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Ðåçþìå. Ó ãiëüáåðòîâîìó ïðîñòîði äîñëiäæó¹òüñÿ íåÿâíèé ìåòîä iòåðà-
öié ðîçâ'ÿçóâàííÿ ëiíiéíèõ ðiâíÿíü ç íåíåãàòèâíèì ñàìîñïðÿæåíèì i íåñà-
ìîñïðÿæåíèì îáìåæåíèì îïåðàòîðîì. Äîâåäåíî çáiæíiñòü ìåòîäó ó âè-
ïàäêó àïðiîðíîãî âèáîðó ÷èñëà iòåðàöié ó âèõiäíié íîðìi ãiëüáåðòîâîãî
ïðîñòîðó, â ïðèïóùåííi, ùî ïîõèáêè ¹ íå òiëüêè â ïðàâié ÷àñòèíi ðiâíÿííÿ,
à é â îïåðàòîði. Îòðèìàíî îöiíêè ïîõèáêè i àïðiîðíèé ìîìåíò çóïèíêè.
Abstract. The article deals with the study of the implicit method of solving
linear equations with nonnegative self-adjoint and nonself-adjoint limited op-
erator in Hilbert space. It aims at proving the method convergence in case of a
priori choice of the number of iterations in the basic norm of Hilbert space on
the assumption of existing errors not only in the equation right-hand member
but in the operator as well. Error estimation and a priori stop moment are
obtained.

1. Problem statement
Let H and F be Hilbert spaces and A ∈ £(H, F ), i. e. A is a linear

continuous operator functioning from H to F . It is assumed that zero belongs
to operator spectrum A, but it is not its characteristic constant. The following
equation is solved

Ax = y. (1)
The problem of searching for element x ∈ H by element y ∈ F is incorrect,

for arbitrary small disturbances in the right-hand member y may result in
arbitrary disturbances in solution.

Let us suppose that the accurate development x∗ ∈ H of equation (1) exists
and is the unique one. We shall search for it with the help of iteration process

(E + α2A2k)xn+1 = (E − αAk)2xn + 2αAk−1y, x0 = 0, k ∈ N, (2)
where E is an identity operator while α is an iteration parameter.

We consider that operator A and the right-hand member of equation (1) are
speci�ed approximately, i.e. approximation yδ, ‖y − yδ‖ ≤ δ is known instead
of y, and operator Aη, ‖A−Aη‖ ≤ η is known instead of operator A. Suppose
0 ∈ Sp(Aη), Sp(Aη) ⊆ [0,M ]. Then method (2) will look

(E + α2A2k
η )xn+1 = (E − αAk

η)
2xn + 2αAk−1

η yδ, x0 = 0, k ∈ N. (3)

Key words. Regularization, iteration method, incorrect problem, Hilbert space, self-
conjugated and non self-conjugated approximately operator.
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The case of approximate right-member of equation yδ and faithful operator
A for the method under consideration (3) has been studied in monograph [1]. It
deals with a priori and a posteriori choice of a regularization parameter and the
case of non-unique solution of problem (1), as well as with proving the method
convergence in Hilbert space energy norm.

Let us prove the method convergence (3) in case of a priori choice of a reg-
ularization parameter in solving the equation Aηx = yδ with the approximate
operator Aη and the approximate right-hand member yδ and obtain a priori
estimated errors.

2. The case of self-adjoint nonnegative operators
Let H equal F , A = A∗ ≥ 0, Aη = A∗η ≥ 0, Sp(Aη) ⊆ [0,M ], 0 < η ≤ η0.

The iteration method (3) will be presented in the following way:

xη = gn(Aη)yδ, (4)

where gn(λ) = λ−1

[
1− (1− αλk)2n

(1 + α2λ2k)n

]
. There have been obtained in [1-2] the

conditions for functions gn(λ) with α > 0:

sup
0≤λ≤M

|gn(λ)| ≤ γn1/k, γ = 2kα1/k, n > 0, (5)

sup
0≤λ≤M

λs|1− λgn(λ)| ≤ γsn
−s/k, (n > 0), 0 < s < ∞, γs =

( s

2kαe

)s/k
, (6)

(here s is the degree of source representability of exact solution x∗ = Asz, s >
0, ‖z‖ ≤ ρ),

sup
0≤λ≤M

|1− λgn(λ)| ≤ γ0, γ0 = 1, n > 0, (7)

sup
0≤λ≤M

λ|1− λgn(λ)| → 0, n →∞. (8)

The following is valid:

Lemma 1. Let A = A∗ ≥ 0, Aη = A∗η ≥ 0, ‖Aη − A‖ ≤ η, Sp(Aη) ⊆ [0,M ],
(0 < η ≤ η0), α > 0 and conditions (7), (8) be satis�ed. Then ‖Gnηv‖ → 0
at n → ∞, η → 0 ∀v ∈ N(A)⊥ = R(A), where N(A) = {x ∈ H|Ax = 0} and
Gnη = E −Aηgn(Aη).

