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AN ALTERNATING BOUNDARY INTEGRAL
BASED METHOD FOR A CAUCHY PROBLEM
FOR KLEIN-GORDON EQUATION

ROMAN CHAPKO, DMYTRO LABA

PE3IOME. Posrnsmaerscs ducenbHe po3s’si3yBanns 3amaqi Komi qyist piBasan-
g Kueftna-Topmona y 18038’ a3Hii 110ckiit o6siacti. 3Bakaroun HA HEKOPEKT-
HicTh mi€l JiHiliHOI 00epHEHOI 3a/a4i, BUKOPHCTAHO AJIGTEPHYIOUUN METOZ,
SIKUH BOJIOJIIE PETyISpU3yIOINME BJIACTUBOCTAMH. [le mpuBoanTh 10 po3B’s13y-
BaHHs JBOX MIIIAaHUX KPaMOBHMX 3aJa4 Ha KOxKHiil ireparii. 11i mimrani 3amadi
HAOJIMKEHO PO3B’A3y0ThCA METOI0OM I'DAHNYHAX IHTerpaIbHuX piBHAHD. 1Ipn-
BEIEHO Pe3Y/IbTATH JINCEJbHUX eKCIIEPUMEHTIB.

ABSTRACT. We consider the numerical solution of a Cauchy problem for
the Klein-Gordon equation in a planar double connected domain. Due to
the ill-posedness of this linear inverse problem the alternating method with
regularization properties is used. It leads to two mixed well-posed boundary
value problems on every iteration. These problems are solved by boundary
integral equation method. Numerical examples are presented.

1. INTRODUCTION
Let D be a double connected domain in IR? with inner and outer boundaries
I'; and Ty, respectively. We suppose that I'1,T's € C3 (see Fig. 1). Let v
denote the outward unit normal on boundary.

Fic. 1. An example of a double connected domain

Given the sufficiently smooth continuous functions f1 and fa, we consider
the Cauchy problem of finding a function v € C?(D) N C'(D) which satisfies

Key words. Klein-Gordon equation; Cauchy problem; Double connected domain; Single-
and double layer potentials; Integral equations; Alternating method.
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the Klein-Gordon equation

Au—»*u=0 in D (1)
and the boundary value conditions
ou
= — = Ts.
u=f and 5, 9 on T2 (2)

In (1) > > 0 is a given constant. In particular we are interested in finding
the Cauchy data on the inner boundary I';.

For the uniqueness of a solution to the Cauchy problem (1), (2) see, for
example, [2]. The solution does not in general depend continuously on the
data, i.e. the problem is ill-posed in the sense of Hadamard, thus making
classical methods inappropriate.

We shall employ the so-called alternating iterative method proposed in [6]
and successfully applied in several engineering problems, see for example [5] and
[8]. The use of the alternating method with an integral equation approach for
the Laplace equation is discussed in [3|. The details of alternating procedure for
the case of the Klein-Gordon equation are listed in section 4. In each iteration,
mixed direct problems are solved in the solution domain D. There are the
Dirichlet-Neumann mixed boundary value problem

Aw—»*w=0 in D, (3)
0
w=h on Iy, %:g on I'y (4)
and Neumann-Dirichlet mixed boundary value problem
Av—3*v=0 in D, (5)
0
a—:j =p on Iy, v=/f on Is. (6)

For the direct problems in this study, we propose and investigate a numerical
method based on the potential theory. Instead, the problems are each reduced
to boundary integral equations over I'y and I's. This approach makes the
implementation of the alternating method very efficient.

