# IMPLICIT ITERATION METHOD OF SOLVING <br> LINEAR EQUATIONS WITH APPROXIMATING RIGHT-HAND MEMBER AND APPROXIMATELY SPECIFIED OPERATOR 

Oleg Matysik


#### Abstract

Резюме. У гільбертовому просторі досліджується неявний метод ітерацій розв'язування лінійних рівнянь з ненегативним самоспряженим і несамоспряженим обмеженим оператором. Доведено збіжність методу у випадку апріорного вибору числа ітерацій у вихідній нормі гільбертового простору, в припущенні, що похибки є не тільки в правій частині рівняння, а й в операторі. Отримано оцінки похибки і апріорний момент зупинки. Abstract. The article deals with the study of the implicit method of solving linear equations with nonnegative self-adjoint and nonself-adjoint limited operator in Hilbert space. It aims at proving the method convergence in case of a priori choice of the number of iterations in the basic norm of Hilbert space on the assumption of existing errors not only in the equation right-hand member but in the operator as well. Error estimation and a priori stop moment are obtained.


## 1. Problem statement

Let $H$ and $F$ be Hilbert spaces and $A \in \mathscr{L}(H, F)$, i. e. $A$ is a linear continuous operator functioning from $H$ to $F$. It is assumed that zero belongs to operator spectrum $A$, but it is not its characteristic constant. The following equation is solved

$$
\begin{equation*}
A x=y . \tag{1}
\end{equation*}
$$

The problem of searching for element $x \in H$ by element $y \in F$ is incorrect, for arbitrary small disturbances in the right-hand member $y$ may result in arbitrary disturbances in solution.

Let us suppose that the accurate development $x^{*} \in H$ of equation (1) exists and is the unique one. We shall search for it with the help of iteration process

$$
\begin{equation*}
\left(E+\alpha^{2} A^{2 k}\right) x_{n+1}=\left(E-\alpha A^{k}\right)^{2} x_{n}+2 \alpha A^{k-1} y, x_{0}=0, k \in N \tag{2}
\end{equation*}
$$

where $E$ is an identity operator while $\alpha$ is an iteration parameter.
We consider that operator $A$ and the right-hand member of equation (1) are specified approximately, i.e. approximation $y_{\delta},\left\|y-y_{\delta}\right\| \leq \delta$ is known instead of $y$, and operator $A_{\eta},\left\|A-A_{\eta}\right\| \leq \eta$ is known instead of operator $A$. Suppose $0 \in S p\left(A_{\eta}\right), S p\left(A_{\eta}\right) \subseteq[0, M]$. Then method (2) will look

$$
\begin{equation*}
\left(E+\alpha^{2} A_{\eta}^{2 k}\right) x_{n+1}=\left(E-\alpha A_{\eta}^{k}\right)^{2} x_{n}+2 \alpha A_{\eta}^{k-1} y_{\delta}, x_{0}=0, k \in N \tag{3}
\end{equation*}
$$

[^0]The case of approximate right-member of equation $y_{\delta}$ and faithful operator $A$ for the method under consideration (3) has been studied in monograph [1]. It deals with a priori and a posteriori choice of a regularization parameter and the case of non-unique solution of problem (1), as well as with proving the method convergence in Hilbert space energy norm.

Let us prove the method convergence (3) in case of a priori choice of a regularization parameter in solving the equation $A_{\eta} x=y_{\delta}$ with the approximate operator $A_{\eta}$ and the approximate right-hand member $y_{\delta}$ and obtain a priori estimated errors.

## 2. The case of self-ADJoint nonnegative operators

Let $H$ equal $F, A=A^{*} \geq 0, A_{\eta}=A_{\eta}^{*} \geq 0, S p\left(A_{\eta}\right) \subseteq[0, M], 0<\eta \leq \eta_{0}$. The iteration method (3) will be presented in the following way:

$$
\begin{equation*}
x_{\eta}=g_{n}\left(A_{\eta}\right) y_{\delta} \tag{4}
\end{equation*}
$$

where $g_{n}(\lambda)=\lambda^{-1}\left[1-\frac{\left(1-\alpha \lambda^{k}\right)^{2 n}}{\left(1+\alpha^{2} \lambda^{2 k}\right)^{n}}\right]$. There have been obtained in [1-2] the conditions for functions $g_{n}(\lambda)$ with $\alpha>0$ :

$$
\begin{gather*}
\sup _{0 \leq \lambda \leq M}\left|g_{n}(\lambda)\right| \leq \gamma n^{1 / k}, \gamma=2 k \alpha^{1 / k}, n>0  \tag{5}\\
\sup _{0 \leq \lambda \leq M} \lambda^{s}\left|1-\lambda g_{n}(\lambda)\right| \leq \gamma_{s} n^{-s / k},(n>0), 0<s<\infty, \gamma_{s}=\left(\frac{s}{2 k \alpha e}\right)^{s / k} \tag{6}
\end{gather*}
$$

