2Kypuasn 064uc/oBaabHol 2014 Journal of Computational
Ta MPUKJIQTHOI MATEMATHKA Ne 2 (116) & Applied Mathematics

UDC 519.6+517.983.54

IMPLICIT ITERATION METHOD OF SOLVING
LINEAR EQUATIONS WITH APPROXIMATING
RIGHT-HAND MEMBER AND APPROXIMATELY
SPECIFIED OPERATOR

OLEG MATYSIK

PE3IOME. V riasbepToBOMY MPOCTOPI AOCTIAKYETHCS HESIBHUN METOJT iTepa-
it po3B’sI3yBaHHS JIIHINHUX PIBHSHD 3 HEHETATUBHIM CAMOCIIPSIKEHIM 1 Heca-
MOCIIPSIZKeHUM 0OMexkeHuM omepaTtopoM. JloBemerno 30iKHICTH METOMY Yy BU-
MaJKy armpiopHOro BHOOpY dHCJIA iTepariil y BUXiaHIA HOpMI TiIH6EpTOBOTO
IPOCTOPY, B IIPUIYIIEHH], MO MOXUOKY € He TiILKY B TIPaBiil YaCcTUHI pIBHIHHS,
a it B oneparopi. OTpuMaHO OLIHKK NOXUOKU 1 AllpiOPHUN MOMEHT 3YIIHHKU.
ABSTRACT. The article deals with the study of the implicit method of solving
linear equations with nonnegative self-adjoint and nonself-adjoint limited op-
erator in Hilbert space. It aims at proving the method convergence in case of a
priori choice of the number of iterations in the basic norm of Hilbert space on
the assumption of existing errors not only in the equation right-hand member
but in the operator as well. Error estimation and a priori stop moment are
obtained.

1. PROBLEM STATEMENT
Let H and F be Hilbert spaces and A € £(H,F), i. e. A is a linear
continuous operator functioning from H to F. It is assumed that zero belongs
to operator spectrum A, but it is not its characteristic constant. The following
equation is solved
Ax =y. (1)
The problem of searching for element x € H by element y € F' is incorrect,
for arbitrary small disturbances in the right-hand member y may result in
arbitrary disturbances in solution.
Let us suppose that the accurate development x* € H of equation (1) exists
and is the unique one. We shall search for it with the help of iteration process

(E+ oA"Yz, 1 = (E — aA®)?z, + 204 1y, 20 = 0,k € N, (2)

where F is an identity operator while « is an iteration parameter.

We consider that operator A and the right-hand member of equation (1) are
specified approximately, i.e. approximation ys, ||y — ys|| < ¢ is known instead
of y, and operator A,, ||A — A,|| <n is known instead of operator A. Suppose
0 € Sp(4,),Sp(A,) € [0, M]. Then method (2) will look

(E+ 042A727k):vn+1 =(F - aAfz)zxn + 204A7];_1y5,x0 =0,k € N. (3)

Key words. Regularization, iteration method, incorrect problem, Hilbert space, self-
conjugated and non self-conjugated approximately operator.
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The case of approximate right-member of equation ys and faithful operator
A for the method under consideration (3) has been studied in monograph [1]. It
deals with a priori and a posteriori choice of a regularization parameter and the
case of non-unique solution of problem (1), as well as with proving the method
convergence in Hilbert space energy norm.

Let us prove the method convergence (3) in case of a priori choice of a reg-
ularization parameter in solving the equation A,z = y; with the approximate
operator A, and the approximate right-hand member ys and obtain a priori
estimated errors.

