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FD-METHOD FOR SOLVING THE STURM-LIOUVILLE
PROBLEM WITH POTENTIAL THAT IS THE DERIVATIVE
OF A FUNCTION OF BOUNDED VARIATION

VOLODYMYR MAKAROV, NATALIIA ROMANIUK, IGOR LAZURCHAK

PE3IOME. Posrimsmaersca ckanspaa 3amagda [ltypma-Jliysimisg 3 moremmia-
JIOM, IO € TIOXiAHOIO Bif dyHKIiT 0OMerkeHol Bapialil, Ta KpalloOBIMH yMOBaMU
Hipixme. Bukmanena ocuosa peasizamnii FD-meTony y Bumagky, kom GyHKIGS
G (z), mo nabymxkae norennian q (T), € TOTOXKHIM HyJI€M, a TAKOXK Yy 3arajibHo-
My BUMAJKy. BcTaHoOBIIEHI JOCTATHI YMOBH CyNepPEKCITOHEHIATHHOT 301K HOCTI
FD-meTony Ta OmiHKH #I0TO TOYHOCTI, 9Ki € 3HAYHUM IIOCUJICHHAM Ta y3araJib-
HEHHSIM BIAIIOBIIHUX Pe3yJIbTaTiB, OTPUMAHHX B MIOIEPETHIX poboTax.

ABSTRACT. We consider a scalar Sturm-Liouville problem with the Dirichlet
boundary conditions where the potential ¢ (z) is assumed to be a derivative
of the function with bounded variation. The application of the abstract FD-
method scheme to such eigenvalue problem is studied in the scope of this
work. In addition to the general case when the function g (z) approximating
g (z) is assumed to be arbitrary we study the case when § (z) is equal to zero
everywhere. We obtain new sufficient conditions for the super-exponential
convergence of the FD-method and its accuracy estimates which essentially
generalize similar results obtained in the earlier works.

MSC 2010: 65L15, 65120, 34B09, 34B24, 34116, 341.20.

1. INTRODUCTION
Most of the current technological and industrial advancements in electronics
rely on the increasingly rigorous quantum-mechanical models. The models
where the discontinuities of the potential are essential to represent the modelled
phenomena and can not be disregarded. Mathematically such models can be
represented as follows (the one particle, many center Hamiltonian):

H=-A+) 7aba(), (1)

aeR

where A is a Laplace operator in L? (Rd), d stands for the dimension of the
configuration space, X is a discrete, countable at most, subset in R?, 6, (+) is
a Dirac delta function at the point a (i.e. a single measure concentrated at
a) (see [1]). H describes the energy of the quantum mechanical particle which
moves under the influence of an "interaction potential" created by the "point
source" forces 74, located at a. We will denote this function as ¢ (z) and refer
to it as Dirac delta function (DDF').

Key words. Sturm-Liouville problem, Dirac delta function potential, distribution potential,
functional-discrete method, super-exponential convergence rate.
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Dirac delta function (DDF) potentials had been used for modelling of atomic
and molecular systems including atomic lattices, quantum heterostructures,
semiconductors, organic fluorescent materials, solar cells etc. (see [1, 2, 3] and
citations of them). Among recent applications of (1) one may mention the
novel structure of quantum waveguide [2] based on the modelling with the
same potential as in (1) having the finite numbers of delta functions. This
type of potentials are called Dirac comb by the authors of [2]. History of the
studies, mathematical properties and the visualization for some of the models
involving such discontinuous potentials as well as various physical applications
are summarized in [3].

Linear Sturm-Liouville problem with distribution potentials are extensively
studied theoretically (for example see [4]). The authors of [5] derive the to-
tal regularized trace formula of differential Sturm-Liouville operators on a fi-
nite closed interval with singular potentials ¢(z) that are not locally integrable
functions and such that [ ¢(z)dz € BV,[0,] in the sense of distributions (the
definition of BV,[0, 7| will be given shortly). During the technical revision of
5] author of [6] found a simple proof for the case of potential ¢ (z) =6 (z — §).
Note that if ¢(z) € Ly then Theorem 1 from [5] contains the results of [7].
Independently from [5] the authors of [8] received the spectral asymptotic and
the trace formula on the interval [0,(] for the class of potentials, which may
contain finite of sum J-functions.

