УДК 517.956

КОРРЕКТНОСТЬ ЗАДАЧИ ДИРИХЛЕ В ЦИЛИНДРИЧЕСКОЙ ОБЛАСТИ ДЛЯ ВЫРОЖДАЮЩЕГОСЯ МНОГОМЕРНОГО ЭЛЛИПТИКО-ПАРАБОЛИЧЕСКОГО УРАВНЕНИЯ

С. А. Алдашев

РЕЗЮМЕ. В работе для модельного вырождающегося многомерного эллиптико-параболического уравнения показана однозначная разрешимость и получен явный вид классического решения задачи Дирихле в цилиндрической области.

В данной работе для модельного вырождающегося многомерного эллиптико-параболического уравнения доказана однозначная разрешимость и получен явный вид классического решения задачи Дирихле в цилиндрической области.

Для общих эллиптико-параболическких уравнений второго порядка постановку первой краевой задачи (или задачи Дирихле) впервые осуществил Г. Фикера [1]. Дальнейшее изучение этой задачи приведено в [2].

Пусть $\Omega_{\alpha\beta}$ — цилиндрическая область евклидова пространства E_{m+1} точек $(x_1,...,x_m,t)$, ограниченная цилиндром $\Gamma=\{(x,t):|x|=1\}$, плоскостями $t=\alpha>0$ и $t=\beta<0$, где |x| — длина вектора $x=(x_1,...,x_m)$.

Обозначим через Ω_{α} и Ω_{β} части области $\Omega_{\alpha\beta}$, а через Γ_{α} , Γ_{β} — части поверхности Γ , лежащие в полупространствах t > 0и t < 0; σ_{α} — верхнее, а σ_{β} — нижнее основание области $\Omega_{\alpha\beta}$.

Пусть далее S — общая часть границ областей Ω_{α} , Ω_{β} представляющая множество $\{t=0,\,0<|x|<1\}$ в E_m .

В области $\Omega_{\alpha\beta}$ рассмотрим вырождающееся смешанно эллиптико-параболическое уравнение

$$0 = \begin{cases} t^q \Delta_x u - u_t, \ t > 0, \\ |t|^p \Delta_x u + u_{tt}, \ t < 0, \end{cases}$$
 (1)

где $p,q=const,\, p>0,\, q\geq 0,\, \Delta_x$ — оператор Лапласа по переменным $x_1,...,x_m,\, m\geq 2.$

В дальнейшем нам удобно перейти от декартовых координат $x_1,...,x_m,t$ к сферическим $r,\theta_1,...,\theta_{m-1},t,$ $r{\geq}0,$ $0{\leq}\theta_1{<}2\pi,$ $0{\leq}\theta_i$ \leq $\pi,$ $i{=}2,3,...,m-1,$ $\theta=(\theta_1,...,\theta_{m-1}).$

Определение 1. Найти решение уравнения (1) в области $\Omega_{\alpha\beta}$ при $t \neq 0$ из класса $C(\overline{\Omega}_{\alpha\beta}) \cap C^2(\Omega_{\alpha} \cup \Omega_{\beta})$, удовлетворяющее краевым условиям

$$u\Big|_{\sigma} = \varphi_1(r,\theta), \quad u\Big|_{\Gamma} = \psi_1(t,\theta),$$
 (2)

$$u\Big|_{\Gamma_{\beta}} = \psi_2(t,\theta), \ u\Big|_{\sigma_{\beta}} = \varphi_2(r,\theta).$$
 (3)

Пусть $\{Y_{n,m}^k(\theta)\}$ — система линейно независимых сферических функций порядка $n,\ 1\leq k\leq k_n,\ (m-2)!n!k_n=(n+m-3)!(2n+m-2),\ W_2^l(S),\ l=0,1,...$ — пространства Соболева.

Имеет место ([3])

Лемма 1. Пусть $f(r,\theta) \in W_2^l(S)$. Если $l \geq m-1$, то ряд

$$f(r,\theta) = \sum_{n=0}^{\infty} \sum_{k=1}^{k_n} f_n^k(r) Y_{n,m}^k(\theta),$$
 (4)

а также ряды, полученные из него дифференцированием порядка $p \le l - m + 1$, сходятся абсолютно и равномерно.