(here $s$ is the degree of source representability of exact solution $x^{*}=A^{s} z, s>$ $0,\|z\| \leq \rho)$,

$$
\begin{gather*}
\sup _{0 \leq \lambda \leq M}\left|1-\lambda g_{n}(\lambda)\right| \leq \gamma_{0}, \gamma_{0}=1, n>0  \tag{7}\\
\sup _{0 \leq \lambda \leq M} \lambda\left|1-\lambda g_{n}(\lambda)\right| \rightarrow 0, n \rightarrow \infty \tag{8}
\end{gather*}
$$

The following is valid:
Lemma 1. Let $A=A^{*} \geq 0, A_{\eta}=A_{\eta}^{*} \geq 0,\left\|A_{\eta}-A\right\| \leq \eta, S p\left(A_{\eta}\right) \subseteq[0, M]$, $\left(0<\eta \leq \eta_{0}\right), \alpha>0$ and conditions (7), (8) be satisfied. Then $\left\|G_{n \eta} v\right\| \rightarrow 0$ at $n \rightarrow \infty, \eta \rightarrow 0 \forall v \in N(A)^{\perp}=\overline{R(A)}$, where $N(A)=\{x \in H \mid A x=0\}$ and $G_{n \eta}=E-A_{\eta} g_{n}\left(A_{\eta}\right)$.

Proof. We have

$$
\begin{aligned}
\left\|G_{n \eta} v\right\| & =\left\|\left(E-A_{\eta} g_{n}\left(A_{\eta}\right)\right) v\right\|= \\
& =\left\|\int_{0}^{M}\left(1-\lambda g_{n}(\lambda)\right) d E_{\lambda} v\right\|=\left\|\int_{0}^{M} \frac{\left(1-\alpha \lambda^{k}\right)^{2 n}}{\left(1+\alpha^{2} \lambda^{2 k}\right)^{n}} d E_{\lambda} v\right\| \leq \\
& \leq\left\|\int_{0}^{\varepsilon} \frac{\left(1-\alpha \lambda^{k}\right)^{2 n}}{\left(1+\alpha^{2} \lambda^{2 k}\right)^{n}} d E_{\lambda} v\right\|+\left\|\int_{\varepsilon}^{M} \frac{\left(1-\alpha \lambda^{k}\right)^{2 n}}{\left(1+\alpha^{2} \lambda^{2 k}\right)^{n}} d E_{\lambda} v\right\| .
\end{aligned}
$$

$$
\left\|\int_{\varepsilon}^{M} \frac{\left(1-\alpha \lambda^{k}\right)^{2 n}}{\left(1+\alpha^{2} \lambda^{2 k}\right)^{n}} d E_{\lambda} v\right\| \leq q^{n}(\varepsilon)\left\|\int_{\varepsilon}^{M} d E_{\lambda} v\right\| \rightarrow 0, n \rightarrow \infty
$$

as for $\lambda \in[\varepsilon, M]$

$$
\begin{gathered}
\frac{\left(1-\alpha \lambda^{k}\right)^{2}}{\left(1+\alpha^{2} \lambda^{2 k}\right)^{n}} \leq q(\varepsilon)<1 \\
\left\|\int_{0}^{\varepsilon} \frac{\left(1-\alpha \lambda^{k}\right)^{2 n}}{\left(1+\alpha^{2} \lambda^{2 k}\right)^{n}} d E_{\lambda} v\right\| \leq\left\|\int_{0}^{\varepsilon} d E_{\lambda} v\right\|=\left\|E_{\varepsilon} v\right\| \rightarrow 0, \quad \varepsilon \rightarrow 0
\end{gathered}
$$

owing to integrated spectrum properties [3-4]. Consequently, $\left\|G_{n \eta} v\right\| \rightarrow 0$ at $n \rightarrow \infty, \eta \rightarrow 0$. Lemma 1 is proved.