Proof. We have
‖Gnηv‖ = ‖(E −Aηgn(Aη))v‖ =

=

∥∥∥∥∥∥

M∫

0

(1− λgn(λ))dEλv

∥∥∥∥∥∥
=

∥∥∥∥∥∥

M∫

0

(1− αλk)2n

(1 + α2λ2k)n
dEλv

∥∥∥∥∥∥
≤

≤
∥∥∥∥∥∥

ε∫

0

(1− αλk)2n

(1 + α2λ2k)n
dEλv

∥∥∥∥∥∥
+

∥∥∥∥∥∥

M∫

ε

(1− αλk)2n

(1 + α2λ2k)n
dEλv

∥∥∥∥∥∥
.
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∥∥∥∥∥∥

M∫

ε

(1− αλk)2n

(1 + α2λ2k)n
dEλv

∥∥∥∥∥∥
≤ qn(ε)

∥∥∥∥∥∥

M∫

ε

dEλv

∥∥∥∥∥∥
→ 0, n →∞,

as for λ ∈ [ε,M ]
(1− αλk)2

(1 + α2λ2k)n
≤ q(ε) < 1.

∥∥∥∥∥∥

ε∫

0

(1− αλk)2n

(1 + α2λ2k)n
dEλv

∥∥∥∥∥∥
≤

∥∥∥∥∥∥

ε∫

0

dEλv

∥∥∥∥∥∥
= ‖Eεv‖ → 0, ε → 0

owing to integrated spectrum properties [3-4]. Consequently, ‖Gnηv‖ → 0 at
n →∞, η → 0. Lemma 1 is proved. 2

The convergence condition for method (3) is given by
Theorem 1. Let A = A∗ ≥ 0, Aη = A∗η ≥ 0, ‖Aη − A‖ ≤ η, Sp(Aη) ⊆ [0,M ],
(0 < η ≤ η0), α > 0, y ∈ R(A), ‖y − yδ‖ ≤ δ and conditions (5), (7), (8)
be satis�ed. Let us choose parameter n = n(δ, η) in approximation (3) so that
(δ + η)n1/k(δ, η) → 0 at n(δ, η) → ∞, δ → 0, η → 0. Then xn(δ,η) → x∗ at
δ → 0, η → 0.

Proof. According to (4) we have xn = gn(Aη)yδ. Then
xn − x∗ = gn(Aη)yδ − x∗ = −Gnηx

∗ + Gnηx
∗ + gn(Aη)yδ − x∗ =

= −Gnηx
∗+(E−Aηgn(Aη))x∗+gn(Aη)yδ−x∗ = −Gnηx

∗+gn(Aη)(yδ−Aηx
∗).

Condition (5) being as follows ‖gn(Aη)‖ ≤ sup
0≤λ≤M

|gn(λ)| ≤ γn1/k, then

‖yδ −Aηx
∗‖ ≤ ‖yδ − y‖+ ‖y −Aηx

∗‖ =

= ‖yδ − y‖+ ‖Ax∗ −Aηx
∗‖ ≤ δ + ‖A−Aη‖‖x∗‖ ≤ δ + η‖x∗‖.

