
Æóðíàë îá÷èñëþâàëüíî¨ 2015
òà ïðèêëàäíî¨ ìàòåìàòèêè �2 (119)

Journal of Computational
& Applied Mathematics

UDC 519.642

ABOUT MINIMAL INFORMATIONAL EFFORTS
BY SOLVING EXPONENTIALLY ILL-POSED PROBLEMS

S.G. SOLODKY, E.V. SEMENOVA

Ðåçþìå. Ðîçãëÿäàþòüñÿ ïèòàííÿ iíôîðìàöiéíî¨ ñêëàäíîñòi äëÿ åêñïî-
íåíöiàëüíî íåêîðåêòíèõ çàäà÷. Äîñëiäæåííÿ âèêîíàíi äëÿ iíòåãðàëüíèõ
ðiâíÿíü Ôðåäãîëüìà ïåðøîãî ðîäó ç îïåðàòîðîì ñêií÷åííî¨ ãëàäêîñòi.
Çàïðîïîíîâàíi ïðîåêöiéíi ñõåìè äîçâîëÿþòü äîñÿãòè îïòèìàëüíèé ïîðÿ-
äîê òî÷íîñòi äëÿ àïîñòåðiîðíîãî âèáîðó ïàðàìåòðà ðåãóëÿðèçàöi¨ çà ïðèí-
öèïîì ðiâíîâàãè. Êðiì òîãî òàêèé ïiäõiä çáåðiãà¹ ìiíiìàëüíèé îáñÿã
iíôîðìàöiéíèõ çàòðàò.
Abstract. The issue of informational complexity for exponentially ill-posed
problems is considered. The investigation is performed for Fredholm integral
equations of the �rst kind with �nite-smoothness operators. The proposed
projection method allows to achieve optimal order accuracy for a posteriori
selection of regularization parameter by balancing principle. Moreover such
approach saves minimal volume of informational e�orts.

1. Introduction
Nowadays for numerical method one of the most important issues is re-

duction of informational and computational e�orts while saving approxima-
tion accuracy. These questions are studied in the framework of Informational
Based Complexity Theory founded by J. Traub and H. Wozniakowski (see
e.g. [18], [19]). The basic object of this theory is the information complex-
ity, i.e. minimal amount of discrete information required to solve the problem
with given accuracy. It was found that such amount depends on the smooth-
ness properties of the problem. Particularly, for ill-posed problems presented
by the �rst-kind operator equations Ax = f the relation between smoothness
of operator A and solution x is of primary importance. In the case of moder-
ately ill-posed problems, when A and x are related by means of power function
(i.e. A and x belong to the same smoothness scale), di�erent e�cient numeric
approaches were proposed in [10], [12], [13], [14]. Owing to previous papers
the exact order estimates of informational complexity for wide classes of mod-
erately ill-posed problems (see, for example, [8]) were obtained. At the same
time, much attention is paid to severely ill-posed problems where the solution
has essentially worse smoothness in comparison with that of operator. Usually,
in these cases A and x are related by means of logarithmic function but the
corresponding equations are called exponentially ill-posed problems. For the
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�rst time severely ill-posed problems were considered by B.A. Mair [4]. After-
wards, these investigations were continued by T.Hohage [3], M.Y. Kokurin and
A.B. Bakushinski [2], S.V. Pereverzev and E. Schock [17] and also in [15], [16].

It should be noted that for a long time the issue of improving e�ectiveness of
numerical solving severely ill-posed problems (in sense of IBC theory) was not
considered due to its complicatedness. The �rst step was done in [6], where the
standard Galerkin discretization scheme was used to construct projective meth-
ods for solving di�erent classes of problems including severely ill-posed ones.
However, it was found that this approach does not provide minimal amount of
computational e�orts. Further investigations (see [16]) showed that amount of
discrete information can be reduced in comparison with [6] for exponentially ill-
posed integral equations with �nite-smoothness kernels. It was done in [16] due
to a modi�cation of Galerkin scheme. In the case of a priori choice of regular-
ization parameter it allowed not only to improve results of [6], but also provided
minimal order of information e�orts for mentioned Fredholm equations. The
present paper is devoted to numerical solving exponentially ill-posed problems
as in [16] for the case of a posteriori choice of regularization parameter. It will
be shown that the absence of exact information about smoothness of solution
does not in�uence informational complexity of problems under consideration.