The convergence condition for method (3) is given by
Theorem 1. Let $A=A^{*} \geq 0, A_{\eta}=A_{\eta}^{*} \geq 0,\left\|A_{\eta}-A\right\| \leq \eta, S p\left(A_{\eta}\right) \subseteq[0, M]$, $\left(0<\eta \leq \eta_{0}\right), \alpha>0, y \in R(A),\left\|y-y_{\delta}\right\| \leq \delta$ and conditions (5), (7), (8) be satisfied. Let us choose parameter $n=n(\delta, \eta)$ in approximation (3) so that $(\delta+\eta) n^{1 / k}(\delta, \eta) \rightarrow 0$ at $n(\delta, \eta) \rightarrow \infty, \delta \rightarrow 0, \eta \rightarrow 0$. Then $x_{n(\delta, \eta)} \rightarrow x^{*}$ at $\delta \rightarrow 0, \eta \rightarrow 0$.

Proof. According to (4) we have $x_{n}=g_{n}\left(A_{\eta}\right) y_{\delta}$. Then

$$
x_{n}-x^{*}=g_{n}\left(A_{\eta}\right) y_{\delta}-x^{*}=-G_{n \eta} x^{*}+G_{n \eta} x^{*}+g_{n}\left(A_{\eta}\right) y_{\delta}-x^{*}=
$$

$=-G_{n \eta} x^{*}+\left(E-A_{\eta} g_{n}\left(A_{\eta}\right)\right) x^{*}+g_{n}\left(A_{\eta}\right) y_{\delta}-x^{*}=-G_{n \eta} x^{*}+g_{n}\left(A_{\eta}\right)\left(y_{\delta}-A_{\eta} x^{*}\right)$.
Condition (5) being as follows $\left\|g_{n}\left(A_{\eta}\right)\right\| \leq \sup _{0 \leq \lambda \leq M}\left|g_{n}(\lambda)\right| \leq \gamma n^{1 / k}$, then

$$
\begin{aligned}
\left\|y_{\delta}-A_{\eta} x^{*}\right\| \leq\left\|y_{\delta}-y\right\|+\left\|y-A_{\eta} x^{*}\right\| & = \\
=\left\|y_{\delta}-y\right\|+\left\|A x^{*}-A_{\eta} x^{*}\right\| \leq \delta+\left\|A-A_{\eta}\right\|\left\|x^{*}\right\| & \leq \delta+\eta\left\|x^{*}\right\| .
\end{aligned}
$$

Consequently,
$\left\|x_{n(\delta, \eta)}-x^{*}\right\| \leq\left\|G_{n \eta} x^{*}\right\|+\left\|g_{n}\left(A_{\eta}\right)\left(y_{\delta}-A_{\eta} x^{*}\right)\right\| \leq\left\|G_{n \eta} x^{*}\right\|+\gamma n^{1 / k}\left(\delta+\eta\left\|x^{*}\right\|\right)$.
As appears from Lemma $1,\left\|G_{n \eta} x^{*}\right\| \rightarrow 0$ at $n \rightarrow \infty, \eta \rightarrow 0$, and according to the condition of Theorem $1, n^{1 / k}(\delta+\eta) \rightarrow 0$ at $\delta \rightarrow 0, \eta \rightarrow 0$. Thus, $\left\|x_{n(\delta, \eta)}-x^{*}\right\| \rightarrow 0, \delta \rightarrow 0, \eta \rightarrow 0$. Theorem 1 is proved.

Theorem 2. Let $A=A^{*} \geq 0, A_{\eta}=A_{\eta}^{*} \geq 0,\left\|A_{\eta}-A\right\| \leq \eta, S p\left(A_{\eta}\right) \subseteq[0, M]$, $\left(0<\eta \leq \eta_{0}\right), \alpha>0, y \in R(A),\left\|y_{\delta}-y\right\| \leq \delta$ and conditions (5), (6) be satisfied. If the exact solution is source representable, i.e. $x^{*}=A^{s} z, s>0$, $\|z\| \leq \rho$, then error estimation is equitable

$$
\left\|x_{n(\delta, \eta)}-x^{*}\right\| \leq \gamma_{0} c_{s} \eta^{\min (1, s)} \rho+\gamma_{s} n^{-s / k} \rho+\gamma n^{1 / k}\left(\delta+\eta\left\|x^{*}\right\|\right), 0<s<\infty
$$