Лемма 2. Для того, чтобы $f(r,\theta) \in W_2^l(S)$, необходимо и достаточно, чтобы коэффициенты ряда (4) удовлетворяли неравенствам

$$|f_0^1(r)| \le c_1, \sum_{n=1}^{\infty} \sum_{k=1}^{k_n} n^{2l} |f_n^k(r)|^2 \le c_2, \ c_1, c_2 = const.$$

Через $\bar{\varphi}_{1n}^k(r)$, $\bar{\varphi}_{2n}^k(r)$, $\psi_{1n}^k(t)$, $\psi_{2n}^k(t)$, обозначим коэффициенты разложения ряда (4) по функцям $\varphi_1(r,\theta)$, $\varphi_2(r,\theta)$, $\psi_1(t,\theta)$, $\psi_2(r,\theta)$.

Тогда справедлива

Теорема 1. Если $\varphi_1(r,\theta),\, \varphi_2(r,\theta)\in W_2^l(S),\, \psi_1(t,\theta)\in W_2^l(\Gamma_\alpha),\, \psi_2(t,\theta)\in W_2^l(\Gamma_\beta),\, l>\frac{3m}{2},\, mo$ задача 1 однозначно разрешима.

Доведення. В сферических координатах уравнение (1) в области Ω_{α} имеет вид

$$t^{q}\left(u_{rr} + \frac{m-1}{r}u_{r} - \frac{1}{r^{2}}\delta u\right) - u_{t} = 0,$$
 (5)

$$\delta \equiv -\sum_{i=1}^{m-1} \frac{1}{g_j sin^{m-j-1}\theta_j} \frac{\partial}{\partial \theta_j} \left(sin^{m-j-1} \frac{\partial}{\partial \theta_j} \right), g_1 = 1, g_j = (sin\theta_1...sin\theta_{j-1})^2, j > 1.$$

Известно ([3]), что спектр оператора δ состоит из собственных чисел $\lambda_n=n(n+m--2),\,n=0,1,\ldots$, каждому из которых соответствует k_n ортонормированных собственных функций $Y_{n,m}^k(\theta)$.

Так как искомое решение задачи 1 в области Ω_{α} принадлежит классу $C(\overline{\Omega}_{\alpha}) \cap C^2(\Omega_{\alpha})$, то его можно искать в виде ряда

$$u(r,\theta,t) = \sum_{n=0}^{\infty} \sum_{k=1}^{k_n} \bar{u}_n^k(r,t) Y_{n,m}^k(\theta),$$
 (6)

где $\bar{u}_n^k(r,t)$ — функции, подлежащие определению.

Подставляя (6) в (5), используя ортогональность сферических функций $Y_{n,m}^k(\theta)$ ([3]), будем иметь

$$t^{q}\left(\bar{u}_{nrr}^{k} + \frac{m-1}{r}\bar{u}_{nr}^{k} - \frac{\lambda_{n}}{r^{2}}\bar{u}_{n}^{k}\right) - \bar{u}_{nt}^{k} = 0, \ k = \overline{1, k_{n}}, \ n = 0, 1, \dots,$$
 (7)

КОРРЕКТНОСТЬ ЗАДАЧИ ДИРИХЛЕ В ЦИЛИНДРИЧЕСКОЙ ОБЛАСТИ...

при этом краевое условие (2), с учетом леммы 1, соответственно запишется

$$\bar{u}_n^k(r,\alpha) = \bar{\varphi}_{1n}^k(r), \quad \bar{u}_n^k(1,t) = \psi_{1n}^k(t), \quad k = \overline{1,k_n}, \quad n = 0, 1, \dots$$
 (8)