2. Statement of the problem
Consider an integral equation of the �rst kind

Ax = f, (1)
where Ax(t) =

∫ 1
0 a(t, τ)x(τ)dτ, t ∈ [0, 1], is acting continuously in L2 =

L2(0, 1). Suppose that Range(A) is not closed in L2 and f ∈ Range(A).
Assume that instead of f we are given only fδ ∈ L2 such that ‖f − fδ‖ ≤ δ.

Since, solution of problem (1) in general is not unique, we take solution of (1)
with minimal norm in L2 as element for approximation and denote it as x†.

Usually we call the equation (1) as severely ill-posed problem if its solution
has essentially worse smoothness than that of elements from Range(A). As
a rule in such case the solution x† is said to satisfy the source conditions of
logarithmic type and the corresponding equation (1) is called an exponentially
ill-posed problem. To describe the smoothness property of solution we consider
the set of smooth functions Mp(A), which has the form

Mp(A) := {u : u = ln−p(A∗A)−1v, ‖v‖ ≤ ρ}, (2)
where ρ, p > 0 are some positive parameters and A∗ is an adjoint operator to A.
The exact information about smoothness, namely the value of p, is usually not
available by practical experiment. So it should be assumed that the minimal-
norm solution x† belongs to the set

M(A) := ∪p∈(0,p1]Mp(A), (3)
where p1 < ∞ is an upper bound for possible values of p.

For constructing an e�ective numerical method for solving (1) we also need to
describe smoothness properties of A. To this end let consider some orthonormal
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basis {ei(t)}∞1 in L2 and denote by Pm orthogonal projection onto linear span
of elements {ei(t)}m

1 such that

Pmu(t) =
m∑

i=1

(u, ei)ei(t).

Further we introduce the class of operators

Hr
γ =

{
A : ‖A‖ ≤ γ0,

∞∑

n+m=1

â2
n,m(n ·m)2r ≤ γ2

1

}
,

where r > 0, â2
n,m =

∫ 1
0

∫ 1
0 en(t)em(τ)a(t, τ)dτdt, γ0 ≤ e−1, γ = (γ0, γ1), n = 1

if n = 0 and n = n otherwise. As an example of operator from the class
mentioned one can present integral operator A′ that has the same structure as
(1) with kernel a′(t, τ) that has mixed partial derivatives up to order r by each
variables and for i, j = 0, 1, . . . , r it holds true that

∫ 1

0

∫ 1

0

[
∂i+ja′(t; τ)

∂ti∂τ j

]2

dtdτ < ∞.

It is known [7], that there is such set γ = (γ0; γ1) that A′ ∈ Hr
γ . Further we

assume that A ∈ Hr
γ for some values of γ with γ0 ≤ e−1.

Every projection scheme for discretization of equation (1) with perturbed
right-hand side can be associated with a set of following functionals

(Aej , ei), (i, j) ∈ Ω, (4)

(fδ, ek), k ∈ ω, ω = {i : (i, j) ∈ Ω}, (5)
where Ω is a bounded domain in the coordinate plane. The inner products
(4) and (5) are called the Galerkin functionals about equation (1). We de-
note as Card(Ω) the total amount of indexes for (4). Note that in the case
of the Fredholm integral operator A the Galerkin functionals (4) and (5) be-
come the Fourier coe�cients by basis {ei(t)}∞i=1 for the kernel and right-hand
side correspondingly. In the framework of this paper it is assumed that dis-
crete information about equation (1) is given in the view of sets (4) and (5).
Thus the projection methods for solving (1) are more suitable and will be in-
vestigated further. The �rst projection methods for ill-posed problems were
proposed in [12] where rectangle Qn,m = [1, n] × [1,m] was considered as do-
main Ω. Further this approach was improved by [11] due to the reduction of
discretization domain Qn,m (it was replaced by so-called hyperbolic cross) with
saving necessary accuracy of approximation. This idea will be used further for
constructing an economical projection scheme (see section 3).