Proof. Using the source representability of the exact solution we have

$$
\begin{align*}
\left\|G_{n \eta} x^{*}\right\|=\left\|G_{n \eta} A^{s} z\right\| & \leq\left\|G_{n \eta}\left(A^{s}-A_{\eta}^{s}\right) z\right\|+\left\|G_{n \eta} A_{\eta}^{s} z\right\| \leq \\
& \leq \gamma_{0} c_{s} \eta^{\min (1, s)} \rho+\gamma_{s} n^{-s / k} \rho, \tag{9}
\end{align*}
$$

as according to Lemma $1.1\left[5\right.$, p. 91] $\left\|A_{\eta}^{s}-A^{s}\right\| \leq c_{s} \eta^{\min (1, s)}, c_{s}=$ const, $\left(c_{s} \leq 2\right.$ for $0<s \leq 1$ ). Then

$$
\begin{equation*}
\left\|x_{n(\delta, \eta)}-x^{*}\right\| \leq \gamma_{0} c_{s} \eta^{\min (1, s)} \rho+\gamma_{s} n^{-s / k} \rho+\gamma n^{1 / k}\left(\delta+\eta\left\|x^{*}\right\|\right), 0<s<\infty \tag{10}
\end{equation*}
$$

Theorem 2 is proved.
If the right side of estimation (10) is minimized by $n$, we get the meaning of a priori stop moment:

$$
\begin{gathered}
n_{o p t}=\left[\frac{s \gamma_{s} \rho}{\gamma\left(\delta+\left\|x^{*}\right\| \eta\right)}\right]^{k /(s+1)}=d_{s} \rho^{k /(s+1)}\left[\delta+\eta\left\|x^{*}\right\|\right]^{-k /(s+1)} \\
\text { where } d_{s}=\left(\frac{s \gamma_{s}}{\gamma}\right)^{k /(s+1)}=\left(\frac{s}{2 k}\right)^{(s+k) /(s+1)} \alpha^{-1} e^{-s /(s+1)} . \text { Consequently, } \\
\qquad n_{o p t}=\left(\frac{s}{2 k}\right)^{(s+k) /(s+1)} \alpha^{-1} e^{-s /(s+1)} \rho^{k /(s+1)}\left[\delta+\eta\left\|x^{*}\right\|\right]^{-k /(s+1)}
\end{gathered}
$$

Let us substitute $n_{\text {opt }}$ in estimation (10) to get

$$
\begin{gathered}
\left\|x_{n(\delta, \eta)}-x^{*}\right\|_{o p t} \leq \gamma_{0} c_{s} \eta^{\min (1, s)} \rho+\gamma_{s} \rho\left(d_{s} \rho^{k /(s+1)}\right)^{-s / k}\left(\delta+\eta\left\|x^{*}\right\|\right)^{s /(s+1)}+ \\
+\gamma\left(\delta+\eta\left\|x^{*}\right\|\right) d_{s}^{1 / k} \rho^{1 /(s+1)}\left(\delta+\eta\left\|x^{*}\right\|\right)^{-1 /(s+1)}= \\
=\gamma_{0} c_{s} \eta^{\min (1, s)} \rho+\left(\delta+\eta\left\|x^{*}\right\|\right)^{s /(s+1)}\left(d_{s}^{-s / k} \gamma_{s} \rho^{1 /(s+1)}+\gamma d_{s}^{1 / k} \rho^{1 /(s+1)}\right)= \\
=\gamma_{0} c_{s} \eta^{\min (1, s)} \rho+\rho^{1 /(s+1)} c_{s}^{\prime}\left(\delta+\eta\left\|x^{*}\right\|\right)^{s /(s+1)}
\end{gathered}
$$

where

$$
\begin{gathered}
c_{s}^{\prime}=d_{s}^{-s / k} \gamma_{s}+\gamma d_{s}^{1 / k}=\left(s^{1 /(s+1)}+s^{-s /(s+1)}\right) \gamma^{s /(s+1)} \gamma_{s}^{1 /(s+1)}= \\
=\left(\frac{s}{2 k}\right)^{s(1-k) /(k(s+1))}(1+s) e^{-s /(k(s+1))}
\end{gathered}
$$

Hence

$$
\begin{gathered}
\left\|x_{n(\delta, \eta)}-x^{*}\right\|_{o p t} \leq c_{s} \eta^{\min (1, s)} \rho+ \\
+\left(\frac{s}{2 k}\right)^{s(1-k) /(k(s+1))}(1+s) e^{-s /(k(s+1))} \rho^{1 /(s+1)}\left(\delta+\eta\left\|x^{*}\right\|\right)^{s /(s+1)}
\end{gathered}
$$