In the current paper we study an eigenvalue problem for the Hamiltonian
having the form (1) with d =1, X = {a}, a € (0,1), which is stated as follows:

d?u(x)
e +A—q(z))u(x) =0, z € (0,1), u(0) =0, u(l) =0, (2)
where
_do(x)

and o(z) is a function of bounded variation.
We start by summarizing some useful facts from the real analysis. Since o(x)
is the function of bounded variation, the following representation is valid:

o(x) = h(z) + ¢ (x) + x(2),

with h(z), ¥(x), x(z) being the jump function, the absolutely continuous func-
tion and the singular function correspondingly (see. [9], p.347). The singular
part x(z) has at most countable number of discontinuities which coincide with
those of the jump function h(x). Let us enumerate these discontinuity points in
the ascending order and denote them as ), € (0,1), p=1,2,..., 21 <22 < ...,
then h(z) = >, vH (z — xp), where ~, are real numbers, H(z) is the Heavi-
side function. From now on we assume that o(z) belongs to the class BV,[0, 1].
That is the class of functions with bounded variation and which are right con-
tinuous at any point x € (0,1) and continuous at the endpoints x = 0 and
=1

An essential role in the proof of FD-method’s convergence rely on the fol-
lowing result:
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Theorem 1. ([10], p.481) Let o(x) € BV,[0,1] and a function f(z) be contin-
uous on the segment [0, 1], then the following inequality holds true:

1

/ f(z)do(z)| < max [f(@)] [l
J xz€(0,1]
x);0,1}.

}

Due to the importance of the model there exist a large number of software
packages for the numerical solution of the singular scalar Sturm-Liouville prob-
lems. Most notable FORTRAN packages are SLO2F [11] and SLEDGE [12] im-
plementing the Pruess method, SLEIGN [13, 14] and SLEIGN2 [15] - shooting
method based on the Priifer transformation. MATSLISE package [16] imple-
ments the Constant Perturbation Methods (CPM) and the Line Perturbation
Methods (LPM) in MATLAB.

The code of SLEIGN2 became a considerable improvement of SLEIGN code.
It covers more problem cases than other software packages, existent at that
moment. Among other things the developers of SLEIGN2 expand the list of
singular self-adjoint problems compatible with the package. Such list along with
problem’s classification, numerical examples and the package documentation
can be found in [15]. The mentioned FORTRAN codes is available as a part
of SLTSTPAK package (see [17]). Its implementation details as well as 60 test
problem application examples are given [18]. Taking in to account the joint
interest from different application areas, and the lack of common interface for
the mentioned software packages the developers (V. Ledoux and rest of authors)
created MATSLISE. It offers an interactive graphical user interface for various
Sturm-Liouville problem solvers and the ability to control the parameters of the
solver on-the-fly. Aside of that it contains some useful solution visualization
tools (see [19]).

In spite of the large amount of implementations none of the mentioned pack-
ages can handle DDF potentials directly.

The purpose of the current work is to study, justify and propose algo-
rithm implementation of the FD-method for eigenvalue problem for the Sturm-
Liouville operator (2) with the potential being the derivative of the function
with bounded variation such as

where ||ol|, = var {o(

k
q(x) =Y W (x—w) +¢' (), 2, € (0,1), p=T,k.

p=1
The results, presented here, extends the results reported in [20] in the linear
case (N (u) = 0), where the potential g (z) have only one singularity (k = 1).
Aside of that the current work contains the generalization of section 5 from
[21], where the FD-method (with g(x) = 0) considered in application to (2)

with ¢ (z) = aé (z — ), a > 0.

In section 2 we apply the simplest version of the FD-method, when the func-
tion ¢ (=), approximating the potential ¢ (x), is zero everywhere. The necessary
conditions of the applied method’s convergence is given. We show that under
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such conditions the method will converge super-exponentially. The practical
implications of the technique proposed here lie in the fact that theoretical es-
timates on the lowest eigenvalue number for which the method is justified to
converge, are more close to the number obtained experimentally. It may be
considered as an improvement of the similar conditions from theorem 1 [8]. In
the end of the section we present some numerical experiments to justify our
theoretical results. The algorithm of general FD-method scheme (g(z) # 0)
along with its justification is given in section 3. The results of a numerical
calculation presented in the end of the section illustrate the effectiveness of the
proposed algorithm.