Further we call any mapping P = P(Ω) : L2 → L2 as projection method that
by means of the set of Galerkin functional (4) gives an element P(AΩ)fδ ∈ L2.
This elements can be interpreted as approximative solution of (1). In general
such mapping can be nonlinear and discontinuous. Let de�ne the error of
projection method P(Ω) for solving (1 ) with A ∈ Hr

γ and x† ∈ M(A) in the
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standard way

eδ

(Hr
γ ,M(A),P(Ω)

)
= sup

A∈Hr
γ

sup
x†∈M(A)

sup
fδ:‖f−fδ‖≤δ

‖x† − P(AΩ)fδ‖.

The minimal radius of Galerkin information we set as

RN,δ

(Hr
γ ,M(A)

)
= inf

Ω,
Card(Ω) ≤ N

inf
P(Ω)

eδ

(Hr
γ ,M(A),P(Ω)

)
,

where N is maximal amount of discrete information (4).
The value RN,δ

(Hr
γ ,M(A)

)
is very important one and describes the minimal

possible error (among the whole projection methods) on all classes of equations
under consideration with using not more than N Galerkin functionals. At
�rst the order bounds for minimal radius of Galerkin information for ill-posed
problems with Holder-type smooth solutions were found by S.V. Pereverzyev
and S.G. Solodky in [8]. Further for di�erent classes of ill-posed problems
the similar bounds were established in [16], [10] and others. Among mentioned
papers we emphasize [16] where the minimal radius of Galerkin information was
found for solving severely ill-posed problems (1) with operators A ∈ Hr

γ and
smooth solutions from (2). In other words, in [16] only a priori case for choosing
regularization parameter was considered. In the present paper we extend the
set of possible solutions up to (3). Thus, we need to introduce a posteriori
way for selecting regularization parameter and correct rule for discretization.
Besides we set the goal to save both the order for minimal radius of Galerkin
information and the accuracy estimation of the projection methods as it is
in [16].

3. Method for solving
A modi�ed projection scheme will be applied for economical discretization

of operator A. The point of such scheme is to take as discretization domain Ω
the hyperbolic cross of the form

Γb,n = {1} × [1; 2bn] ∪k=1
n (2k−1; 2k]× [1; 2bn−k] ⊂ [1; 2n]× [1; 2bn],

where 1 < b ≤ 2, n ∈ N. For simplicity of our computations we consider bn as
the integer number. Then by approximative operator to A we understand the
following �nite-dimensional mapping

An = P1AP2bn +
n∑

k=1

(P2k − P2k−1)AP2bn−k . (6)

Denote by N the total amount of integer pairs (i, j) ∈ Γb,n. It is known (see
[16]) that N := Card(Γb,n) = c′2bnn for 1/2 ≤ c′ ≤ 3/2. The approximation
properties of (6) for the operator class Hr

γ were investigated in [16] and we
rewrite them below. So, for any A ∈ Hr

γ it holds true

‖A∗nAn −A∗A‖ ≤ C12−brn, (7)
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‖(P2nA−An) ln−p(A∗A)−1v‖ ≤ C22−brn

(brn ln 2)p−1
, (8)

where

C1 = γ1 max{γ1, γ0}
[
3 +

22r+1

2r − 1

]
, C2 = γ1ρ(ln 2)−1 2r

r
β(p),

β(p) =
1

p− 1

(
(b− 1)1−p

b1−p
− 1

)
,

for p 6= 1, and β(1) = ln b
b−1 .

Because the problem under consideration is ill-posed we need some regular-
ization method to guarantee stability of approximations. In the framework of
the paper we stabilize equation (1) following [1]. So, we construct an inverse
operator to (1) by means of so-called generating function g(λ). The function
gα(λ) is Borel measurable on the interval [0, γ2

0 ] and the following conditions
are satis�ed

sup
0<λ≤γ2

0

√
λ |gα(λ)| ≤ χ∗√

α
, (9)

sup
0<λ≤γ2

0

|1− λgα(λ)| ln−p λ−1 ≤ χ ln−p 1
α , 0 < p < p1, (10)

where χ, χ∗ are some positive constants independent of α. Then as the approx-
imate solution we take

xδ
α,n = gα(A∗nAn)A∗nP2nfδ. (11)

There are many well-known regularization methods satisfying (9). In particular,
we can mention Tikhonov's method (with gα(λ) = (α + λ)−1), Landweber's
method (with gα(λ) = λ−1[1 − (1 − µλ)1/α], 0 < µ < 2), and Showalter's
method (with gα(λ) = λ−1(1− exp(−λ/α))).