Note. Optimal error estimation does not depend on $\alpha$, whereas $n_{\text {opt }}$ depends on $\alpha$. Since there are no contingencies concerning $\alpha$ upwards $(\alpha>0)$, it is possible to choose $\alpha$ so as to make $n_{o p t}=1$. For that it is enough to take

$$
\alpha_{o p t}=\left(\frac{s}{2 k}\right)^{(s+k) /(s+1)} e^{-s /(s+1)} \rho^{k /(s+1)}\left[\delta+\eta\left\|x^{*}\right\|\right]^{-k /(s+1)}
$$

## 3. The case of nonself-AdJoint operators

In case of nonself-adjoint problem iteration method (3) will be presented as

$$
\begin{array}{r}
{\left[E+\alpha^{2}\left(A_{\eta}^{*} A_{\eta}\right)^{2 k}\right] x_{n+1}=\left[E-\alpha\left(A_{\eta}^{*} A_{\eta}\right)^{k}\right]^{2} x_{n}+}  \tag{11}\\
+2 \alpha\left(A_{\eta}^{*} A_{\eta}\right)^{k-1} A_{\eta}^{*} y_{\delta}, \quad x_{0}=0, k \in N
\end{array}
$$

It can be written as follows:

$$
\begin{equation*}
x_{n}=g_{n}\left(A_{\eta}^{*} A_{\eta}\right) A_{\eta}^{*} y_{\delta} \tag{12}
\end{equation*}
$$

It follows from Lemma 1 that
Lemma 2. Let $A, A_{\eta} \in £(H, F),\left\|A_{\eta}-A\right\| \leq \eta,\left\|A_{\eta}\right\|^{2} \leq M, \alpha>0$ and conditions (7), (8) be satisfied. Then

$$
\begin{align*}
& \left\|K_{n \eta} v\right\| \rightarrow 0 \text { at } n \rightarrow \infty, \eta \rightarrow 0, \forall v \in N(A)^{\perp}=\overline{R\left(A^{*}\right)}  \tag{13}\\
& \left\|\tilde{K}_{n \eta} z\right\| \rightarrow 0 \text { at } n \rightarrow \infty, \eta \rightarrow 0, \forall z \in N\left(A^{*}\right)^{\perp}=\overline{R(A)} \tag{14}
\end{align*}
$$

where $K_{n \eta}=E-A_{\eta}^{*} A_{\eta} g_{n}\left(A_{\eta}^{*} A_{\eta}\right), \tilde{K}_{n \eta}=E-A_{\eta} A_{\eta}^{*} g_{n}\left(A_{\eta} A_{\eta}^{*}\right)$.
Lemma 2 is used for proving the following theorem.
Theorem 3. Let $A, A_{\eta} \in £(H, F),\left\|A-A_{\eta}\right\| \leq \eta,\left\|A_{\eta}\right\|^{2} \leq M,\left(0<\eta \leq \eta_{0}\right)$, $\alpha>0, y \in R(A),\left\|y_{\delta}-y\right\| \leq \delta$ and conditions (5), (7), (8) be satisfied. Parameter $n=n(\delta, \eta)$ is chosen so as to get

$$
\begin{equation*}
(\delta+\eta)^{2} n^{1 / k}(\delta, \eta) \rightarrow 0 \text { at } n(\delta, \eta) \rightarrow \infty, \delta \rightarrow 0, \eta \rightarrow 0 \tag{15}
\end{equation*}
$$

Then $x_{n(\delta, \eta)} \rightarrow x^{*}$ at $\delta \rightarrow 0, \eta \rightarrow 0$.
Proof. For approximation error $x_{n(\delta, \eta)}$ we have

$$
\begin{equation*}
x_{n(\delta, \eta)}-x^{*}=-K_{n \eta} x^{*}+g_{n}\left(A_{\eta}^{*} A_{\eta}\right) A_{\eta}^{*}\left(y_{\delta}-A_{\eta} x^{*}\right) \tag{16}
\end{equation*}
$$

We see $\left\|g_{n}\left(A_{\eta}^{*} A_{\eta}\right) A_{\eta}^{*}\right\|=\left\|g_{n}\left(A_{\eta}^{*} A_{\eta}\right)\left(A_{\eta}^{*} A_{\eta}\right)^{1 / 2}\right\| \leq \gamma_{*} n^{1 /(2 k)}$, where

$$
\gamma_{*}=\sup _{n>0}\left(n^{-1 /(2 k)} \sup _{0 \leq \lambda \leq M} \lambda^{1 / 2}\left|g_{n}(\lambda)\right|\right) \leq 2 k^{1 / 2} \alpha^{1 /(2 k)}[1, p .141] .
$$