2. INTEGRAL EQUATION METHOD FOR THE MIXED PROBLEMS

2.1. DIRICHLET-NEUMANN MIXED PROBLEM
The problem (3), (4) will be solved by reducing to the system of integral
equations of the first kind. We represent the solution w € C?(D)NCY(D) as a
combination of a single- and a double-layer potential

w(z) :/wl(y)@(x,y)ds(y)+/¢2(y)a‘ﬂxvy>

() ds(y), =€ D, (7)
Iy I

where 1 and @9 are unknown continuous densities, ®(z,y) = %Ko(%]w —y|)
is a fundamental solution of the equation (3) in term of the modified Hankel
function Ky [1].
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From the continuity of the single-layer potential and the normal derivative
of the double-layer potential we obtain for the problem (3), (4) the following
system of integral equations of the first kind

/sol(y)@(x,y)ds(y) +/w2(y)(st(y) = h(z), zely,
I'1 'y
/wl(y)agfa)y)ds(yﬂ 5
N1
o 00(x,y) B
* au(x)1/¢2(y)ay<y)d8(y) =g(zx), zeTs.

It is known that modified Bessel functions have the following asymptotic prop-
erties [1] Ko(2) ~Inl, 2z — 0and Ki(2) ~ 2, 2z — 0. Thus, we obtained
the system of integral equations of the first kind which contains kernels with
logarithmic singularity as well as a hypersingularity.

Using the Maue type expression |7] the second equation from (8) could be
rewritten in the following way

/ ©1(y)®(z,y)ds(y) + 65(;2 (y)ajéx;)y ) ds(y)—
Iy I’y
2 / 021)® (1) (x) - v(w)lds(y) = g(z), z €Ty,
T's

where 6 denotes the unit tangential vector for I's.

For the future numerical implementation we consider a parametrization of
the system (8). We assume that the domain boundaries have the parametric
representations

;= {xz(t) = (xil(t),mig(t)), t e [0,271’]}, 1=1,2,

where z; : R — IR? are C° and 27-periodic with |2/}(t)| > 0 for all ¢ € [0, 27].
As a result of the parametrization of the system (8) we obtain

27
% / (1 () Ha1 (8, 7) + po(7) Hia(t, )] dT = h(t),
. (9)

[ i) E (1 7) + () Bt 7) + o) Hoalt, )] b = (),

2
0

where p1i(t) = pi(zi(t)), i = 1,2, h(t) = h(z1(t)), g(t) = 2g(x2(t))|z2()]. The
representation of kernels of the obtained system is listed below

Hy(t,7) = Kolelray (7))}t (7))
ri2lh7) - va(T)) 1 oy,

Ho(t, 7) = 3K (5¢|r12(t, 7)) Ty
r12(t,7)]
Han(t,7) = 25283 G 1, 7)) 220 (o) o),
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[raa(t, 7) - 25(1)]
ra2(t, )|
Has(t,7) = 256" Ko (selraa(t, 7)) [25(2) - (7))
Here we introduced the notation ri;(t, 7) = ;(t) — x;(7).
Next we express the system of integral equations (9) in the specific form to

be able to apply the trigonometrical quadrature rules. The system of integral
equations in the following form is ready for application of the numerical methods

,

Hoo(t,7) = —23¢K ) (5¢|roa(t, 7))

t—1T1

2w
1 4
— H},(t,7)In - sin?
e [l (27 sin
0

+ HE (t,7)) + po(7)Hyo(t, 7)]dT = h(t),
21 (10)

% /[,u1 (T)Ho1(t,7) + ph(7) cot T t+

0

t—T1

+ MQ(T)(H%Q(t, 7)In % sin? + H222(t, 7))]dT = g(t).