In the paper [16] the error bound for (11) was found. For completeness we
rewrite the stretch of proof.
Theorem 1 ( [16]). Let approximate solution has the form (11). Then on the
class of equations (1) with A ∈ Hr

γ , x† ∈ Mp(A) for any p > 0 the following
holds true
‖x† − xn

α,δ‖ ≤ (12)
≤ χρ ln−p 1

α + χ∗√
α

[
δ + ‖(P2nA−An) ln−p(A∗A)−1v‖] +(13)

+χρC3 ln−p ‖A∗A−A∗nAn‖−1, (14)

where C3 =

{
1, 0 < p ≤ 1
1 + 4(5p)p, p > 1

.

Proof. The error for (11) can be divided onto two terms
x† − xn

α,δ := x† − gα(A∗nAn)A∗nP2nfδ =

= (x† − gα(A∗nAn)A∗nP2nf) + gα(A∗nAn)A∗nP2n(f − fδ). (15)
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Owing to (9) we estimate the second term as following

‖gα(A∗nAn)A∗nP2n(f − fδ)‖ ≤ χ∗δ√
α

.

The �rst term we rewrite as
x† −gα(A∗nAn)A∗nP2nAx† =

= x† − gα(A∗nAn)A∗nAnx + gα(A∗nAn)A∗n(An − P2nA)x† =
= [ln−p(A∗nAn)−1v − gα(A∗nAn)A∗nAn ln−p(A∗nAn)−1v] +

+(I − gα(A∗nAn)A∗nAn)(ln−p(A∗A)−1v − ln−p(A∗nAn)−1v) +
+gα(A∗nAn)A∗n(An − P2nA)x†. (16)

Then by (9) we immediately get
‖x† −gα(A∗nAn)A∗nP2nf‖ ≤

≤ χρ ln−p 1
α + χ∗√

α
‖(An − P2nA)x†‖+

+‖(I − gα(A∗nAn)A∗nAn)(ln−p(A∗A)−1v − ln−p(A∗nAn)−1v)‖ ≤
≤ χρ ln−p 1

α + χ∗√
α
‖(P2nA−An)x†‖+

+χ‖ ln−p(A∗A)−1v − ln−p(A∗nAn)−1v‖.
Using the following relation (see [5, Theorem 4])∣∣∣∣ln−p 1

s
− ln−p 1

t

∣∣∣∣ ≤ C3 ln−p |s− t|−1,

where |s− t| < e−1 for s, t ∈ (0; e−1], we have
‖x† −xn

α,δ‖ ≤
≤ χρ ln−p 1

α + χ∗√
α

[
δ + ‖(P2nA−An) ln−p(A∗A)−1v‖] +

+χC3ρ ln−p ‖A∗A−A∗nAn‖−1,

that has to be proved. 2

Remark 9. Let consider the function β(p) which is included in the bound (8).
The analysis of behavior of β(p) shows that it is continuous monotonically in-
creasing function. Thus we have that for all 0 < p ≤ p1 the following inequality
holds true

β(p) ≤ β(p1) =

{
1

p1−1

(
(b−1)1−p1

b1−p1
− 1

)
, p1 6= 1,

ln b
b−1 , p1 = 1.

To minimize the error bound (12) we take discretization parameter n accord-
ing to the rule

(br ln 2)n2−brn = δ. (17)
The equality means that as discretization value n we take the number which
is rounded up to solution of (17). Taking into account (17) and remark 9 the
estimations (7) and (8) can be rewritten in the following way

‖A∗nAn −A∗A‖ ≤ C1δ, (18)

95



S.G. SOLODKY, E.V. SEMENOVA

‖(P2nA−An) ln−p(A∗A)−1v‖ ≤ C4δ, (19)
where C4 = γ1ρ(ln 2)−1 2r

r β(p1).
Due to (18) and (19) the error bound (12) can be represented as follows

‖x† − xn
α,δ‖ ≤ χρ ln−p 1

α
+ χ∗(1 + C4)

δ√
α

+ χC3ρ ln−p(C1δ)−1. (20)

Obviously, that for α0 = ln(δ−1)(C1δ)2 we have

ln−p(C1δ)−1 = 2p ln−p
(
ln(δ−1)(ln(δ−1)C2

1δ2)−1
)

= 2p ln−p
(
ln(δ−1)(α0)−1

)
.