Since $\left\|y_{\delta}-A_{\eta} x^{*}\right\| \leq\left\|y_{\delta}-y\right\|+\left\|y-A_{\eta} x^{*}\right\|=\left\|y_{\delta}-y\right\|+\left\|A x^{*}-A_{\eta} x^{*}\right\| \leq \delta+\eta\left\|x^{*}\right\|$, it follows that $\left\|g_{n}\left(A_{\eta}^{*} A_{\eta}\right) A_{\eta}^{*}\left(y_{\delta}-A_{\eta} x^{*}\right)\right\| \leq 2 k^{1 / 2} \alpha^{1 /(2 k)} n^{1 /(2 k)}\left(\delta+\left\|x^{*}\right\| \eta\right)$. That is why

$$
\begin{gathered}
\left\|x_{n(\delta, \eta)}-x^{*}\right\| \leq\left\|K_{n \eta} x^{*}\right\|+\left\|g_{n}\left(A_{\eta}^{*} A_{\eta}\right) A_{\eta}^{*}\left(y_{\delta}-A_{\eta} x^{*}\right)\right\| \leq\left\|K_{n \eta} x^{*}\right\|+ \\
+2 k^{1 / 2} \alpha^{1 /(2 k)} n^{1 /(2 k)}\left(\delta+\eta\left\|x^{*}\right\|\right)
\end{gathered}
$$

Let us show that $\left\|K_{n \eta} x^{*}\right\| \rightarrow 0$ at $n \rightarrow \infty, \eta \rightarrow 0$. Actually,

$$
\begin{gathered}
\left\|K_{n \eta} x^{*}\right\|=\left\|\left(E-A_{\eta}^{*} A_{\eta} g_{n}\left(A_{\eta}^{*} A_{\eta}\right)\right) x^{*}\right\|= \\
=\left\|\int_{0}^{\left\|A_{\eta}^{*} A_{\eta}\right\|}\left(1-\lambda g_{n}(\lambda)\right) d E_{\lambda} x^{*}\right\|=\left\|\int_{0}^{\left\|A_{\eta}^{*} A_{\eta}\right\|} \frac{\left(1-\alpha \lambda^{k}\right)^{2 n}}{\left(1+\alpha^{2} \lambda^{2 k}\right)^{n}} d E_{\lambda} x^{*}\right\| \leq \\
\leq\left\|\int_{0}^{\varepsilon} \frac{\left(1-\alpha \lambda^{k}\right)^{2 n}}{\left(1+\alpha^{2} \lambda^{2 k}\right)^{n}} d E_{\lambda} x^{*}\right\|+\left\|\int_{\varepsilon}^{\left\|A_{\eta}^{*} A_{\eta}\right\|} \frac{\left(1-\alpha \lambda^{k}\right)^{2 n}}{\left(1+\alpha^{2} \lambda^{2 k}\right)^{n}} d E_{\lambda} x^{*}\right\| .
\end{gathered}
$$

Then

$$
\left\|\int_{\varepsilon}^{\left\|A_{\eta}^{*} A_{\eta}\right\|} \frac{\left(1-\alpha \lambda^{k}\right)^{2 n}}{\left(1+\alpha^{2} \lambda^{2 k}\right)^{n}} d E_{\lambda} x^{*}\right\| \leq q^{n}(\varepsilon)\left\|\int_{\varepsilon}^{\left\|A_{\eta}^{*} A_{\eta}\right\|} d E_{\lambda} x^{*}\right\| \rightarrow 0, \quad n \rightarrow \infty
$$

as for $\lambda \in\left[\varepsilon,\left\|A_{\eta}^{*} A_{\eta}\right\|\right], \frac{\left(1-\alpha \lambda^{k}\right)^{2}}{1+\alpha^{2} \lambda^{2 k}} \leq q(\varepsilon)<1$.

