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DIFFERENCE METHODS
FOR SOLVING INVERSE EIGENVALUE PROBLEM

H.P.YARMOLA

PE3IOME. B po6oti po3risiHyTo obepHeHy 3aJatly Ha BjacHI 3HaveHHs. s
9HCeIHHOTO PO3B’3yBaHHS 33/1a9i 3ACTOCOBAHO METO]T XOP 1 MeTo 1 JIiHIHHOT
inrepnonauii (meron Kypuarosa). Ha sigminy Big merony Heiorona, ni itepa-
IiIHI TPOIECH BUKOPUCTOBYIOTD JIUIIE 3HAYEHHS OTIEPATOPA 3 ABOX MOMEPETHIX
ireparniii Ta He MOTPEOYIOTHh AHAJIITUYHO 33JJAHUX IMOXIJHUX. 3AITPOIIOHOBAHI
MEeTO7 33CTOCOBAHO [JIsI PO3B’ A3y BAHHS O0OEPHEHUX 333 HA BJIACHI 3HAYCHHS
pizHOro tmmy. Posrngmyri iTepamiiiHi mpormecw HOPIBHIOIOTBCE 3 METOIOM
Hpiorona 3a KibKicTIO onepariiil, oTpiOHUX /11 OOUMCTIEHHS TIePIIO] TTOIiTe-
HOI Pi3HMIY Ta HOXiAHOI meTepMiHAHTA.

ABSTRACT. In this paper an inverse eigenvalue problem is considered. Secant
method and method of the linear interpolation (Kurchatov’s method) are
applied for the numerical solution of this problem. Unlike Newton’s method,
these methods use only values of the operator at two previous iterations and
do not require analytical derivatives. Proposed methods are used for solving
different types of inverse eigenvalue problems. Considered iterative processes
are compared with the Newton’s method by the number of operations required
to compute the first divided difference and derivative of determinant.

1. INTRODUCTION

An inverse eigenvalue problem (IEP) is to determine a matrix from a given
spectral data. These problems arise in many applications, including control
design, system identification, structure analysis and so on. There are special
cases of inverse eigenvalue problems. Let’s consider the following problems.

General IEP. Let 4; = {a;k} be complex n x n matrices for i = 0,n and
A= (A,..., )T € C". Find the vector p = (p1,p2,...,pn) € C?, such that
matrix

A(p) = Ao+ ZpiAi
i=1

has eigenvalues A1, ..., A,. This problem involves classic partial cases of addi-
tive and multiplicative inverse eigenvalue problems.

Additive TEP. Let A be a given complex n X n matrix and
A= (A1,..., )T € C". Find the diagonal matrix D = diag(p1,p2,...,Pn),
p; € C, i =1,n, such that matrix A + D has eigenvalues A1,..., \,.

Multiplicative IEP. Let A be a given complex n x n matrix and
A= (A1,..., )T € C". Find the diagonal matrix D = diag(p1,p2,...,Pn),
p; € C, i =1,n, such that matrix AD has eigenvalues Ay, ..., Ay,.
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There are a large of literature on conditions for the solvability of inverse
eigenvalue problems, different approaches and numerical methods for its solving
[1-3,6,8]. We use approach, which calculates the zeros of the nonlinear function

det(A(p) — M)

F(p) = ; , (1)
det(A(p) — Aul)

where A1,...,\, are given eigenvalues and \; # \; for ¢ # j.

Vector p = {p1,p2,...,pn}’ € C" is a solution of the inverse eigenvalue

problem if and only if
F(p) =0. (2)

In papers [1,8] the Newton’s method is used for solving systems of nonlinear
equations (2) with F'(p) as (1). It is known that the application of Newton’s
method requires the calculation of the first derivative of determinant at ev-
ery iteration. To calculate this derivative some authors use Trace-Theorem of
Davidenko or LU decomposition of matrix [1,7,8].

In this work we apply difference methods for solving inverse eigenvalue prob-
lem, including Secant method and method of linear interpolation (Kurchatov’s
method), assuming the existence of a solution. These methods do not require
analytical derivatives and can be applied to a wider range of problems.