2. FD-METHOD FOR ¢(z) =0
To find the approximate solution of the problem (2) we shall apply the FD-
method of the m-th rank with the function g(z) = 0. Detailed justification for
the choice of the FD-method scheme used here will be given in section 3 dealing
with the general case g(x) # 0. The m-th rank approximate solution will be
sought in the form of a finite sum

3=0 7=0

where every summand in (3) is obtained from the solution of the recurrent
sequence of problems

2, (7+1)
Wﬂq%) G+D) Z)\(JH PDul® (1) + q()ul) (),
X

, , 4
uITY0) =0, u¥TV (1) =0, 2 €(0,1), j=0,1,...,m—1, @)

ul® = V2sin(nrz), A = (n7)?,
supplied by the solvability condition

1

1
AGHD — Z)\(ﬁ-l p)/u ul®( dx+/q uld) (2) ul® (z)dx
0

0

and the following orthogonality condition

1
/u I (2) w0 (2)dx = 0,
0

which guaranties the uniqueness of the solution to (4). Let us represent the
solution to (4) using the generalized Green’s function approach:
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uff (@) =

J
9n(@,€) [ AT () + q(ﬁ)uﬁf’(&)] dé =

o _

1

p=0
1
MG+ / gn (1, €)uP) (€)d + / gn(, €)u) ()do(€), (5)
0

0

J
p=0

1 1
A = [ @ @0 e = [ u (i do(o).
0 0

where
gn(2,€) = [(a: — H(z —Wfl)) cos(nmzx) s1;17(£223?)} sin(né)+
N sin(nmz)(€ — HW(fL — 1)) cos(nm) gt (2,6) + gna(®, ),
gna(2,€) = (x_H(x_jT)L) COS(NTL) i (e ) (6)
_i_sin(nﬂa:)(fr;H( —x)) cos(ne),
902(0:) = ~ 20T i),

The generalized Green’s function g,(z,§) has the following properties:
gn(xvg) = gn(é.vx)7 gn(xv‘f) = gn(l - Z, - g)v

1 1
/gn(x,f) sin(nma)dx = 0, /gn(m,ﬁ) sin(nm€)d¢ = 0,
0 0

1 1 7
|gn(2,6)| < —+5—5 <

™ 2(mn)?2 = 6mn’

Representation (5) along with the properties of Green function (7) and the
results of theorem 1 allows us to obtain the following recurrent system of in-

equalities
J
] < ot (3o e )
p=1

A < v2 o] o, (8

j=0,1,...,m—1.
One can deduce from (8) that

ul)

~—

) < 30, 3l 2]
p=0 h

72



FD-METHOD FOR SOLVING THE STURM-LIOUVILLE PROBLEM ...

where My, = v/2||gnll lloll, < V25 o],
To obtain the solution of (8) we use the generating functions method (see
[22]). It gives us the following sequence of estimates for the solution

L) (25 — ! M

‘ G ‘ <2\f( o) (M) < \/i(j+1)\/7f7’

G| < 4 fof. D yar i < 2o, M)

AT ‘§4H ||v(23+2)|l(4M) < 2, (G+1)vmj’
] = 0, 1, ..., - ]-a

where (2j))! =2-4-...-25, (2j+ 1! =1-3-...-(25 4+ 1). These estimates
along with the assumptions regarding the form of o(z) yields the next result.
Theorem 2. Let o(x) € BV,[0,1] and the following condition holds true

def
Tn i 4M 4\/§”gn”oo HUH’U < 17 (9)

then the FD-method for the Sturm—Liouville problem (2) converges super-ezpo-
nentially. Moreover the error estimates satisfy (10), (11)

m ' m+1
[ -2 uw| < vor, . (o)
— (m+2)\/m(m+1)(1 —ry,)
m < 2o, '
M= Al = A = Y AT < v_n . 11
jz_; " ~ (m+1)/mm(1l —ry) (11)

This result is a considerable extension and generalization of the similar results
of section 5 from [21], as well as the results of theorem 1 from [8]. In order to
show that let us recall the similar result from [8]. If o(z) € BV,[0, 1] and

(el 1) (12

then the following representation (in the notation of current work) is valid

1 11
- [ [0@] dote) - [ [ hnier,edotendotes) + vi(o),
0 0 0

where

2
Fnl1,62) = 41223 (1—cos(2mng;)) sin(2mnés_i) x

y [i@(zwgg_g+(—1)i—1sgn<52—51> ,

o(t) = (1 —t)/2,
2 4.4 +467 |||, + 2]|o]f; des

(1)

w (s lloll,) - (13)

vna(0)| < ol
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At the same time, it follows from theorem 2 that
An = (mn)2 A + AP + RO, (14)

where

o _
e
53
&
s
2
—~
)
S~—
Y
2
&

1
2
A= [ [0 @] doto), A=
0
1

uD () = / gn (2, €Y (€)dor (),
0

while the residual term Rg) satisfies

2|oll, 75
RO < T lv'n 15
‘ " ‘_ 3V2r(1l—1y) (15)

as long as (9) holds. To make the comparison of the estimates (13) and (15)
more convenient, we employ the estimate for r,

d 1 1 d
i 2l ol < 42 |+ 5o, <

2(mn)?
142
3mn
Then the estimate (15) could be replaced by the estimate

<

def
||O—H’U = ’rn72'