\

Here kernels are represented as follows
1
Hiy(t,7) = =50z (t) = 21(7)]) 21 (7)),
H212(t7 7_) =

=2 | Al DD Bl 1,y -t ) (0

= To(selraa(t, ) )raa(t, 7) - va(t) |25 (8) o (t) - 2o (7)+

Iy (>|raa(t, 7))

#|raa(t, ) ro2(t, 7) - va(t) |5 (t)raa(t, 7) - va(7)|za(7)] |

4 t—
H}(t,7) = Hlt,7) = Hj(t,7)In — sin” — T ot i=1,2
e
with diagonal terms

1 1. esx®|oh (1))
(0 = - L0, B30 = L PO ) )

and 20,0 ()2
e |y (t)]
AL
L a0 o) | LOR | (0 0)? a1
6 3 [z)P 2 |25 (1) |25(2)|* 2 ’
where Iy and I; are the modified Bessel functions and v is the Euler constant
[1].
For m € NU {0} and 0 < a < 1, by C"™[0, 2] we denote the space of m-
times uniformly Holder continuously differentiable and 27-periodic functions
furnished with the usual Holder norm. Using the Riesz theory [7] we can

H,(t,t) = »*In
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conclude that for given functions h € C™T12[0, 2], g € C™[0, 2] the system
of integral equations (10) provides a unique solution p; € C™%[0,27] and
pe € C™TLel0 27].

Clearly, we have according to (7) the following representation for the normal
derivative on the boundary I'y

ow 1

5(95) = —5901(37)+

o0d(z, y) 0 (x,y)
+/<P1(y)st(y)+/¢2(y)(wa]/(y)d5(y)» xely,

I 'y

Taking into account the parametric representation of I';, ¢ = 1,2 and by
some transformation in the kernels we obtain

) 00 (1) = —2m(D)+
+% / [MI(T) (Lll(t’ 7)In % s’ AT+ Lt T)> B ()
0

+po(7) La(t, 7')] dr, te€|0;2n]

with kernels

7“11(75, 7’) -1 (t)
r11(t, 7))

Lu(t,7) = Sh(Am(t 7)) 2 (7)1,

ot —1T
2 bl

4
Lio(t,7) = Li(t,7) — L11(¢t,7) In — sin t#T,
e

zi(t) - v (t)

BT ]

2.2. NEUMANN-DIRICHLET MIXED PROBLEM
For solving the mixed boundary value problem (5), (6) we use the similar
boundary integral equations approach as described in the previous section.
The solution to the problem (5), (6) inside the domain could be represented
as the following sum of potentials

v(r) = /wl(y)wdsw) +/<p2(y)<1>(x,y)d8(y), z €D.

1 2
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As in the previous section, using the boundary conditions, we obtain the system
of integral equations which after parametrization and all needed transforma-
tions is represented like

or [l(rh ot Tt () )t s T
0
B (7)) + palr) Fia(t, )]y = p),
or (12)
;/[m(ﬂﬁm(tﬁH
0
4 () (Al (t,7) = sin? T 4 By (1, m))dr = £(6)

Here the kernels are smooth functions and their differential properties are de-
pendent from smoothness of the boundaries I';. Using approach described ear-
lier in this section, one can check the existence and uniqueness of the solution
to the system (12).

Again we have the following way to calculate the function values on the inner
boundary I'y

i) = 5@+ [ G ast) + [ a)®lendste), el

Fl 1—‘l2

The corresponding formula for the function values in terms of parametric
representation of the boundary curve I'; can be obtained

o(ar (1) = s (0)+

2 e

2
1 ~ 4 t— -
+/ [/1,1(7’) <L11(t,7’) lnfsin2 2 T —|—L12(t,7‘)> +
0

+p(T) La(t, 7')] dr.

3. NUMERICAL SOLUTION OF INTEGRAL EQUATIONS

3.1. QUADRATURE METHOD

To discretize our integral equations of the first kind we suggest quadrature
7T
method. Let M € IN and t; = ]M, j=0,...,2M — 1. For approximation of

corresponding integrals we use the following trigonometrical quadratures [4, 7|
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1 2 | 2M
or [ £~ S s,
0 7=0
1 2 oM—1
2ﬂ_/f(7') In — sin? dr ~ R;(t) f(t)), (13)
0 J=0
2 2M—1