Consequently,
‖xn(δ,η)−x∗‖ ≤ ‖Gnηx

∗‖+‖gn(Aη)(yδ−Aηx
∗)‖ ≤ ‖Gnηx

∗‖+γn1/k(δ+η‖x∗‖).
As appears from Lemma 1, ‖Gnηx

∗‖ → 0 at n → ∞, η → 0, and according
to the condition of Theorem 1, n1/k(δ + η) → 0 at δ → 0, η → 0. Thus,
‖xn(δ,η) − x∗‖ → 0, δ → 0, η → 0. Theorem 1 is proved. 2

Theorem 2. Let A = A∗ ≥ 0, Aη = A∗η ≥ 0, ‖Aη − A‖ ≤ η, Sp(Aη) ⊆ [0,M ],
(0 < η ≤ η0), α > 0, y ∈ R(A), ‖yδ − y‖ ≤ δ and conditions (5), (6) be
satis�ed. If the exact solution is source representable, i.e. x∗ = Asz, s > 0,
‖z‖ ≤ ρ, then error estimation is equitable
‖xn(δ,η) − x∗‖ ≤ γ0csη

min(1,s)ρ + γsn
−s/kρ + γn1/k(δ + η‖x∗‖), 0 < s < ∞.

Proof. Using the source representability of the exact solution we have
‖Gnηx

∗‖ = ‖GnηA
sz‖ ≤ ‖Gnη(As −As

η)z‖+ ‖GnηA
s
ηz‖ ≤

≤ γ0csη
min(1,s)ρ + γsn

−s/kρ,
(9)
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as according to Lemma 1.1 [5, p. 91] ‖As
η−As‖ ≤ csη

min(1,s), cs = const, (cs ≤ 2
for 0 < s ≤ 1). Then
‖xn(δ,η)−x∗‖ ≤ γ0csη

min(1,s)ρ+γsn
−s/kρ+γn1/k(δ+η‖x∗‖), 0 < s < ∞. (10)

Theorem 2 is proved. 2

If the right side of estimation (10) is minimized by n, we get the meaning of
a priori stop moment:

nopt =
[

sγsρ

γ (δ + ‖x∗‖η)

]k/(s+1)

= dsρ
k/(s+1) [δ + η‖x∗‖]−k/(s+1) ,

where ds =
(

sγs

γ

)k/(s+1)

=
( s

2k

)(s+k)/(s+1)
α−1e−s/(s+1). Consequently,

nopt =
( s

2k

)(s+k)/(s+1)
α−1e−s/(s+1)ρk/(s+1) [δ + η‖x∗‖]−k/(s+1) .

Let us substitute nopt in estimation (10) to get

‖xn(δ,η) − x∗‖opt ≤ γ0csη
min(1,s)ρ + γsρ

(
dsρ

k/(s+1)
)−s/k

(δ + η‖x∗‖)s/(s+1) +

+γ (δ + η‖x∗‖) d1/k
s ρ1/(s+1) (δ + η‖x∗‖)−1/(s+1) =

= γ0csη
min(1,s)ρ + (δ + η‖x∗‖)s/(s+1)

(
d−s/k

s γsρ
1/(s+1) + γd1/k

s ρ1/(s+1)
)

=

= γ0csη
min(1,s)ρ + ρ1/(s+1)c′s (δ + η‖x∗‖)s/(s+1) ,

where
c′s = d−s/k

s γs + γd1/k
s =

(
s1/(s+1) + s−s/(s+1)

)
γs/(s+1)γ1/(s+1)

s =

=
( s

2k

)s(1−k)/(k(s+1))
(1 + s)e−s/(k(s+1)).

Hence
‖xn(δ,η) − x∗‖opt ≤ csη

min(1,s)ρ+

+
( s

2k

)s(1−k)/(k(s+1))
(1 + s)e−s/(k(s+1))ρ1/(s+1) (δ + η‖x∗‖)s/(s+1) .

Note. Optimal error estimation does not depend on α, whereas nopt depends
on α. Since there are no contingencies concerning α upwards (α > 0), it is
possible to choose α so as to make nopt = 1. For that it is enough to take

αopt =
( s

2k

)(s+k)/(s+1)
e−s/(s+1)ρk/(s+1) [δ + η‖x∗‖]−k/(s+1) .

3. The case of nonself-adjoint operators
In case of nonself-adjoint problem iteration method (3) will be presented as

[
E + α2(A∗ηAη)2k

]
xn+1 =

[
E − α(A∗ηAη)k

]2
xn+

+2α(A∗ηAη)k−1A∗ηyδ, x0 = 0, k ∈ N.
(11)
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It can be written as follows:
xn = gn(A∗ηAη)A∗ηyδ. (12)

It follows from Lemma 1 that

Lemma 2. Let A,Aη ∈ £(H,F ), ‖Aη − A‖ ≤ η, ‖Aη‖2 ≤ M,α > 0 and
conditions (7), (8) be satis�ed. Then

‖Knηv‖ → 0 at n →∞, η → 0, ∀v ∈ N(A)⊥ = R(A∗), (13)

‖K̃nηz‖ → 0 at n →∞, η → 0, ∀z ∈ N(A∗)⊥ = R(A), (14)
where Knη = E −A∗ηAηgn(A∗ηAη), K̃nη = E −AηA

∗
ηgn(AηA

∗
η).

