P̄N (τ ′)PN (τ)

)

|PN (τ ′)| |PN (τ)| vn + (20a)

+ W ′(|f |)|f |Re
(
P̄N (τ ′)PN (τ)

)

|PN (τ ′)| |PN (τ)| wn

]
,

λnvn|f | = B

[
W (|f |)Re

(
P̄N (τ)PN (τ ′)

)

|PN (τ ′)| |PN (τ)| vn+ (20b)

+ W ′(|f |)|f | Im
(
P̄N (τ)PN (τ ′)

)

|PN (τ ′)| |PN (τ)| wn

]

has multiple eigenvalues λn = 1. Here {wn, vn} are vector-functions;
W ′ = dW/d(|f |). It is easy to check that λ1 = 1, {v1 ≡ 1, w1 ≡ 0} is always
the eigenpair of (20). These equations are obtained by application of usual
pertrubations technique to equation (1) (see e.g. [6]).

There is an obvious way to obtain the transcendental equation system for
calculation of the branching points and the polynomial parameters in them.
As a rule, the branching of solutions to equation (1) is caused by changing the
degree N of the polynomial PN by one. At the branching points the parame-
ters ηNk of the initial polynomial PN and parameters ηN+1,k of the branched
polynomial PN+1 are connected by the equalities

PN (τ)
|PN (τ)| =

PN+1(τ)
|PN+1(τ)| , ηNk = ηN+1,k, k = 1, 2, . . . , N,

ImηN+1,N+1 = 0.

(21)

At the branching points two new unknown c0 and ReηN+1,N+1 occur. Besides
(10), system
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|f(ξ)| =
b∫

a

K(ξ, ξ′)W (|f(ξ′)|)Re[PN+1(τ ′)P̄N+1(τ)]
|PN+1(τ ′)||PN+1(τ)| dξ′, (22a)

b∫

a

τn−1s(ξ)
W (|f(ξ)|)
|PN+1(τ)|dξ= 0, n = 1, 2, ..., N + 1, (22b)

b∫

a

τn−1s(ξ)
W (|f(ξ)|)
|PN+1(τ)|dξ= 0, n = 1, 2, ..., N + 1 (22c)

should hold. Since the new parameter ηN+1,N+1 is real, the integral equation
(22a) coincides with (10a) and the kth equation of system (22b) (22c) k =
1, 2, . . . , N , is a linear combination of the corresponding equation of system
(10b), (10c) and (k + 1)th equation of (22b) (22c). Hence, at the branching
point, besides system (10) only two additional equations

b∫

a

τNs(ξ)
F (ξ)− β|f(ξ)|

|PN (τ)|(1− ηN+1,N+1τ)
dξ = 0, (23a)

b∫

a

τNq(ξ)
F (ξ)− β|f(ξ)|

|PN (τ)|(1− ηN+1,N+1τ)
dξ = 0 (23b)

should hold. On the whole, we have one real integral equation and 2N +2 tran-
scendental ones for determining the real function |f(ξ)|, N complex parameters
ηNk, k = 1, 2, . . . , N and real ηN+1,N+1 and cj .

At the branching points where the polynomial degree changes by two, the
equalities

ηNk = ηN+2,k, k = 1, . . . , N (24)
are valid. Besides (10), the four additional equations

b∫

a

τk−1s(ξ)W (|f(ξ)|)
|PN (τ)|(1− ηN+2,N+1τ)(1− ηN+2,N+2τ)

dξ=0, n = N + 1, N + 2;

b∫

a

τk−1q(ξ)W (|f(ξ)|)
|PN (τ)|(1− ηN+2,N+1τ)(1− ηN+2,N+2τ)

dξ=0, n = N + 1, N + 2,

(25)

should be ful�lled with ηN+2,N+1, ηN+2,N+2 satisfying the conditions
ηN+2,N+1 = η̄N+2,N+2 (26)

or

ImηN+2,N+1 = ImηN+2,N+2 = 0. (27)
Hence, we have 2N + 5 equation for 2N + 4 real unknown: N complex ηNk,
n = 1, 2, . . . , N , one real cj , one complex ηN+2,N+1 or two real ηN+2,N+1,
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ηN+2,N+2, and |f(ξ)|. As it was mentioned in the preceding subsection, the
existence of solutions to such a system is low-probable in general case. However,
they may exist in the case when