1|1 1 , cos M (t —t;)
Rj(t) = _M 5 + Z ;COSZ(t—tj) + TJ
i=1
and
1= 1
T;(t) = i Z icosi(t —tj) — icosM(t —tj).
i=1

After application quadrature formulas (13) and performing collocation using
the nodes of interpolation we obtain the system of linear equations with respect
to unknown fig(t;) = pe(t;), £ =1,2,5=0,...,2M — 1

( 2M—1 2M -1

_ 1 _
> Ml(tj)Hh(tk?tj)Rj(tk)er D Bty Hiy (b, t)+
=0 =0
1 2M—1
topp Do Bt Huo(te t) = h(ty), k=0,....2M —1,
1 2M—1 = 2M—1
oYY > dn(t) Hor(teoty) + Y oty T (t)— (14)
=0 =0
2M—1
- j{: fio(t;) Hao (ti, t) Ry (t) —
=0
1 2M—1
- 537 fio(t;)Hay(tr, ti) = g(tr), k=0,...,2M — 1.
=0

Finally, we have the following representation for approximate solution to Dirich-
let-Neumann mixed problem (3), (4) in the domain D

1 2M—1
w(z) ~ 577 > i (ty) Ko(sdw — a(t;)])2h (8) |+
=0
1 & [(z —22(t))) - va(t))],
—|—m Z fio(t) 2Ky (s|z — x2(t5)]) [z — 22(1))| lzy(t;)], €D
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Taking into account (11) the numerical approximation for the normal derivative
on I'1 can be calculated as

ow 1 2M—1
5, (@1(t)) = =5 (t) + > () Lua (b, ) Ry (k) +
=0
2M—1 1 2M—1
+m JZ_(:) Ml(tj)Lm(tkatj)'i‘m JZ_(:) Mg(tj)Lg(tk,tj), k=0,...,2M — 1.

Numerical solution of the system (12) is realized in the similar way.

3.2. NUMERICAL EXPERIMENTS FOR MIXED PROBLEMS
Let’s choose the domain with following boundaries (see Fig. 2)
'y = {z(t) = (0.5cos(t) + 0.5 cos(2t) — 0.25, sin(t)),t € [0, 27|}
and
Iy = {z(t) = (0.3cos(t) + 0.25, 0.2sin(t)),t € [0, 27]}.
The boundary conditions for the Dirichlet-Neumann problem are given as
h(z) = 0.5z1, =z €T}y, g(x) =0.0523, x €Ty
and for the Neumann-Dirichlet problem we choose
p(r)=e ", zely, f(z) =0.25sin(z1 + x2), = €Iy,

For both problems we state s = 1.

The maximum norm errors of the obtained numerical solution values on
I'y for the Dirichlet-Neumann problem (3), (4) and calculated values of the
normal derivative on I'; for the Neumann-Dirichlet problem (5), (6) are listed
for various values of the mesh size M in the Table 1. Note, that as the "exact”
solutions we use the approximation solutions obtained by our numerical method
with M = 128.

08
0B
04

02f

2k

o4k

06 F2

nsk

F1G. 2. Solution domain 1
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TABL. 1. Errors of the numerical solutions for the mixed problems

M| | % - dg;z ||C(F1) |[v — Ue:v”C(Fl)

4 | 1.631718-1073 | 5.145063 - 103
8 | 2.131915-10° | 3.133429-107*
16 | 8.192651-10"10 | 4.243675 1077
32| 3.295214 - 101 [ 5.041247-10~ 13

4. AN ALTERNATING METHOD FOR THE CAUCHY PROBLEM

4.1. AN ALTERNATING PROCEDURE

To obtain the solution to Cauchy problem (1), (2) we use the alternating
iterative procedure.

Fach iteration of alternating procedure requires solving one of the mixed
boundary value problems and finding Cauchy data on the inner domain bound-
ary. These problems are numerically solved by application of integral equations
method described in the above sections.