2. ALGORITHMS OF DIFFERENCE METHODS
A well-known simple difference method for solving nonlinear equations is the
Secant method

pF = pk) — pp=1); pN) =L p(p®)) (3)

with convergence order . An other method is the quadratically conver-

gent Kurchatov’s method
p* ) = p®) — p(2p®) — pt=1); plh=I =L p(p®)), (4)

In formulas (3) and (4) F(z;y) is a divided difference of the first order of F' at
the points x and y. Convergence analysis of difference methods (3) and (4) for
solving nonlinear operator equations was conducted by the authors [4,5,9,10].

Let F' be a nonlinear operator defined on a subset D of a linear space X with
values in a linear space Y and let x, y be two points of D. A linear operator
from X into Y, denoted as F'(x;y), which satisfies the condition

F(z;y)(z —y) = F(x) — F(y)

is called a divided difference of the first order of F' at the points z and y. In the

case of systems of nonlinear equations the divided difference F(x;y) is n X n

matrix. Its elements are calculated by the following formula:
Fi(mlw"7$j7yj+1>"'7yn) _F‘Z’(wlw"axjflaij"ayn)

F(z;y)i; = 5
" i = Y

1,5 =1,n.
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From (1) and the last formula we see that to calculate the elements of vector
F and matrix of divided differences we need to calculate determinants of ma-
trices. To calculate the determinant we apply the LU decomposition of matrix,
as in [7,8]. Let D(A) be a matrix whose elements are functions of A\. Then for
a fixed value A = \,, we can calculate D = LU or PD = LU, where P is a
permutation matrix, det P = (—1)¢, ¢ is a number of permutations and

det D =det LdetU = H Ui (5)
i=1
or n
det D = det Pdet Ldet U = (—1) ] ] wis. (6)
=1

Algorithm of the Secant method for solving IEP.
1. Choose initial approximations p{~ and p(®.
2. For k = 0 until convergence, do:
(a) Compute LU decomposition of matrices D; = A(p) =N\, i =1,n,
D; = A(p') — NI, D; = A(p") — NI, (i,j = 1,n), where

k— k— k
pI: (pg 1)7"‘7 g 1)7 ‘g‘_t,_)lw"?pglk))?
p” = (pgk_l)v R 516__11)7 gk)7 tee 7p1(1k )

(b) Compute F;(p®)) = det(D;), i = 1, n by formula (5) or (6) and form
vector F(pk).
(c) Compute F;(p') = det(D}), Fy(p") = det(D; ), 4, j = T,n by formula
(5) or (6) and form matrix F(p*~1;p®*)) where
F(p(kfl);p(k))m - %7 (i,j =1,n).
p . — 3
J J
(d) Compute p*+1) by the formula (3).
Algorithm of the Kurchatov’s method for solving IEP.
1. Choose initial approximations p{~ and p(®.
2. For k = 0 until convergence, do:
(a) Compute LU decomposition of matrices D; = A(p) =\, i =1,n,
D; = A(p') — NI, D; = A(p") — M, (i,j = 1, n), where

=2 = pl Y, 2pl — p Y R plk ),
p" = 2pt = pit Y, o™ p ) P )y,

(b) Compute Fy(p*)) = det(D;), i = I, n by formula (5) or (6) and form
vector F(pk).
(c) Compute F;(p') = det(D}), Fy(p") = det(D; ), i,j = T,n by formula
(5) or (6) and form matrix F(2p®*) — p=1; p(:=1) where
(ol T (ol

k k—1
2(pl) — pl* )
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(d) Compute p*+1) by the formula (4).

Note, that matrices D;, D;, D;/ can coincide with each other. In this case
LU decomposition and determinant can be calculated only once and thus the
amount of computation is reduced.

Next we consider the computational complexity of proposed algorithms. Let
compute the amount of operations (multiplications and division) required to
compute divided differences. It is known that to get LU decomgosition of
matrix and compute its determinant by formula (5) it is need nih2n =3
operations [7,8]. In the same articles it is shown that to compute the first
derivative of determinant it is required n + n? — n operations.

To compute divided difference of determinant using LU decomposition it is

. 2n4+4n -3 , 2n3 +7n — 3
required ———— operations for Secant method and — s opera-
tions for Kurchatov’s method.