2||0'Hv7“7211 def
<—— = Ym(n,|ol,), 16
= 37 (L—rn1) Ym (1, ]lo][,) (16)

n

‘ R®)

valid for all n such that

2v/2 s V2 def
n>— |U||v+\/||0||v+4||UHv = M. (17)

By comparing (12) and (17) it is easy to see that

ny > N, Vo], € [0,00), | ﬁim (np — Ny ) = 00,
g ’U_>
i.e. the condition (17) is less strict than the condition (12). Let us now compare
estimates (16) and (13) for the residual terms for n > np, when both estimates
make sense. For the clarity we remove the second summand from
1 1

A = [u0@) [ guar(a, 00 (€ do()do(e)+

0

0
1 1
+ / ul® () / gno(z, €)ul0(€)do (€)do (z) = An%)l +An%;
0 0

(see (6)) and combine it with R One can observe, afterwards, that

v, 5(0) = RY + A7),
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which after taking the norm of both sides lead us to the estimate for

/7

2o, r2
(o] < | R lollris . loll der -

2 S Sm(l . ’f'n71) + (TLTF) - Vm( 7||0-Hv)‘

Using the elementary computations we see that

n

W, llolly,) > Fm(n, lloll,), Yell, = 0.

Consequently, we have shown that the second-rank FD-method could be more

efficient than the approach suggested in [21] from the accuracy standpoint.
Example 2.1. Let us consider problem (2) with the potential ¢ (z) =

d(x —a) for g(x) = 0, where a is a real number and a € (0,1). The algo-

rithm of FD method described above is ezactly realizable (see [23]) in this case.
Let us denote

1
(@) = ga (60), 1) = [ ga (o) L (0)dt 5= 1.2
0

By applying and the so-called sifting or sampling property for function f €
C*[0,1], which reads as

1
/f (x —a)dz = f(a), a€(0,1)
0

to (5) we obtain the following formulas for approximations of eigenvalues:

12

AP = [uf? (@), AP = [ <°>< )| 1o (@),
A9 = [ @) (- [0 @] 5@+ @)
A = [ @) ([ >—3[u£?> @] b@n @+ @),
AP = [ @) (- [0 @] @) +

+ [ul® ]4(410 @) + 211 (@)]) -

6 [l (@] o (@) 1 (a) + o (a))")

By setting a = 12 we obtain
R
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1 (3\/5 — 4) cos (ﬂ'nﬂ) + 1+

h (2 - 12n272
n (\/5 — 1) sin (Wnﬂ) n 3 cos (Wnﬁ) -1
4n3m3 16 nimrd ’
1 B (2\[ — 3) sin (ﬂnﬂ) +1 (3\[ — 4) Ccos (ﬂnﬁ) +1
Iz <\/§> - 24n373 - 16n4mt -
n 3 (\/5 — 1) sin (7m\/§) n 5 cos (Wnﬂ) -1
16n57d 32 nbmb ’

1440n4 74 24nS7d

1Y) (30v2—43)cos (mnv2) =2 (2v2 —3) sin (7nv/2)
B(s)=- - ’

5 (3\/§ — 4) Cos (Wnﬂ) +1 n i (\@ — 1) sin (7m\/§)

+ 96 nOyb 32 n’r’ +
35 cos (wn\/i) -1
256 n8md '

From here we derive analytical expressions for the corrections to eigenvalues:
)\%1) =1 —cos (Wn\@) ,
2-1
A2) = V2 [2 sin (7TTL\/§) —sin (27m\/§)} +

" dn

+ N [4 COS (wn\/ﬁ) —cos (27m\f2> - 3} )

8n2m2

NON— [(27—15\/5) cos (mﬂ) - (36—24\/5) cos (27mﬂ) -

" 48n2n2
— (~13+9v2) cos (37nv2) — 4] +
+ \é;?)_ﬂ?} [—5 sin (wn\@) +4 sin (27Tn\/§> —sin (37m\/§>} —
15 cos <7m\/§> — 6 cos <27m\f2) + cos (37rnx/§> — 10} ,

|
16n4r

O [(33—26\@) sin (m\/i) - (102—74\@) sin (27m\/§) +

" 96n3md
+ (93—66\/5) sin (?mm/i) - (27 —19\@) sin (47”“/5)} *
T [(84v2-160) cos(mnv'2) + (260 — 168v2) cos (2mnv/2) +