In this way for all α ≥ α0 it holds true that

ln−p α−1 ≥ ln−p α−1
0 >

1
2p

ln−p(C1δ)−1.

Let denote by η1(α) = C5 ln−p 1
α and η2(α) = C6

δ√
α
, where C5 = χρ+χC3ρ2p

and C6 = χ∗(1 + C4). Thus error bound (20) can be rewritten as follows

‖x† − xn
α,δ‖ ≤ η1(α) + η2(α), (21)

where the functions η1(α) and η2(α) for α → ∞ are monotone increasing and
decreasing convex functions respectively.

4. A posteriori selection of regularization parameter
Fix some real number q > 1 and de�ne by DM the set of possible values for

the parameter α:

DM = {αi = α0(q2)i, i = 1, 2, ..., M},

where α0 = ln(δ−1)(C1δ)2, M =
[

log α−1
0

2 log q

]
. Then according to the balancing

principle (see, for example, [9]) selection of index i+ for parameter α is realized
by the rule

i+ = max{i : αi ∈ D+
M}, (22)

where

D+
M = {αi ∈ DM : ‖xδ

αi,n − xδ
αj ,n‖ ≤ 4η2(αj), j = 1, ..., i}.

Further we introduce the auxiliary values

α∗ := max{αi ∈ DM : η1(αi) ≤ η2(αi)},

α̂ = {αi ∈ DM : η1(αi) = η2(αi)}.
Theorem 2. Let A ∈ Hγ

r and x† ∈ M(A). Then for the projection method
(11), (17), (22) the following error bound

‖x† − xδ
α+,n‖ ≤ 6qη1(α̂) (23)

takes place.

96



ABOUT MINIMAL INFORMATIONAL EFFORTS BY ...

Proof. Let check that α∗ ≤ α+. Due to (21) it holds true that for all α ≤ α∗

‖xδ
α,n−xδ

α∗,n‖ ≤ ‖x†−xδ
α,n‖+‖x†−xδ

α∗,n‖ ≤ η1(α)+η2(α)+η1(α∗)+η2(α∗) ≤
≤ 2η2(α) + 2η2(α∗) ≤ 4η2(α).

Consequently α∗ ∈ D+
M and α∗ ≤ α+.

Taking into account de�nitions of α∗ and α+, from (22) and (21) we have
‖x† − xδ

α+,n‖ ≤ ‖x† − xδ
α∗,n‖+ ‖xδ

α∗,n − xδ
α+,n‖ ≤ 6η2(α∗).

It is evident that α∗ ≤ α̂ ≤ q2α∗ then we �nd
‖x† − xδ

α+,n‖ ≤ 6η2(α∗) = 6qη2(α∗q2) ≤ 6qη2(α̂) = 6qη1(α̂),

which was to be proved. 2

Theorem 3. Let A ∈ Hγ
r and x† ∈ M(A). Then error bound for the projection

method (11), (17), (22) is the following
‖x† − xδ

α+,n‖ ≤ 6qκp ln−p δ−1, (24)
where κp is some constant that does not depend on δ.

Proof. It is easy to �nd that

α̂ ≤
(

C6

C5
δ

) 2
1+2p

,

then from (23) we have

‖x† − xδ
α+,n‖ ≤ 6q ln−p α̂−1 ≤ 6q ln−p

(
c6

c5
δ

)− 2
1+2p

= 6qκp ln−p δ−1. 2

Remark 10. It is well-known (see, for instance [17]) that for severely ill-
posed problems any approximation method guaranteing accuracy O(ln−p δ−1) is
optimal by the order on the whole set of solutions (3). Thus, theorem 3 shows
that our method (11), (22), (17) saves optimal order of accuracy.

5. Minimal radius of Galerkin information
Now we are ready to prove the upper bound for RN,δ

(Hr
γ ,M(A)

)
.