Lemma 2 is used for proving the following theorem.

Theorem 3. Let A,Aη ∈ £(H, F ), ‖A−Aη‖ ≤ η, ‖Aη‖2 ≤ M , (0 < η ≤ η0),
α > 0, y ∈ R(A), ‖yδ − y‖ ≤ δ and conditions (5), (7), (8) be satis�ed.
Parameter n = n(δ, η) is chosen so as to get

(δ + η)2n1/k(δ, η) → 0 at n(δ, η) →∞, δ → 0, η → 0. (15)
Then xn(δ,η) → x∗ at δ → 0, η → 0.

Proof. For approximation error xn(δ,η) we have
xn(δ,η) − x∗ = −Knηx

∗ + gn(A∗ηAη)A∗η(yδ −Aηx
∗). (16)

We see ‖gn(A∗ηAη)A∗η‖ = ‖gn(A∗ηAη)(A∗ηAη)1/2‖ ≤ γ∗n1/(2k), where

γ∗ = sup
n>0

(
n−1/(2k) sup

0≤λ≤M
λ1/2|gn(λ)|

)
≤ 2k1/2α1/(2k) [1, p. 141].

Since ‖yδ−Aηx
∗‖ ≤ ‖yδ−y‖+‖y−Aηx

∗‖ = ‖yδ−y‖+‖Ax∗−Aηx
∗‖ ≤ δ+η‖x∗‖,

it follows that ‖gn(A∗ηAη)A∗η(yδ−Aηx
∗)‖ ≤ 2k1/2α1/(2k)n1/(2k)(δ+‖x∗‖η). That

is why
‖xn(δ,η) − x∗‖ ≤ ‖Knηx

∗‖+ ‖gn(A∗ηAη)A∗η(yδ −Aηx
∗)‖ ≤ ‖Knηx

∗‖+

+2k1/2α1/(2k)n1/(2k)(δ + η‖x∗‖).
Let us show that ‖Knηx

∗‖ → 0 at n →∞, η → 0. Actually,

‖Knηx
∗‖ =

∥∥(E −A∗ηAηgn(A∗ηAη))x∗
∥∥ =

=

∥∥∥∥∥∥∥

‖A∗ηAη‖∫

0

(1− λgn(λ))dEλx∗

∥∥∥∥∥∥∥
=

∥∥∥∥∥∥∥

‖A∗ηAη‖∫

0

(1− αλk)2n

(1 + α2λ2k)n
dEλx∗

∥∥∥∥∥∥∥
≤

≤
∥∥∥∥∥∥

ε∫

0

(1− αλk)2n

(1 + α2λ2k)n
dEλx∗

∥∥∥∥∥∥
+

∥∥∥∥∥∥∥

‖A∗ηAη‖∫

ε

(1− αλk)2n

(1 + α2λ2k)n
dEλx∗

∥∥∥∥∥∥∥
.
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Then∥∥∥∥∥∥∥

‖A∗ηAη‖∫

ε

(1− αλk)2n

(1 + α2λ2k)n
dEλx∗

∥∥∥∥∥∥∥
≤ qn(ε)

∥∥∥∥∥∥∥

‖A∗ηAη‖∫

ε

dEλx∗

∥∥∥∥∥∥∥
→ 0, n →∞,

as for λ ∈ [
ε,

∥∥A∗ηAη

∥∥]
, (1− αλk)2

1 + α2λ2k
≤ q(ε) < 1.

∥∥∥∥∥∥

ε∫

0

(1− αλk)2n

(1 + α2λ2k)n
dEλx∗

∥∥∥∥∥∥
≤

∥∥∥∥∥∥

ε∫

0

dEλx∗

∥∥∥∥∥∥
= ‖Eεx

∗‖ → 0, ε → 0

owing to integrated spectrum properties [3�4].
From statement (15) n1/k(δ + η)2 → 0 at n → ∞, δ → 0, η → 0. Hence

2k1/2α1/(2k)n1/(2k) (δ + η ‖x∗‖) → 0, n →∞, δ → 0, η → 0. Thus,∥∥xn(δ,η) − x∗
∥∥ → 0, n →∞, δ → 0, η → 0.