128n4md

+ (—160 + 108x/§) cos (?mm/i) + (35 - 24\f2> cos (47rm/§) +25] -
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3 [—14sin <7m\/§> +14sin (27m\/§) _6sin (3m\f2)+

 32n57d

+ sin (47nv2) | (V2-1) + o (56 cos (nnv2) -

128n576

— 28 cos (27m\f2> + 8 cos (37771\/5) — cos <47m\/§> — 35} .

Symbolic and numerical computations were carried out using the computer
algebra system Maple 17.00 (where Digits=50). The exact values of first four
smallest eigenvalues are:

T & 11.02252382511, A5" ~ 41.34074086778,
57~ 89.10712301833, A" ~ 158.4324892201.

Numerical results are given in Table 1, where we show the absolute error of

m R
approximation to the eigenvalue [A\S* — A,|, n = 1,4 calculated by the FD-

method with the rank m =1,7.

TABL. 1. Convergence of FD-method for the eigenvalues A, n =1, 4.

m m m m
AT — Ay ST — Ag ST — A3 A§T — g
1.1529194 1.8623232 2.8068340 - 10~ | 5.1881880 - 10!
1.13335918-10~! | 4.1070777 - 10~3 | 3.9480386 - 10~ | 8.1111546 - 103
7.74223271-1073 | 5.4659978 - 1073 | 3.5908153 - 10~° | 2.0458308 - 10~°
2.41326302-10* | 2.2361009 - 10~ | 2.7688079 - 106 | 4.7899759 - 10~6
1.80327662-107° | 1.7567730 - 10~° | 2.2495782-10~% | 9.7346306 - 108
2.80813804-10~6 | 2.7903081 - 10~% | 1.7826757 - 109 | 1.1955865 - 10~?
8.40809762-10~% | 8.3989549 - 10~% | 5.1188146-10~'! | 1.0727859.10—10
1.70181022-10~8 | 1.7004392 - 10~8 | 7.0536476-10"3 | 1.6910131-10~12

3

O Uk N~ O

One can see that the method converges for all eigenvalues including n = 1,
even though condition (9) of theorem 2 is satisfied for n > 2 only.

3. GENERAL SCHEME OF FD-METHOD (FOR ¢(z) # 0)
If condition (9) is not valid, one has to apply the general FD-method tech-
nique. We intend to consider this case in the present section. For this purpose
we embed problem (2) into the more general parametrical problem set

2ux
Fulnt, { va (@) -

(18)
[w ~ ¥ (@ }

€ (0,
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where v (z) is the absolutely continuous function while v () stands for its
piecewise linear approximation,

. Tp1 — T T — T
z) =1 (xp) ———— + ¢ (x o
D) =¥ (1) 22 e ()
) Y (Tps1) — ¢ (x
w/(x):¢1-7p: (P+) ( p)}
Lp+1 — Tp
x € [thprrl] y b= ﬂa
O=z0< 21 <... <2p41 = 1.
We look for the solution (18) in the form of series
=> uld (@), A, () =) APH. (19)
=0 §=0

We substitute expressions (19) into (18) and then compare the coefficients in
front of the equal powers of t. It gives us the following recurrence sequence of
boundary problems:

d2ug+1) (z)

IO () = T
va — ' (@) pulf ) () =
j ) (20)
-3 Aﬁf“ Vi (@) + [w )= @)] ul? (@) =
= —Fqgj'H) (), x €(0,1),
ud ™ (0) = (1) =0,
1
A = [l ) [ (0) )] ) () en
’ 1
/ w® () ud*D () de = 0, (22)
0
J=0,1,

Here the pair {)\ u? (m)} = { A\ (0),uy (0)} is the solution of the basic
problem

82u k A
— vaé (2 —2p) — ' () pul® () =0, 2 € (0,1),
=1

u( 7(10 ) =0,
The sufficient conditions for the convergence of the series for u,(z,t) and

An(t) at t = 1, where u, (z) = up (x,1), Ay = A\ (1),n = 1,2,..., will be
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presented later. But first we give the algorithmic implementation of the FD-
method.
Let us rewrite the problem (23) in the alternative form

2, (0)
w + {)\(0) - &’(x)} u® (z) =0,

z € (0,21) U (xy,29) U... U (24, 1), (24)
uld) (0) = u) (1) =0,
|:U7(7,0) (x)i| = - U%O) (xp + O) - U7(7,0) (xp - O) = 07
@) a0 a0 o b
dx dl' d:L, ’YP n P/
I:Ip

p=1k. (matching conditions)

On the intervals [z,, 2p+1),p = 0,k — 1 and [zg, 1] the solutions of equation
(24) can be written as follows

p=0k-1, B =0,

)

ul® () = Ag’)zl sin ( uﬁ% (1- x)) , & € [z, 1],

where
) = A0 — .