From these assessments we conclude that the difference methods are more
effective than Newton’s method by the amount of calculations in one iteration.
However, the number of iterations for difference methods usually is greater than

for Newton’s method, in particular for the Secant method.

3. NUMERICAL EXPERIMENTS

In this section we present results of Secant and Kurchatov’s methods and
compare with results of Newton’s method. We consider inverse eigenvalue
problems with distinct eigenvalues. All vectors will be written as row-vectors.
To apply the methods (3) and (4) we need to set the additional approxima-
tion p(~. To get good starting values it was chosen in the following way:
p(_l) = p(O) + 107%. The iterations of considered iterative processes were
stopped when [[p*+t) — p®)|| o < e or |F(p*+D))|o0 < &, e = 1077,

Example 3.1 Consider the general inverse eigenvalue problem [1]. Let

n =25,
2 —008 0 0
—0.03 2 —0.08 0 0
Ay = 0 —003 2 —008 0 ,
0 0 —003 2 —0.08
0 0 0 —003 2
1 0 001 —0.02 0.03
n —-0.03 1 0 001 —0.02
R=> rel =| 002 -003 1 0 001
=1 —0.01 0.02 —0.03 1 0

0 —-0.01 0.02 -0.03 1
and A; = rie;fp, 1=1,...,5, where e; — i-th unit vector. The given eigenvalues
are A= (0, 1 — 0,246, 3—0, 4).

Let 6 =0 and p(o) = (-2, —1,0, 1, 2). Then Newton’s method converge to
a solution

p* = (1.99279, 1.00257, 0.00237, —0.99786, —1.99987).
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Using the same starting point p(?), we found a different solution
p* = (—2.00240, —0.99800, 0.00236, 1.00271, 1.99533)

by Secant and Kurchatov’s methods.
Let 6 = 0.441. Then Newton’s method, methods (3) and (4) converge to a
solution

p* = (—1.56910, —1.43181, 0.49205, 0.51127, 1.99758)

with the starting point p(® = (=2, —1, 0, 1, 2). The received results are dis-
played in the Table 1.

TABL. 1. The numerical results for example 3.1

Iterations, k Hp(k) —p(k_l)Hoo HF(p(k))HOO
Newton’s method 10 5.73238 x 10710 | 8.07568 x 10~ 1°
Kurchatov’s method 10 9.88872 x 10~ | 4.12121 x 10715
Secant method 14 2.31415 x 10711 | 8.07565 x 10~ 1°

Example 3.2 Consider an additive inverse eigenvalue problem with distinct
eigenvalues [3]. Here n = 8,

0 4 -1 1 1 5 -1 1
4 0o -1 2 1 4 -1 2
-1 -1 0 3 1 3 -1 3
o =
5) 4 3 2 1 0 -1 6
-1 -1 -1 -1 -1 -1 0 7

1 2 3 4 5 6 7 0
The eigenvalues of the problem 3.2 are \* = (10, 20, 30, 40, 50, 60, 70, 80).

TABL. 2. The numerical results for example 3.2

Secant method | Kurchatov’s method
k 1P™ — p*[l Ip™ — p*[lso
0 8.68150 8.68150
1 2.31065 2.31079
2 1.10171 0.59989
3 0.23738 0.05708
4 0.02958 0.00171
5 0.00085 5.26419 x 106
6 | 4.20674 x 106 5.07569 x 1010
7 16.34913 x 10710

Proposed methods converge to a solution
p* = (11.907888, 19.705522, 30.545498, 40.062657,

51.587140, 64.702131, 70.170676, 71.318499)
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with the starting point p(® = (10, 20, 30, 40, 50, 60, 70, 80). The result was
obtained in 8 (Secant method) and 7 (Kurchatov’s method) iterations. The
nature of the convergence of the considered numerical methods is shown in
Table 2.

Applying difference methods (3) and (4) to this problem with the starting
point p(® = (10, 80, 70, 50, 60, 30, 20, 40) we find the following solution in 7
iterations:

p* = (11.461354, 78.880829, 68.353400, 49.878330,
59.168918, 30.410470, 24.834324, 37.012374).

So, difference methods can be applied for solving inverse eigenvalue problems.
Also these methods are simple in program implementation.
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