Theorem 3 is proved. 2

The following is valid
Theorem 4. Let A, Aη ∈ £(H, F ), ‖A−Aη‖ ≤ η, ‖Aη‖2 ≤ M , (0 < η ≤ η0),
α > 0, y ∈ R(A), ‖yδ − y‖ ≤ δ. If the exact solution can be represented
as x∗ = |A|sz, s > 0, ‖z‖ ≤ ρ, |A| = (A∗A)1/2 and conditions (5), (6) are
satis�ed, then estimation error is real

∥∥xn(δ,η) − x∗
∥∥ ≤ γ0cs (1 + | ln η|) ηmin(1,s)ρ+

+γs/2n
−s/(2k)ρ + 2k1/2α1/(2k)n1/(2k) (δ + ‖x∗‖ η) , 0 < s < ∞.

Proof. In case of sourcewise representable exact solution x∗ = |A|sz =
(A∗A)s/2 z owing to (6) we get sup

0≤λ≤M
λs/2|1 − λgn(λ)| ≤ γs/2n

−s/(2k), where

γs/2 =
( s

4kαe

)s/(2k)
. Then

‖Knη|Aη|sz‖ =
∥∥|Aη|s

[
E −A∗ηAηgn

(
A∗ηAη

)]
z
∥∥ =

=
∥∥∥
(
A∗ηAη

)s/2 [
E −A∗ηAηgn

(
A∗ηAη

)]
z
∥∥∥ ≤ γs/2n

−s/(2k)ρ.

Hence
‖Knηx

∗‖ = ‖Knη|A|sz‖ = ‖Knη (|Aη|s − |A|s) z‖+

+ ‖Knη|Aη|sz‖ ≤ γ0cs (1 + | ln η|) ηmin(1,s)ρ + γs/2n
−s/(2k)ρ,

since according to [5, p. 92] we have ‖|Aη|s − |A|s‖ ≤ cs (1 + | ln η|) ηmin(1,s),
cs = const, (cs ≤ 2 for 0 < s ≤ 1). Following (16)

∥∥xn(δ,η) − x∗
∥∥ ≤ ‖Knηx

∗‖+ γ∗n1/(2k) (δ + ‖x∗‖ η) = ‖Knηx
∗‖+

+ 2k1/2α1/(2k)n1/(2k) (δ + ‖x∗‖ η) ≤ γ0cs (1 + | ln η|) ηmin(1,s)ρ+

+ γs/2n
−s/(2k)ρ + 2k1/2α1/(2k)n1/(2k) (δ + ‖x∗‖ η) , 0 < s < ∞.

(17)
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Theorem 4 is proved. 2

By minimizing the right-hand member (17) at n, the meaning of a priori stop
moment is obtained:

nopt =
(

sγs/2

γ∗

)2k/(s+1)

ρ2k/(s+1) (δ + ‖x∗‖ η)−2k/(s+1) =

= (4k)−(s+k)/(s+1)s(2k+s)/(s+1)e−s/(s+1)α−1ρ2k/(s+1) (δ + ‖x∗‖ η)−2k/(s+1) .

The substitution of nopt into estimation (17) allows obtaining the optimal
error estimation for the method of iterations (11)

∥∥xn(δ,η) − x∗
∥∥

opt
≤ γ0cs (1 + | ln η|) ηmin(1,s)ρ+

+ c′′sρ
1/(s+1) (δ + ‖x∗‖ η)s/(s+1) , 0 < s < ∞,

where
c′′s =

(
s1/(s+1) + s−s/(s+1)

)
γ

s/(s+1)
∗ γ

1/(s+1)
s/2 =

= ss(1−2k)/(2k(s+1))(s + 1)(4k)s(k−1)/(2k(s+1))e−s/(2k(s+1)).

To sum it up,∥∥xn(δ,η) − x∗
∥∥

opt
≤ cs (1 + | ln η|) ηmin(1,s)ρ + ss(1−2k)/(2k(s+1))(s + 1)×

×(4k)s(k−1)/(2k(s+1))e−s/(2k(s+1))ρ1/(s+1) (δ + ‖x∗‖ η)s/(s+1) , 0 < s < ∞.
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