The calculation of constants AI(D?%, p=0,Ek, BZ(??%, p=1,k—1is performed us-
ing the combination of conditions (25) which when applied to the representation
of solutions lead us to the following homogeneous system:

0 . 0
- A;(;—)l,nSHl( M'Ez,zj—l (%‘%—ﬂ) -

= B os (il (a0 4 B =
= A, iy eos (Vi o =) +

+ Blg(l)l,n\/u,(g;_l sin (\/ug)_l (mp—xp_1)> + (26)
+\ uipAQ) —,BO =0, p=Tk-1, BY)=0,
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- A (s ) -

— Bl(co—)l,n cos (VMS)}@1 (xp — $k_1)> +

+ s (il 1= a)) =0,

= A, iy cos (a0 ) +

# B s (ks ()] -
- A,({S; [\/E%cos < ,ui% (1- mk)> +

+7% sin ( uﬁ% (1- xk.)>] =0.

We look for the roots of determinant A ()\g))> of system (26) which are
different from 1, ,, p = 0,k. Every eigenvalue of problems (24)-(25) is the

zero of determinant A ()\7(10)) having the multiplicity 1. The eigenvalues form

a monotonically increasing sequence )\go) < /\go) <. < )\,(10) < ... which tends

to infinity.
For the given /\7(10) the solution to system (26) can be determined only up to

a constant factor which we calculate from the normalization condition
1
2

1
ol | ok =
0

oo

The sequence of the normalized eigenfunctions {ug)) (:U)} ) form a complete
n=

orthonormal system in Lo [0,1]. The above mentioned facts follow from the

results of chapter 12 in [10].
Let us, move on to the solution of the recurrent sequence of problems (20)-
(22). First we rewrite these equations in the equivalent form

d%ﬁf“) ()

w0

EOU () = PG () = ~F (@),

dx?
x € (0,21) U (x1,22) U...U (24, 1),
u (@) = uf), @ € (2p,2p11), p=0.k, (27)

uf T (0) = uf V(1) =0,

[ugﬂ) (x)} =0,
dy Y ( )x:x (matching
! - ] — ypu;ﬁrl) (z,),p =1,k conditions)
T=xp
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Whereupon, its solution possess a representation
) (@) = A sin (il o - ) ) +

+ B cos (il o~ ) ) -

z sin < uﬁ?} (z— 5)) .
_ / FUHD (6) dé, @ € [wp,@psn).

(0) "

FUH) (&) de, = e [z, 1].

By combining (27) and the matching conditions we obtain the following

system for coefficients A;(,];:{l), Bgf;l):

_ A](Jjjlesin < /1,7(3;_1 (xp—xp— 1)) — B](j;"ilncos < M%q (zp —wp_1)> +

)

7 sin (/101 (2 ©))

(0)

Tp—1 /"Ln7p—1

i 0 0 i+1 0
= ATy cos (Vs (o = ) + B

X sin< 1“53;2;4 (:Ep—xp1)> + M%%A;(aj,‘r—fl) _%Byggﬁkl) =

F{TY (¢) de,

+BUH) = —

. (28)
S / cos( w L (ap —5)) FUHD (6) d,

p=1k-1, By =0,
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(0)

i (4 -0)
— / F(]—i—l)

= dé—
— 4 () dg
Tp lu’n,k
Tk sin ( /‘7(1% | (g — f)) )
_ Flt+l de,
— 0 (¢) de
Th—1 Mn,k—l

AP cos (Ve (- o)) +
# B0y sin (Vi o= ) ) -

- [Vl (Vollk =) +

1
+7% sin < ,ug?zc (1-— xk))} = —/COS ( ,uq(gi (xp — 5)) FUTD (&) de—

_ /COS < Ngl()}g—l (Q}k—f)> F7§J+1) (5) d€+
1sin ( p,fl% (zr — f)) ‘
+ vk/ © FTD()de.