В (7), (8), произведя замену $\bar{v}_n^k(r,t) = \bar{u}_n^k(r,t) - \psi_{1n}^k(t)$, получим

$$t^{q}\left(\bar{v}_{nrr}^{k} + \frac{m-1}{r}\bar{v}_{nr}^{k} - \frac{\lambda_{n}}{r^{2}}\bar{v}_{n}^{k}\right) - \bar{v}_{nt}^{k} = \overline{f}_{n}^{k}(r,t),\tag{9}$$

$$\bar{v}_{n}^{k}(r,\alpha) = \varphi_{1n}^{k}(r), \quad \bar{v}_{n}^{k}(1,t) = 0, \quad k = \overline{1,k_{n}}, \quad n = 0, 1, \dots,
\bar{f}_{n}^{k}(r,t) = \psi_{1nt}^{k} + \frac{\lambda_{n}t^{q}}{r^{2}}\psi_{1n}^{k}(t), \quad \varphi_{1n}^{k}(r) = \overline{\varphi}_{1n}^{k}(r) - \psi_{1n}^{k}(\alpha).$$
(10)

Произведя замену $\bar{v}_n^k(r,t) = r^{\frac{(1-m)}{2}} v_n^k(r,t)$, задачу (9), (10) приведем к следующей задаче

$$L\upsilon_{n}^{k} \equiv t^{q} \left(\upsilon_{nrr}^{k} + \frac{\bar{\lambda}_{n}}{r^{2}} \upsilon_{n}^{k} \right) - \upsilon_{nt}^{k} = f_{n}^{k}(r, t), \tag{11}$$

$$\upsilon_n^k(r,\alpha) = \widetilde{\varphi}_{1n}^k(r), \ \upsilon_n^k(1,t) = 0, \tag{12}$$

$$v_n^k(r,\alpha) = \widetilde{\varphi}_{1n}^k(r), \ v_n^k(1,t) = 0, \qquad (12)$$

$$\bar{\lambda}_n = \frac{((m-1)(3-m)-4\lambda_n)}{4}, \ f_n^k(r,t) = r^{\frac{(m-1)}{2}} \overline{f}_n^k(r,t), \ \widetilde{\varphi}_{1n}^k(r) = r^{\frac{(m-1)}{2}} \varphi_{1n}^k(r).$$

Решение задачи (11), (12) ищем в виде $\upsilon_n^k(r,t)=\upsilon_{1n}^kr,t+\upsilon_{2n}^k(r,t),$ где $v_{1n}^k(r,t)$ — решение задачи

$$Lv_{1n}^k = f_n^k(r,t), \tag{13}$$

$$v_{1n}^k(r,\alpha) = 0, \ v_{1n}^k(1,t) = 0,$$
 (14)

а $v_{2n}^k(r,t)$ — решение задачи

$$Lv_{2n}^k = 0, (15)$$

$$v_{2n}^k(r,\alpha) = \widetilde{\varphi}_{1n}^k(r), \ v_{2n}^k(1,t) = 0.$$
 (16)

Решение выше указанных задач, рассмотрим в виде

$$v_n^k(r,t) = \sum_{s=1}^{\infty} R_s(r) T_s(t), \qquad (17)$$

при этом пусть

$$f_n^k(r,t) = \sum_{s=1}^{\infty} a_{s,n}^k(t) R_s(r), \ \tilde{\varphi}_{1n}^k(r) = \sum_{s=1}^{\infty} b_{s,n}^k R_s(r).$$
 (18)

Подставляя (17) в (13), (14), с учетом (18), получим

$$R_{srr} + \frac{\bar{\lambda}_n}{r^2} R_s + \mu_{s,n} R_s = 0, \ 0 < r < 1, \tag{19}$$

$$R_s(1) = 0, |R_s(0)| < \infty,$$
 (20)

$$T_{st} + \mu_{s,n} t^q T_s(t) = -a_{s,n}(t), \ 0 < t < \alpha,$$
 (21)

$$T_s(\alpha) = 0. (22)$$

Ограниченным решением задачи (19), (20) является ([4])

$$R_s(r) = \sqrt{r} J_{\nu}(\mu_{s,n} r), \tag{23}$$

где $\nu=n+\frac{(m-2)}{2},\;\mu_{s,n}$ — нули функций Бесселя первого рода $J_{\nu}(z),\,\mu=\mu_{s,n}^2.$ Решением задачи (21), (22) является

$$T_{s,n}(t) = \left(\exp\left(-\frac{\mu_{s,n}^2}{q+1}t^{q+1}\right)\right) \int_{t}^{\alpha} a_{s,n}^k(\xi) \left(\exp\frac{\mu_{s,n}^2}{q+1}\xi^{q+1}\right) d\xi.$$
 (24)