In problem definitions (3), (4) and (5), (6) functions f and g are the same
as in the Cauchy problem (1), (2).

The functions p and h will be substituted with solution approximations dur-
ing the alternating procedure run.

The alternating procedure of solving Cauchy problem (1), (2) runs as follows

— The first approximation u(?) to the solution is obtained by solving the
problem (5), (6), with p = pg, where pg is an arbitrary initial guess.
~ Having constructed  u*)| we find  u(®*t1) by solving (3), (4), with
h = u(2k) |
I
au(2k+1)
ov
I'1
The following result about the convergence of alternating procedure can be
obtained using the similar approach as in [3].

~ To obtain u(®***2) the problem (5), (6) is solved with p =

Theorem 1. Suppose that Cauchy problem (1), (2) with appropriate input data
f and g has a bounded solution. Let uy be the k-th approrimate solution in the
alternating procedure. Then the following is true:

li — =0
kg{.lo | u ukHL2(D)
for any sufficiently smooth initial data element pg which starts the procedure.

Also we have to note that alternating procedure which is applied to solve
Cauchy problem is a regularizing method [3].

4.2. NUMERICAL EXPERIMENTS FOR THE CAUCHY PROBLEM
In the numerical experiments we will use the solutions to the mixed problems
for generating the input functions for problem (1), (2); i.e. we solve the mixed
problem with predefined input functions, calculate the Cauchy data on both
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boundaries and as a result we got the input data for (1), (2) as well as the solu-
tion and it’s normal derivative values on the inner boundary (the approximate
solution will be compared with this values for checking the results). Please also
note that the constant s is set to one in the following numerical experiments.

Ezxample 1. In the first example we will use the same domain as on Fig. 2.
We generate input data for Cauchy problem by solving mixed problem (3), (4)
with

h(z) = 6(z% 4 23), = €Ty, g(xz) = 3sin(xy + x2), €Ty

With M = 128 and zero initial guess which starts the alternating procedure,
we obtain the results reflected in Fig. 3 and Fig. 4 for function and normal
derivative reconstructions in case of exact input and input data with noise. The

solid line (—) denotes the graph of exact solution and the dashed line (- - -)
denotes the numerical solution obtained by alternating procedure.

Exact data, n = 500 Data with 3% noise, n = 185

Fic. 3. Function values on the inner boundary I'y for Ex. 1

Exact data, n = 500 Data with 3% noise, n = 181

Fi1G. 4. Normal derivative values on the inner boundary I'; for Ex. 1
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Exact data Data with 3% noise

Fia. 5. C-error of function (—) and normal derivative (- - -) on
I'; for Ex. 1

Example 2. Assume that boundaries have the following parametric represen-
tations (see Fig. 6)

'y = {z(t) = (0.5cos(t), 0.5sin(t)), te€[0,2n]}
and
Iy = {z(t) = (2cos(t), sin(t)), te€[0,2n]}.

To obtain input functions for this numerical example we solve the mixed
boundary value problem (5), (6) with

p(x):l'l—i-fl?Q, werh
f(z) =0.5z1, xeTls.

Fi1G. 6. Solution domain 2

The results of Cauchy data reconstruction on I'y are presented in Fig. 7 and
Fig. 8. The corresponding C-errors on every iteration step are reflected in Fig. 9
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Exact data, n = 500 Data with 3% noise, n = 110

FiG. 7. Function values on the inner boundary I'; for Ex.2

Exact data, n = 500 Data with 3% noise, n = 121

FiG. 8. Normal derivative values on the inner boundary I'; for Ex. 2
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100 180 200 250 300 350 400 450 500

Exact data Data with 3% noise

Fic. 9. C-error of solution function (—) and normal derivative
(---)onI' for Ex.2

As one can observe from the above numerical examples, a satisfactory quality
for the reconstruction of the boundary function and the normal derivative on
the inner boundary is obtained with a reasonable stability against noisy data.
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