. Pk
Ty n,

The left-hand-side matrix of this system of linear algebraic equations is de-
generate since it coincides with that of the system (26). For the solution of
(28) to exist it is necessary and sufficient that the vector composed from the

right-hand-side coefficients is orthogonal to the eigenvector of the conjugate
matrix.

Let us introduce the following vectors

T
V=3 ag ) AV B L AT B AL
AU+ { U+ }T
n P p=1,k ’
Zp gin (\/m (xp - f))
AUrn_)_ / FYH0(¢) de,
np (0) "
Tp—1 Hn,pfl
Zp
_ /COS < M;;_l (pr — g)) FTSIJ+1)(§> df}a
Tp—1
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p = 17 k_ 17
. 1gin Ng??c (xg — f)) )
7 (J _J)_ Jj+1 _
b / ——L R (e
Ty 'un,k

Tk

~ [ o (W“)Tl (or — 5)) FUHD () det
1gin <m<l’k - 5))
F{TY (&) d¢

(0) "
T 'u'n k

+Vk

and denote the matrix of the system (26) as D,,. Then systems (26), (28) could
be presented in the matrix-vector form

Dn?éo) - 6’ Dn?éjﬂ-l) - ﬁr(Lj+1), j=0,1,... (29)

If ZZ is the eigenvector (row) that corresponds to the null eigenvalue of the
matrix Dy, i.e.

Zr'D, =0,
then the necessary and sufficient condition of the solvability of system (29) is
ZIAYHY = 0. (30)

It is easy to show that condition (30) is equivalent to the integral condition
having the form

FUHD ()0 (2) dz = 0. (31)

o _

Next we wind from (31) or, equivalently, from (30) that

]

1
AU—PHD) /u%o) (z) ulP (x) da+
! 0

J
)\g-ﬂ): _

! (32)

+ [ @) [ @) @)]uf) (z) da,

Since the solution of system of linear algebraic equations (29) is found with the

accuracy up to a constant factor, uﬁf 1) (x) is found with the same accuracy.
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The constant factor can be calculated from the orthogonality condition (22),
and formula (32) is transformed to (21).

The aforementioned results give us all information necessary to apply FD-
method to some concrete problem. They however are not so useful to get the
sufficient conditions of its convergence and the corresponding accuracy esti-
mates (both a-priory and a-posteriori).

To get those estimates we propose an alternative approach. Relying on the

o0

completeness of the orthonormalized system {%(10) (:c)} ) in Ly [0, 1], we write
n=

down the solution to problem (20) in the following form:

1
°° uy) (z)

j+1 _ j+1 0
W (@)= =3 [ FI )l (€) de i
= A =
0
pFEN
It lead us to the estimate

e B Ll

J ‘ . . (33)
< Mo 330 PG| [uld| || [0 @)= (@)] w @) 1
=1
where
M, ! ! (34)
n = Mmax , )
P CORP G
Let us introduce a function
@) v )
w (w') = max max —=dt|.
0<p<k z€[zp,Tp+1] Tp+1 — Tp
Tp
Then by substituting (21) into (33) we receive the sequence of estimates
J
oo < {3 oo o ] .
=1 (35)
o0 <o) 2]
that lead to the following inequality
J
] < 6 3 S o .
1=0

The solution of inequality (36) be obtained via the generating functions method.
It has a following form (see [24])

(25 + 1N

(25 + 4! —
[AMuw (WP it

TUHDVAG+D) (DAL

Huwl)H < (4Mpw ()2
(37)
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Inequality (37) permit us to get the corresponding inequality for the eigenvalue
from (35)

5J

(27 =N w (W) n .

(27 +2)! G+DV7j

Using estimates (37), (38) one can easily deduce that the next statement is
correct

Theorem 3. Let

D] < w () 742 (38)

va (x —xp) +1 (2) (39)

and the following condition holds true
i S a0 (¢ < 1,

then the F'D-method for the Sturm—Liouville problem (18), (39) converges super-
exponentially. Moreover the following error estimates are valid:

) ~m—+1
‘un—un < lun =D ul| < d: —,  (40)
— (m+2)y/m(m+1)(1—7y)
M — Al < A= STA0)| < oWy 41
Z (m+1)y/mm (1 —7y,) (41)

Remark 3.1. In order to to understand the behavior of 7y, with respect to n
one can use (34) and theorem 2. They lead to the estimates on the denominator

from (34)
A0 _ 50 =7 (2n—1)+

n n—
k
+2 Z Tp [s.in2 (nmx,) —sin? (n — 1) TTp)| + R — Rq(12—)1 >
p=1
Wl [ 7 P
(2n—1) -4 2% n L
' Z'p' 2w [1—@*1—72”_1}’
7l Tnt1 7
A(O) _)\(0) 2 4 B p 1 n+ n
n+1 n n"‘ Z|p| \F l_f'n+1+1—72n s