2. THE CASE OF SELF-ADJOINT NONNEGATIVE OPERATORS
Let H equal F', A= A* >0, A, = A >0, Sp(A,) C [0,M], 0 <n < no.
The iteration method (3) will be presented in the following way:

Ty = gn(An)ys, (4)

B (1 _ a)\k)Qn
(1 + a2)\2k)n
conditions for functions g,(\) with a > 0:

where g,(\) = A71 . There have been obtained in [1-2] the

sup |gn(N)| < 0tk y = 2kal/F n > 0, (5)
o< A<M

sup A1 — Agn(N)| < 7sn™*/F . (n > 0),0 < 5 < 00 —( i )S/k (6)
Og)é)kf In > s ) ) y Vs ecve )

(here s is the degree of source representability of exact solution z* = A%z, s >
0, |zl < p),

sup |1_)\gn()\)| §’70770:17n>07 (7)
0<A<M
sup Al — Agn(A)| — 0,n — oo. (8)
0<A<M

The following is valid:

Lemma 1. Let A= A* >0, A, = A} >0, |4, — A|| < n, Sp(4,) C [0, M],
(0 <n < mo), @ >0 and conditions (7), (8) be satisfied. Then ||Gpyv| — 0
atn — oo, 1 — 0 Vv € N(A)* = R(A), where N(A) = {x € H|Az = 0} and
Gny = FE — Apgn(Ay).

Proof. We have
|G| = H(E Angn(Ag))vll =

_ k\2n
_ /(1—)\gn ))dE\v H/ (L= ad") dEw <

£
(1 — aXk)n (1 — a\k)n
/ (11 a2k B | gpamy B -

IN

£
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M (1= a2 M

— n .

/(1+O&2)\2k)ndE>\v <gq (8) /dE)\U — 0,n — o0,
€

€

as for A € [e, M]
(1 — a)k)?
0 1 a2ahyn <q(e) < 1.

£

3
(1 — ak)?n
/ (1+ a2/\2k)ndE/\v < ||/ dExv|| = [|Ecv]| =0, €—0

0
owing to integrated spectrum properties [3-4]. Consequently, ||Gpnyv|| — 0 at
n — 00, n — 0. Lemma 1 is proved. O

The convergence condition for method (3) is given by

Theorem 1. Let A= A* >0, A, = A} >0, |4, — Al <n, Sp(4,
0<n<mn) a>0,ye€ RA), |ly—uys|l <09 and conditions (5
be satisfied. Let us choose parameter n = n(d,n) in approzimation
(6 + n)n*(6,n) — 0 at n(6,n) — o0, § — 0, n — 0. Then Tp(s
0—0,7—0.

) € [0, M],
), (7), (8)
(

) so that

M) T* at

Proof. According to (4) we have x,, = gn(Ay)ys. Then
Tp — zt = gn(AT])y5 -z = _Gnnl'* + Gnnl‘* + gn(An)yé -2t =
= _Gnnx* + (E_Angn(An))x* +gn(A77)y5 -z = _Gnnx* +gn(A77)(y5 _Anx*)'
Condition (5) being as follows [|g,(A4,)]| < sup |gn( V)| < !k, then
0<A<

1ys — Ana™[| < llys — yll + lly — Apz™| =
= llys — yll + |Az" — Ayz™|| <6+ [|[A = Ayllll=*]| < &+ nllz"]].
Consequently,

120 =2 < NGuna® (|4l gn(An) (g5 = Agz )| < [|Grn™ || +yn' /(5 4+nl2*)).

As appears from Lemma 1, ||Gppz*|| — 0 at n — oo, n — 0, and according
to the condition of Theorem 1, n'/¥(§ + ) — 0 at 6 — 0, n — 0. Thus,
|Zn(sy) — 2*[| — 0, § — 0, n — 0. Theorem 1 is proved. O

Theorem 2. Let A= A* >0, A, = A} >0, ||A, — Al <n, Sp(A,) C [0, M],
0<n<m), a>0ye R(A), |lys —yll <0 and conditions (5), (6) be
satisfied. If the exact solution is source representable, i.e. z* = A%z, s > 0,
l|z|l < p, then error estimation is equitable

min(1,s) —s/k

T (5. — 2| < Yocsn p+ s~ Fp+ nt* (S + nllz*]]),0 < s < oo

Proof. Using the source representability of the exact solution we have

[Grnz™ || = |GnnA%2]| < [|Gry(A® — Af])ZH + ||Gm]Af]z|| <

. 9)
/Fp,

min(1,s)

< Yocsm “p 4 ysn
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as according to Lemma 1.1 [5,p. 91] || A7 — A%[| < csn™(L8) el = const, (cs < 2
for 0 < s <1). Then
|2y =27 < yoesn™ ™ ptysn ™ Fppan! M (6 4n]*])),0 < s < co. (10)