Подставляя (23) в (18), получим

$$r^{-\frac{1}{2}}f_n^k(r,t) = \sum_{s=1}^{\infty} a_{s,n}^k(t)J_{\nu}(\mu_{s,n}r), \ r^{-\frac{1}{2}}\tilde{\varphi}_{1n}^k(r) = \sum_{s=1}^{\infty} b_{s,n}^k J_{\nu}(\mu_{s,n}r), \ 0 < r < 1.$$
(25)

Выражение (25) — разложения в ряды Фурье-Бесселя [5], если

$$a_{s,n}(t) = 2[J_{\nu+1}(\mu_{s,n})]^{-2} \int_{0}^{1} \sqrt{\xi} f_n^k(\xi, t) J_{\nu}(\mu_{s,n}\xi) d\xi,$$
 (26)

$$b_{s,n} = 2[J_{\nu+1}(\mu_{s,n})]^{-2} \int_{0}^{1} \sqrt{\xi} \tilde{\varphi}_{1n}^{k}(\xi) J_{\nu}(\mu_{s,n}\xi) d\xi, \tag{27}$$

 $\mu_{s,n}, s = 1, 2, \dots$ положительные нули функций Бесселя $J_{\nu}(z)$, расположенные в порядке возрастания их величины.

Из (17), (23), (24) получим решение задачи (13), (14)

$$v_{1n}^{k}(r,t) = \sum_{s=1}^{\infty} \sqrt{r} T_{s,n}(t) J_{\nu}(\mu_{s,n}r), \qquad (28)$$

где $a_{s,n}^k(t)$, определяется из (26). Далее, подставляя (17) в (15), (16), с учетом (18), будем иметь задачу

$$T_{st} + \mu_{s,n}^2 t^q T_s = 0, \ 0 < t < \alpha, \ T_s(\alpha) = b_{s,n},$$

решением которой является

$$T_{s,n}(t) = b_{s,n} \exp\left(\frac{\mu_{s,n}^2}{q+1} (\alpha^{q+1} - t^{q+1})\right).$$
 (29)

Из (23), (29) получим

$$v_{2n}^{k}(r,t) = \sum_{s=1}^{\infty} b_{s,n} \sqrt{r} \left(\exp\left(\frac{\mu_{s,n}^{2}}{q+1} (\alpha^{q+1} - t^{q+1}) \right) J_{\nu}(\mu_{s,n} r),$$
 (30)

где $b_{s,n}$ находится из (27).

Следовательно, единственным решением задачи (1), (2) в области Ω_{α} является функция

$$u(r,\theta,t) = \sum_{n=0}^{\infty} \sum_{k=1}^{k_n} \left\{ \psi_{1n}^k(t) + r^{\frac{(1-m)}{2}} \left[\psi_{1n}^k(r,t) + \psi_{2n}^k(r,t) \right] \right\} Y_{n,m}^k(\theta),$$
(31)

где $v_{1n}^k(r,t)$, $v_{2n}^k(r,t)$ определяются из (28), (30).

КОРРЕКТНОСТЬ ЗАДАЧИ ДИРИХЛЕ В ЦИЛИНДРИЧЕСКОЙ ОБЛАСТИ...

