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INVARIANCE AND UNIQUENESS OF SOLUTIONS
TO POLYNOMIAL INTERPOLATION PROBLEMS

IN EUCLIDEAN SPACE

O.F.KASHPUR, V.V.KHLOBYSTOV

Ðåçþìå. Â ðîáîòi ðîçãëÿíóòî ðîçâ'ÿçàííÿ çàäà÷i iíòåðïîëÿöi¨ ôóíêöi¨
áàãàòüîõ çìiííèõ â óìîâàõ íåäîâèçíà÷åíîñòi. Îäåðæàíî óìîâè iíâàðiàíò-
íî¨ ðîçâ'ÿçóâàíîñòi òà ¹äèíîñòi ðîçâ'ÿçêó ïîñòàâëåíî¨ çàäà÷i.
Abstract. In this paper we consider solving of the interpolation problem
as applied to many-variable function in the case of under-determinacy. The
condition for invariant resolution and uniqueness of this problem is obtained.

1. Introduction
The fundamentals of general theory of operator's interpolation in abstract

Hilbert spaces have been established in [1-3]. Then the authors also derived the
conditions of invariant solvability for interpolation problems in the event when
the solution is available at some or other operator's values in the nodes. The
issue of convergence of interpolation processes and estimated accuracy of inter-
polation for the case of di�erential operators in Hilbert spaces are considered
in [4].

Let X, Y be Hilbert spaces, µ - a Gaussian measure on X such that its
�rst moment is equal to zero, B - the correlation operator of this measure (B
belonging to trace-class ones), and KerB = ∅ [5, 6]. Assume also that Πn be
the set of operator polynomials Pn : X → Y of n-th power in the form

Πn = {Pn(x) : Pn(x) = L0 + L1x + · · ·+ Lnxn},
where L0 ∈ Y, Lkx

k = Lk(x, x, . . . , x︸ ︷︷ ︸
k

), and Lk(x1, x2, . . . , xk) is the k-linear

continuous symmetric operator form. Now introduce the scalar product on the
set Πn [2]:

(P (1)
n , P (2)

n ) =
n∑

k=0

∫

X
· · ·

∫

X

(
(L(1)

k (v1, v2, . . . , vk),

L
(2)
k (v1, v2, . . . , vk)

)
Y

µ(dv1)µ(dv2) . . . µ(dvk),

where (·, ·)Y is the scalar product in the Y -space, while L
(1)
k and L

(2)
k are k-

linear continuous symmetric operator forms corresponding to the polynomials
P

(1)
n , P

(2)
n ∈ Πn and ‖Pn‖ = (Pn, Pn)1/2.

Key words. Hilbert space, Euclidean space, operator, interpolation polynom, invariance of
solution.
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2. Formulation and treatment of the interpolation problem
in Hilbert space

For the operator F : X → Y set by its values F (xi) in the nodes xi, i = 1,m
we have to �nd the unique operator polynomial Pn ∈ Πn that satis�es the
interpolation conditions

Pn(xi) = F (xi), i = 1,m. (1)
Introduce the following notation: Γ = ‖∑n

p=0(xi, xj)p‖m
i,j=1, 0

0 = 1, (·, ·) is
the scalar product in the X-space, Γ+ is the Moore-Penrose pseudo-inverse
matrix with respect to Γ, and E is identity matrix.

In [1-3], in the event of ful�llment of the necessary and su�cient conditions
for solvability of operator interpolation task, such as

(E − ΓΓ+)
−→
F =

−→
0 ,
−→
F = {F (xi)}m

i=1. (2)
the following unique interpolation polynomial of n-th power with minimal norm
is constructed:

Pn(x) =<
−→
F , Γ+

n∑

p=0

{(x, xi)p}m
i=1 >, (3)

where < −→α ,
−→
β >=

∑m
i=1 αiβi, αi ∈ Y, βi ∈ R1, i.e. Pn(x) is a solution to the

extremum task

‖Pn‖ = min ‖Qn‖ = (<< Γ+−→Pn,
−→
Pn >>)1/2, Qn ∈ ΠI

n,
−→
Pn = (Pn(xi))m

i=1

and ΠI
n is the set of interpolation polynomial of n-th power.

We call an interpolation task invariantly solvable if it has a solution at ar-
bitrary −→F . Then, obviously, the matrix Γ in (2.2) has to be nonsingular. Ac-
cording to [7], an interpolation problem is invariantly solvable in Hilbert space
if the interpolation nodes xi, i = 1,m are di�erent and the condition

m 6 n + 1. (4)
is met.