These estimates are valid under condition (9), i.e. estimates (40), (41) and
(10), (11) from the theorem 2 are valid under the same restriction on n. How-
ever, T, has a reserve of easing the restrictions onn up to its complete exclusion.
This reserve caused by the occurrence of factor w (') in 7y, that will relax the
restrictions on n provided that function ' (x) is, at least, piecewise continuous
function from Q°[0,1], i.e. ¥ () € C[0,1]NQ'[0,1].

Remark 3.2. If the conditions of theorem 8 are met then the series
up (z,1) = 222, ul) ()7, A\ (t) = >0 A are absolutely convergent
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for |t| < 1. Moreover they approzimate the exact solution of given problem
U (2) = 1 (2,1) = X220 ud (@), An = A (1) = 232 A,

Example 3.1. We applied the FD-method to problem (2) with the potential
q(z) =6 (z— 1) + 100z in the following cases: a) V(@)=0 k=1, z; = 1,
71 = 1; b) the interval (0,1) is partitioned into two equal subintervals (¢ (z) #
0, k=1, 21 = 3,71 = 1); ¢) the interval (0,1) is partitioned into four equal

TABL. 2. Convergence of FD-method for eigenvalue A;

m |a) Y (z)=0,k=1, |b)¢'(x)Z£0, k=1, |c)¢'(z)#0, k=3,
5T — A AT — )\1’ AT —
0 | 39.79669103 2.270616222 2.168801379 - 10~ 1
1 | 10.20330897 8.341737964 - 10~ 1 6.083140294 - 102
2 | 2.135818380 1.901098870 - 102 5.300909434 - 10~°
3 | 2.135818380 3.157060409 - 103 4.333553271 - 106
4 | 1.226920389 2.930165507 - 10~* 1.367746278 - 108
5 | 1.226920389 2.102813177 - 10~° 5.850330410 - 1010
6 | 9.509541771 - 10! 4.743628885 - 106 3.835005760 - 10~ 12
7 | 9.509541771 - 10! 5.240882809 - 108 9.702842701 - 10~ 4
8 | 8.506978298 - 10! 7.286716281 - 108 1.229092383 - 10~ 1°
9 | 8.506978298 - 10! 2.930256199 - 102 1.865391361 - 1017
10 | 8.276761403 - 10~ 1 1.032042190 - 102 4.064792983 - 1019
11 | 8.276761403 - 10~ 1 1.038538699 - 10~10 | 3.423104476 - 10~2!
12 | 8.508842593 - 101 1.221151730 - 10~ 11 1.238050539 - 10~22
13 | 8.508842593 - 10! 2.481662360 - 10~ 12 3.497226425 - 10~2°
14 | 9.094304891 - 101 8.479672332 - 10~1* | 3.323469489 - 1026
15 | 9.094304891 - 10~ 1 4.980766446 - 10~ 14 1.068874105 - 10—28
16 | 1.000506593 1.155397490 - 10~ 1° 7.886548397 - 1030
17 | 1.000506593 8.676674901 - 10~16 | 9.000481917 - 1032
18 | 1.125540512 6.964067548 - 1017 1.660871600 - 1033
19 | 1.125540512 1.270480995 - 10~ 17 4.098653028 - 1073°
20 | 1.288866993 2.045466355 - 1018 | 2.760733186 - 1037

subintervals (¢/(z) Z 0,k =3, 21 =}, 20 = 1,25 =

~

1

%771:0772:17’73:0)'

We computed the exact eigenvalue (further denoted by A{*) and its ap-
proximation (denoted by A1) using the computer algebra system Maple 17.00
(Digits=100). The smallest exact eigenvalue of the problem, considered here,
is equal to

AT &~ 51.56855019480048558891973935119068439085.

The absolute errors of approximations

A§F — )\1' to smallest eigenvalue A ob-

tained using the FD-method of rank m = 1,20 in the cases a)-c) are presented
in table 2.

One can see from the table 2 that the simplest form of the FD-method
a) (with ¢/(z) = 0) for the first eigenvalue is divergent while the FD-method
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converges when the interval is partitioned into two or more subintervals. The
convergence rate is doubled with increase in the number of subdivision points
(from one to three).

10.

11.

12.

13.

14.

15.

16.

17.

18.
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