W (|f(ξ)|) = W (|f(−ξ)|). (28)
Then the solutions are possible, which generate the polynomials with the even
modulus

|PN (τ)| = |PN (−τ)| , |PN+2(τ)| = |PN+2(−τ)|. (29)
This equality decreases the number of unknowns twice: the parameters ηN+2,k

become imaginary or appear by couples with opposite signs and ηN+2,n, n =
N + 1, N + 2 are always imaginary with opposite signs:

ReηN+2,N+1 = ReηN+2,N+2 = 0, (30a)
ηN+2,N+1 = η̄N+2,N+2. (30b)

On the other hand, conditions (29) decrease the number of equations twice,
as well: N equations of system (10b), (10c) and two additional equations (25)
become identities, because they have odd integrands in the left-hand side.

Finally, at ful�lling (28), (29) the solution branching is possible with de-
creasing the polynomial degree by two if the following transcendental equation
system holds:

b∫

a

τ2n−1s(ξ)
W (|f(ξ)|)
|PN (τ)| dξ= 0, n = 1, 2, . . . [N/2], (31a)

b∫

a

τ2n−2q(ξ)
W (|f(ξ)|)
|PN (τ)| dξ= 0, n = 1, 2, . . . [(N + 1)/2], (31b)

b∫

a

τ2[(N+2)/2]−1s(ξ)W (|f(ξ)|)
|PN (τ)|(1− ηN+2,N+1τ)(1− ηN+2,N+2τ)

dξ= 0, (31c)

b∫

a

τ2[(N+1)/2]q(ξ)W (|f(ξ)|)
|PN (τ)|(1− ηN+2,N+1τ)(1− ηN+2,N+2τ)

dξ= 0, (31d)

where ηNk, k = 1, . . . , N , are either imaginary or appear by couples with alter-
native signs, and ηN+2,k, k = N + 1, N + 2 are subject to conditions (30). As
a result, we have N + 3 real equations with respect to N + 3 real unknowns.

4. Numerical results
As an example, we show the numerical results obtained for W (|f(ξ) |) =

1/2 − |f(ξ)|2 and α = 0.5. This problem arises in the case when the linear
antenna should create the uniform power pattern F 2 ≡ 1/2. The calculations
were carried out by the Newton method.
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The real and imaginary parts of ηNk are shown in Fig. 1. The real parts of
solutions are drawn by the dashed lines, the imaginary ones � by the solid lines.
The curve numbering corresponds to the indexes Nk at these parameters.
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Fig. 1. Real and imag parts of parametrs ηNk;
W (|f(ξ) |) = 1/2− |f(ξ)|2, α = 0.5

For c < c0 = 0.84 there are no nontrivial solutions to equation (1) at this
α. At c = c0 the solution f0(ξ) with N = 0 arises (curve 0). It starts from
f0(ξ) ≡ 0.

At the point c1 = 3.05 two complex conjugate solutions f1(ξ), f1′(ξ) with
N = 1 and imaginary η11, η1′1 respectively, branch o� from f0(ξ) (curves 11,
1′1). At the point c2 = 4.95, two solutions with N = 2 branch o� from each
solution with N = 1. All they make up an equivalent group; we analyze only
one of them denoted by f2(ξ). The solutions f1(ξ), f1′(ξ) continue to exist.
Two more characteristic points, related to them, are c4 and c5.

The solution f2(ξ), arising at c = c2 has two imaginary parameters η21, η22

(curves 21, 22). At c3 = 5.16 the solution f2(ξ) transforms into f2′(ξ), which
has two complex parameters η′21, η′22 with Reη′22 = −Reη′21, Imη′21 = Imη′22.
Curves 2′1, 2′′1, correspond to Reη′21, Imη′21 and curves 2′2, 2′′2, � to Reη′22,
Imη′22, respectively.

When c increases, the solutions with larger N appear, similarly as in the
problem of antenna synthesis according to the amplitude pattern [3].
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