Theorem 4. Let A ∈ Hγ
r and x† ∈ M(A). The parameters n and α for (11)

are chosen according to (17) and (22) respectively. Then for su�ciently small
δ the following inequality

RN,δ

(Hr
γ ,M(A)

) ≤ cp ln−p N2r

holds true where cp = 6qκp

(
r(1−µ)−µ

2r

)−p
and ∀µ : r(1− µ)− µ > 0.

Proof. By virtue of (17) we have
br ln 2(2bnn)−rnr+1 = δ.

Using the relation N = c′2bnn we get
(c′)−r(br ln 2)−1N rn−r−1 = δ−1. (25)
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By evident relation
n ≤ ln N

b ln 2
and (25) we have

δ−1 =
(c′)−rN r

(ln 2)brnr+1
≥ (c′)−rN r(b ln 2)r+1

br ln 2(lnN)r+1
=

(c′)−rN r(b ln 2)r

r(lnN)r+1
. (26)

Starting with some N it is holds true that ln N ≤ Nµ, then for any µ > 0 we
have

N r(b ln 2)r

(c′)rr(lnN)r+1
≥ N r(c′b ln 2)r

(c′)rrNµ(r+1)
= N r−rµ−µ (c′b ln 2)r

(c′)rr
=

= N r
r(1−µ)−µ

r
(c′b ln 2)r

(c′)rr
.

Taking into account the relation above from (26) we have

N r
r(1−µ)−µ

r
(b ln 2)r

(c′)rr
≤ δ−1.

Without loss of generality we suppose that µ : r(1 − µ) − µ > 0. Then taking
logarithm from inequality above one can �nd

r(1− µ)− µ

2r
ln N2r ≤ ln δ−1.

Hence, the error estimation (24) takes the form
‖x† − xδ

α+,n‖ ≤ 6qκp ln−p δ−1 ≤ cp ln−p N2r.

Due to de�nition for RN,δ

(Hr
γ ,M(A)

)
we get

RN,δ

(Hr
γ ,M(A)

) ≤ cp ln−p N2r,

which was to be proved. 2

Theorem 5. Let A ∈ Hγ
r and x† ∈ M(A), then

1
2p+1

ln−p N2r ≤ RN,δ

(Hr
γ ,M(A)

) ≤ cp ln−p N2r,

where N ³ δ−
1
r ln

r+1
r δ−1. Indicated order O(ln−p N2r) is achieved in the frame-

work of projection method (11) , (17), (22).
Proof. It is known (see, for instance [16] ) that for all p > 0 it ful�lls

RN,δ

(Hr
γ ,Mp(A)

) ≥ c̃p ln−p N2r, where c̃p = 2−p−1. By virtue of de�nition for
the sets Mp(A) and M(A) the following inequality holds true

RN,δ

(Hr
γ ,Mp(A)

) ≤ RN,δ

(Hr
γ ,M(A)

)
.

Due to Theorem 4 we immediately get statement of the theorem. 2

Remark 11. From Theorem 5 it follows that our approach gives optimal error
bound with amount of discrete information in the form of Galerkin functionals
(4).
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Remark 12. Let consider the set M ′(A) = ∪p∈[1,p1]Mp(A) ⊂ M(A). If we
assume that x† ∈ M ′(A), then the relation (17) should be replaced by the fol-
lowing

(ln 2)br2−brn = δ, (27)
with saving bounds (18) and (19). As we can see below, such selection of dis-
cretization parameter allows to reduce amount of discrete information by loga-
rithmic multiplier.
Theorem 6. Let A ∈ Hγ

r and x† ∈ M ′(A). The parameters n and α for (11)
are chosen according to (27) and (22) respectively. Then for su�ciently small
δ it holds true

1
2p+1

ln−p N2r ≤ RN,δ

(Hr
γ ,M ′(A)

) ≤ cp ln−p N2r,

where N ³ δ−
1
r ln δ−1.

Proof. The proving of the theorem completely repeats as ones for Theorems
4 and 5. 2

Remark 13. Comparing Theorems 5 and 6 we can conclude that due to restric-
tion of the set of possible solutions we obtain reduction of amount of discrete
information by logarithmic multiplier (compare the values N in both theorems).
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