$$
\left\|\int_{0}^{\varepsilon} \frac{\left(1-\alpha \lambda^{k}\right)^{2 n}}{\left(1+\alpha^{2} \lambda^{2 k}\right)^{n}} d E_{\lambda} x^{*}\right\| \leq\left\|\int_{0}^{\varepsilon} d E_{\lambda} x^{*}\right\|=\left\|E_{\varepsilon} x^{*}\right\| \rightarrow 0, \quad \varepsilon \rightarrow 0
$$

owing to integrated spectrum properties [3-4].
From statement (15) $n^{1 / k}(\delta+\eta)^{2} \rightarrow 0$ at $n \rightarrow \infty, \delta \rightarrow 0, \eta \rightarrow 0$. Hence $2 k^{1 / 2} \alpha^{1 /(2 k)} n^{1 /(2 k)}\left(\delta+\eta\left\|x^{*}\right\|\right) \rightarrow 0, n \rightarrow \infty, \delta \rightarrow 0, \eta \rightarrow 0$. Thus,

$$
\left\|x_{n(\delta, \eta)}-x^{*}\right\| \rightarrow 0, \quad n \rightarrow \infty, \quad \delta \rightarrow 0, \quad \eta \rightarrow 0
$$

Theorem 3 is proved.
The following is valid
Theorem 4. Let $A, A_{\eta} \in £(H, F),\left\|A-A_{\eta}\right\| \leq \eta,\left\|A_{\eta}\right\|^{2} \leq M,\left(0<\eta \leq \eta_{0}\right)$, $\alpha>0, y \in R(A),\left\|y_{\delta}-y\right\| \leq \delta$. If the exact solution can be represented as $x^{*}=|A|^{s} z, s>0,\|z\| \leq \rho,|A|=\left(A^{*} A\right)^{1 / 2}$ and conditions (5), (6) are satisfied, then estimation error is real

$$
\begin{gathered}
\left\|x_{n(\delta, \eta)}-x^{*}\right\| \leq \gamma_{0} c_{s}(1+|\ln \eta|) \eta^{\min (1, s)} \rho+ \\
+\gamma_{s / 2} n^{-s /(2 k)} \rho+2 k^{1 / 2} \alpha^{1 /(2 k)} n^{1 /(2 k)}\left(\delta+\left\|x^{*}\right\| \eta\right), 0<s<\infty
\end{gathered}
$$

Proof. In case of sourcewise representable exact solution $x^{*}=|A|^{s} z=$ $\left(A^{*} A\right)^{s / 2} z$ owing to (6) we get $\sup _{0 \leq \lambda \leq M} \lambda^{s / 2}\left|1-\lambda g_{n}(\lambda)\right| \leq \gamma_{s / 2} n^{-s /(2 k)}$, where $\gamma_{s / 2}=\left(\frac{s}{4 k \alpha e}\right)^{s /(2 k)}$. Then

$$
\begin{gathered}
\left\|K_{n \eta}\left|A_{\eta}\right|^{s} z\right\|=\left\|\left|A_{\eta}\right|^{s}\left[E-A_{\eta}^{*} A_{\eta} g_{n}\left(A_{\eta}^{*} A_{\eta}\right)\right] z\right\|= \\
=\left\|\left(A_{\eta}^{*} A_{\eta}\right)^{s / 2}\left[E-A_{\eta}^{*} A_{\eta} g_{n}\left(A_{\eta}^{*} A_{\eta}\right)\right] z\right\| \leq \gamma_{s / 2} n^{-s /(2 k)} \rho .
\end{gathered}
$$

Hence

$$
\begin{gathered}
\left\|K_{n \eta} x^{*}\right\|=\left\|K_{n \eta}|A|^{s} z\right\|=\left\|K_{n \eta}\left(\left|A_{\eta}\right|^{s}-|A|^{s}\right) z\right\|+ \\
+\left\|K_{n \eta}\left|A_{\eta}\right|^{s} z\right\| \leq \gamma_{0} c_{s}(1+|\ln \eta|) \eta^{\min (1, s)} \rho+\gamma_{s / 2} n^{-s /(2 k)} \rho
\end{gathered}
$$

since according to $\left[5\right.$, p. 92] we have $\left\|\left|A_{\eta}\right|^{s}-|A|^{s}\right\| \leq c_{s}(1+|\ln \eta|) \eta^{\min (1, s)}$, $c_{s}=$ const, $\left(c_{s} \leq 2\right.$ for $\left.0<s \leq 1\right)$. Following (16)