Theorem 2 is proved. o
If the right side of estimation (10) is minimized by n, we get the meaning of
a priori stop moment:

S [ 5YsP
PR DT N
P Ly (O [l |n)

57s ) o = (i) I 1 gmsisa)
Y

k
/(stD) o k/(s+1) x11—k/(s+1)
= dsp [6 + nllz™ ] :

. Consequently,

here ds =
where < 5%

s \ (s+k)/(s+1)
e = (31)
Let us substitute nqy in estimation (10) to get

afle*s/(8+1)pk/(s+1) 5+ on*”]—k/(S'*‘l) )

s/k
(& + nlla*|)*/ D 4

|25 — =" llopt < Yoesn™ ™ p + yap (dspk/(ﬁl))
+y ((5 + n”x*H) di/kpl/(erl) (5 + 77||w*H)_1/(8+1) _
= 0ca™ 1)+ (5 + " )0 (d 5yl HD gl g1/ 1)) =

= 'YOCSTZmin(l’s)p + pl/(s+1)cls (5 + "7||x*H)S/(S+1) 7

where
R L (81/(s+1) 4 S—s/(s—l—l)) 3/ 5+ L (s+1)
_ (;{j)S(lk)/(k(erl)) (1 + S)e—s/(k(S—H))_
Hence

@5 — =" llopt < csn™inth) py

s \s(1=k)/(k(s+1))
(32)
Note. Optimal error estimation does not depend on o, whereas nop; depends
on «. Since there are no contingencies concerning o upwards (o > 0), it is
possible to choose a so as to make nopy = 1. For that it is enough to take

(1+s)e/FEFD LR (5 4 |y 4.

s )(S+k)/(s+1) o8/ (1) e/ (s1) [5 4 on*H]*k/(erl) )

Qopt = (%

3. THE CASE OF NONSELF-ADJOINT OPERATORS
In case of nonself-adjoint problem iteration method (3) will be presented as

2
[E + a2(A;;A,7)2’f] ol = [E — a(ALA)F] 2t
+20 (AL A T Atys, w0 =0, k€ N.

(11)
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It can be written as follows:
Ty = gn (AL An) AL Ys- (12)
It follows from Lemma 1 that

Lemma 2. Let A, A, € £(H,F),||A, — Al < n,||4,*> < M,a > 0 and
conditions (7), (8) be satisfied. Then

| Kol — 0 at n — oo,n — 0,Yv € N(A)* = R(A*), (13)
| Kppz|| — 0 at n — oo 17—>0 Vz € N(A*)T = R(A), (14)
where Ky = E — Ay Aygn(ApAy), Kny = E — AyAj gn(AyA7).

Lemma 2 is used for proving the following theorem.

Theorem 3. Let A, A, € £(H,F), ||[A— A, <n, ||4,I> <M, (0<n<n),
a >0,y € RA), |lys —yll < 0 and conditions (5), (7), (8) be satisfied.
Parameter n = n(d,n) is chosen so as to get

(6 4+ n)>n'*(8,m) — 0 at n(6,n) — 00,6 — 0,7 — 0. (15)
Then x5, — «* at 6 — 0, — 0.
Proof. For approximation error ., we have
Ty — 2 = —Kunz™ + gn(A7Ay) A5 (ys — Apz™). (16)
We see [[ga (45 A4y) A5 | = llgn (A5 4y) (A5 A7) 2] < 7enH/ Y, where

Y« = Sup (nl/(%) sup )\1/2|gn()\)> < 2k12aMCR) (1, . 141].
n>0 0<A<M

Since [lys—Apz™|| < llys—yll+lly—Ana™|| = llys—yl|+||Az*— Apa™|| < 640z,
it follows that ||gn (A} Ap) As (ys— Aga®)|| < 2k/20/ Rt/ R (6 4+{|2*||n). That
is why

|n(smy — 21 < ([ Knga™ || + [lgn (A7 An) A3 (ys — Apz™) || < [[ K™ [+

+2kl/2al/(2k)nl/(2k)(5 + on*H)
Let us show that || K,,z*|| — 0 at n — oo, n — 0. Actually,

||Km7$*H = H(E - A;Angn(A;An))x*H =

1454 1454l
* (1 B a}\k)?n *
= (1= Agn(A))dENz™ || = WﬂiEA% <
1 )\k 2n HA:A”H (1 /\k)2n
-« -«
——————dE\z* ——————dE\x"
/ 1+ a2a2kyn AT + / (1 + a2a2kyn AT