Учитывая формулу [5] $2J_{\nu}'(z) = J_{\nu-1}(z) - J_{\nu+1}(z)$, оценки [6,3]

$$J_{\nu}(z) = \sqrt{\frac{2}{\pi z}} \cos\left(z - \frac{\pi}{2}\nu - \frac{\pi}{4}\right) + 0\left(\frac{1}{z^{3/2}}\right), \ \nu \ge 0,$$
$$|k_n| \le c_1 n^{m-2}, \ \left|\frac{\partial^l}{\partial \theta_j^l} Y_{n,m}^k(\theta)\right| \le c_2 n^{\frac{m}{2} - 1 + l}, \ j = \overline{1, m - 1}, \ l = 0, 1, \dots,$$

а также леммы, ограничения на заданные функции $\psi_1(t,\theta)$, $\varphi_1(r,\theta)$, как в [7, 8], можно показать, что полученное решение (31) принадлежит классу $C(\bar{\Omega}_{\alpha}) \cap C^2(\Omega_{\alpha})$.

Далее, из (28), (30), (31) при $t \to +0$ имеем

$$u(r, \theta, t) = \tau(r, \theta) = \sum_{n=0}^{\infty} \sum_{k=1}^{k_n} \tau_n^k(r) Y_{n,m}^k(\theta),$$

$$\tau_n^k(r) = \psi_{1n}^k(0) + \sum_{s=1}^{\infty} r^{\frac{(2-m)}{2}} \left[\int_0^{\alpha} a_{s,n}(\xi) \left(\exp \frac{\mu_{s,n}^2}{q+1} \xi^{q+1} \right) d\xi + b_{s,n} \left(\exp \frac{\mu_{s,n}^2}{q+1} \alpha^{q+1} \right) \right] J_{n+\frac{(m-2)}{2}}(\mu_{s,n}r). \quad (32)$$

Из (26)–(28), (30), а также из лемм вытекает, что $\tau(r,\theta) \in W_2^l(S), \ l > \frac{3m}{2}$. Таким образом, учитывая краевые условия (3) и (32), приходим к задаче Дирихле в области Ω_β для вырождающегося многомерного эллиптического уравнения

$$|t|^p \Delta_x u + u_{tt} = 0 (33)$$

с краевыми условиями

$$u\Big|_{S} = \tau(r,\theta), \quad u\Big|_{\Gamma_{\beta}} = \psi_{2}(t,\theta), \quad u\Big|_{\sigma_{\beta}} = \varphi_{2}(r,\theta),$$
 (34)

которое имеет единственное решение [8].

В [8] приводится явный вид решения задачи (33), (34), поэтому можно записать представление решения и для задачи 1. Теорема доказана.

Литература

- 1. Фикера Г. К единой теории краевых задач для эллиптико-параболических уравнений второго порядка: Сб. переводов. Математика. 1963. Т. 7, №6. С. 99—121.
- 2. Олейник О. А., Радкевич Е. В. Уравнения с неотрицательной характеристической формой. М.: Изд-во Моск. ун-та. 2010.-360 с.
- 3. Михлин С. Г. Многомерные сингулярные интегралы и интегральные уравнения. М.: Физматгиз, 1962.-254 с.
- 4. Камке Э. Справочник по обыкновенным дифференциальным уравнениям. М.: Наука, 1965. 703 с.
- 5. Бейтмен Г., Эрдейи А. Высшие трансцендентные функции. Т. 2 М.: Наука, 1974. 297 с.

- 6. Тихонов А. Н., Самарский А. А. Уравнения математической физики. М: Наука, 1977. 659 с.
- 7. Алдашев С. А. Краевые задачи для многомерных гиперболических и смешанных уравнений. Алматы: Гылым, 1994.-170 с.
- 8. Алдашев С. А. Корректность задачи Дирихле в цилиндрической области для вырождающихся многомерных эллиптических уравнений // Матем. заметки. 2013. Т. 94, вып. 6. С. 936–939.
- 9. Иванов П. Н. Управление нелинейными системами. К
: Науковий світ, 2008. 249 с.
- 10. Петренко С. А. Комп'ютерна модель відстіників промислових відходів. // Міжнародна наукова конференція "Інтелектуальні системи прийняття рішень та проблеми обчислювального експерименту (ISDMCI'2001)", 19–23 травня 2001: матеріали / Євпаторія, Україна. 2001. Т. 1, ч. 3. С. 78–81.

Казахский Национальный Педагогический Университет имени Абая, Алматы, Казахстан

Поступила 01.07.2014