$$
\begin{align*}
& \left\|x_{n(\delta, \eta)}-x^{*}\right\| \leq\left\|K_{n \eta} x^{*}\right\|+\gamma_{*} n^{1 /(2 k)}\left(\delta+\left\|x^{*}\right\| \eta\right)=\left\|K_{n \eta} x^{*}\right\|+ \\
& +2 k^{1 / 2} \alpha^{1 /(2 k)} n^{1 /(2 k)}\left(\delta+\left\|x^{*}\right\| \eta\right) \leq \gamma_{0} c_{s}(1+|\ln \eta|) \eta^{\min (1, s)} \rho+  \tag{17}\\
& +\gamma_{s / 2} n^{-s /(2 k)} \rho+2 k^{1 / 2} \alpha^{1 /(2 k)} n^{1 /(2 k)}\left(\delta+\left\|x^{*}\right\| \eta\right), \quad 0<s<\infty
\end{align*}
$$

Theorem 4 is proved.
By minimizing the right-hand member (17) at $n$, the meaning of a priori stop moment is obtained:

$$
\begin{gathered}
n_{o p t}=\left(\frac{s \gamma_{s / 2}}{\gamma_{*}}\right)^{2 k /(s+1)} \rho^{2 k /(s+1)}\left(\delta+\left\|x^{*}\right\| \eta\right)^{-2 k /(s+1)}= \\
=(4 k)^{-(s+k) /(s+1)} s^{(2 k+s) /(s+1)} e^{-s /(s+1)} \alpha^{-1} \rho^{2 k /(s+1)}\left(\delta+\left\|x^{*}\right\| \eta\right)^{-2 k /(s+1)}
\end{gathered}
$$

The substitution of $n_{\text {opt }}$ into estimation (17) allows obtaining the optimal error estimation for the method of iterations (11)

$$
\begin{aligned}
\left\|x_{n(\delta, \eta)}-x^{*}\right\|_{o p t} & \leq \gamma_{0} c_{s}(1+|\ln \eta|) \eta^{\min (1, s)} \rho+ \\
& +c_{s}^{\prime \prime} \rho^{1 /(s+1)}\left(\delta+\left\|x^{*}\right\| \eta\right)^{s /(s+1)}, \quad 0<s<\infty
\end{aligned}
$$

where

$$
\begin{gathered}
c_{s}^{\prime \prime}=\left(s^{1 /(s+1)}+s^{-s /(s+1)}\right) \gamma_{*}^{s /(s+1)} \gamma_{s / 2}^{1 /(s+1)}= \\
=s^{s(1-2 k) /(2 k(s+1))}(s+1)(4 k)^{s(k-1) /(2 k(s+1))} e^{-s /(2 k(s+1))}
\end{gathered}
$$

To sum it up,

$$
\begin{aligned}
& \left\|x_{n(\delta, \eta)}-x^{*}\right\|_{o p t} \leq c_{s}(1+|\ln \eta|) \eta^{\min (1, s)} \rho+s^{s(1-2 k) /(2 k(s+1))}(s+1) \times \\
& \times(4 k)^{s(k-1) /(2 k(s+1))} e^{-s /(2 k(s+1))} \rho^{1 /(s+1)}\left(\delta+\left\|x^{*}\right\| \eta\right)^{s /(s+1)}, 0<s<\infty .
\end{aligned}
$$

## Bibliography

1. Matysik O. V. Explicit and implicit iteration procedures of solving ill-posed problems / O. V. Matysik. - Brest: BrSU named after A. S. Pushkin, 2014. -- 213 p. (in Russian).
2. Matysik O. V. The implicit iterative method of solving operator equations of first kind in Hilbert space / O. V. Matysik // Reports of National Academy of Sciences.-- 2012. -Vol. 56, No 6. -- P. 28-33. (In Russian).
3. Kantorovich L. V. Functional analysis in normalized spaces / L. V. Kantorovich, G. P. Aki-lov.-- Moscow: Phismathgiz, 1959.-680 p. (in Russian).
4. Lyusternik L. A. Elements of functional analysis / L. A. Lyusternik, V.I. Sobolev.-Moscow: Nauka, 1965.-- 520 p. (in Russian).
5. Vainikko G. M. Iteration procedures in ill-posed problems / G. M. Vainikko, A. Yu. Ve-retennikov.-- Moscow: Nauka, 1986.-- 178 p. (in Russian).

Oleg Matysik, Brest State University named after A. S. Pushkin, 21, Kosmonavtov Boulevard, Brest, 224016, Belarus

Received 21.05.2014


[^0]:    Key words. Regularization, iteration method, incorrect problem, Hilbert space, selfconjugated and non self-conjugated approximately operator.