[

93



OLEG MATYSIK

Then
145 An | (1 — axkye | Az Ay ||
demﬁ* <q"(¢) / dE\z*|| — 0, n — oo,

€ 5
(1 — ark)?

Trazer <4<t

as for A € [é‘, HA;;AUH]’

£

€
(1-— a)\k)Q” .
/WWk_)ndE/\flf* < dE)\CU = ”E5$*|| — O, e—0
0

owing to integrated spectrum properties [3—4].

From statement (15) n'/*(6 +n)? — 0 at n — oo, § — 0, n — 0. Hence
2k1/201/ R/ CR) (§ 4 n||z*|) — 0, n — 00, § — 0, n — 0. Thus,

@ — 2| =0, n—o0, 60, -0

Theorem 3 is proved. o
The following is valid

Theorem 4. Let A, A, € L(H,F), |[A— Al <n, |A,]> < M, (0 <5 <mn),
a >0,y € R(A), |lys—yl| < 0. If the exact solution can be represented
as ¥ = |A|°z, s > 0, ||z|| < p, |A] = (A*A)l/2 and conditions (5), (6) are
satisfied, then estimation error is real

Hxn((s,n) — x*H < ~ocs (1 + |Ing|) ™) oy
a4 2201 P (5.4 [l2¥| ), 0 < 5 < oo

Proof. In case of sourcewise representable exact solution z* = |A|*z =
(A*A)S/Qz owing to (6) we get sup A/2|1 — Ag,(\)| < vs/gn*‘*/(%), where

0<ASM
s \s/(2k)
T = 4kae) . Then
K2 = 14l [ ~ A (1500 ] =
= H (A;An)8/2 [E— AL Angn (A;An)] z“ < 75/2n—5/(2k)p_
Hence

oyl = | Knnl A2l = 1oy (145]° ~ A1) 2] +
+ ||an7‘An|SZ|| = I (]_ + ‘ lnn|) nmln(l’s)p + ’YS/QTL_S/(Qk)p’

since according to [5, p. 92] we have [[|4,[* — |A]*|| < cs (14 |Inn|) pmints),
cs = const, (cs <2 for 0 < s <1). Following (16)

[Zn(om — || < 1Kz || + 7.n'/ @) (6 + ¥ n) = | Kpp* || +
+ 2120l PRI CR) (5 4 [l ) < yoes (14 Innl) p™ ) pt (17)
+ 7m0 p 4 2k 12 R CR) (5 1 12| ), 0 < s < 0.
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Theorem 4 is proved. O
By minimizing the right-hand member (17) at n, the meaning of a priori stop
moment is obtained:

749\ 2K/ (D)
e = (T ) D (5 )

_ (4k)—(s+k)/(s+1)S(2k+s)/(5+1)e—s/(s—i-l)a—lka/(s-‘rl) (5 + H{B*H n)—?k/(s—H) )
The substitution of nyy into estimation (17) allows obtaining the optimal
error estimation for the method of iterations (11)

|Zn(s.m) — x*HOpt < s (14 [Tn|) ™m0 oy

+ T (5 4 2 )Y 0 < s < oo,

where

= (31/(s+1) + st/(s+1)> ’Yi/(sﬂ)’ysl//ésﬂ) _

_ Ss(l—2k)/(2k(s+l))(s + 1)(4k>s(k—l)/(2k(s+l))e—s/(2k(s+l))_
To sum it up,
Hxn(&n) N x*Hopt < cq (1 + ‘ 1I177‘) nmin(Ls)p + 85(1—2k’)/(2k’(s+1))(3 + 1)><

< (43— k(s D) o=/ (GR41) /(1) (5 4 127 )™ D [0 < 5 < oo,
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