In practice, we often deal with approximation of many-variable functions.
When such function is represented by a set of its values, one of approxima-
tion methods consists in polynomial interpolation. But there another problem
arises: the conditions for existence and uniqueness of the interpolant are to be
established.

In the tasks of object's identi�cation based on its responses to input signals,
of particular interest is the case when the information available is not su�cient:
for example, the number of conditions is less than dimension of the space of
polynomials used for seeking the solution in Euclidean space. This problem
will be called underdetermined.

This work focuses on treatment of the interpolation problem as applied to
many-variable functions in the case of under-determinacy, and on analysis of
conditions for invariant resolution and uniqueness of the �nal result.
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3. Solution of the interpolation problem in Euclidean spaces
To begin with, apply the above results of treatment of the interpolation

problem to the case of Euclidean space E2. Consider the interpolation of the
function f : E2 → R1 set by its values in nodes γi = (xi, yi), i = 1,m. Let us
represent the solution in the form of interpolant with minimum norm:

Pn(x, y) =<
−→
f , Γ+

n∑

p=0

{(xix + yiy)p}m
i=1 >, (5)

where −→f = {f(γi)}m
i=1, Γ = ‖∑n

p=0(xixj + yiyj)p‖m
i,j=1. If inequality (2.4)

holds and all nodes γi are di�erent then Γ+ = Γ−1 (see [7]). In this work for
the Euclidean space we obtain a stronger result for invertibility of the matrix
Γ as compared to (2.4).

First we construct the solution to this problem based on the general in-
terpolation theory of multivariable functions [8]. The required interpolation
polynomial Pn(x, y) will be written as

Pn(x, y) = a00 + a10x + a01y + a20x
2 + a11xy + a02y

2 + · · ·+
+ an0x

n + an−1,1x
n−1y + · · ·+ a0nyn,

(6)

and aik ∈ R1, i, k = 0, n are unknown coe�cients. Denote by p = (n + 1)(n +
2)/2 the dimension of space of n-th power polynomials de�ned in E2. To get
the unique solution to the interpolation problem, we have to �nd the nodes
γi ∈ E2, i = 1, p such that the determinant of the system of linear algebraic
equations for aik

Pn(γi) = f(γi), i = 1, p (7)
is always nonzero.

As shown in [9], it happens if for interpolation nodes we take the following
system of points:

(x0, y0), (x1, y0), . . . , (xn−1, y0), (xn, y0),

(x0, y1), (x1, y1), . . . , (xn−1, y1)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (8)
(x0, yn−1), (x1, yn−1),

(x0, yn),
xi 6= xj , yi 6= yj as i 6= j.

Such selection of nodes gives us single-valued aik, and the interpolation poly-
nomial (3.2) is feasible and unique.

Now apply the system of nodes (3.4) to set up the interpolant (3.1). Since
the solution to the problem in this case is unique, interpolation polynomials in
(3.2) and in minimum norm (3.1) are coincident. Consider next the entries of
the matrix Γ
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n∑

p=0

(γi, γj)p =
n∑

p=0

(xixj + yiyj)
p =

= 1 + xixj + yiyj + (xixj)2 + 2xixjyiyj + (yiyj)
2+

+ · · ·+ (xixj)n + n(xixj)n−1yiyj + · · ·+ nxixj(yiyj)
n−1 + (yiyj)

n,

where (xi, yj) are the points of set (3.4). Introduce a set of vectors si de�ned
as follows:

si = (1, xi, yi, x
2
i ,
√

2xiyi, y
2
i ), . . . , x

n
i ,
√

nxn−1
i yi, . . . ,

√
nxiy

n−1
i , yn

i ),

i = 1, p
(9)

and, in conformity to [9], are linearly independent. Then the matrix Γ takes
the form of Gram's matrix

Γ =




(s1, s1) . . . (s1, sp)
. . . . . . . . .

(sp, s1) . . . (sp, sp)


 (10)

which is nonsingular. Since any subsystem of vectors (3.5) is also linearly inde-
pendent and the matrix Γ is invertible, our interpolation task will be invariantly
solvable and have a single solution in the form of an interpolating polynomial
with minimum norm (3.1), where Γ+ = Γ−1. Based on the above, the following
theorem may be suggested.
Theorem 1. Let the function f : E2 → R1 be set by its values f(γi), i = 1,m.
If the interpolation nodes γi, i = 1,m are so selected that the subsystem of
vectors from (3.5) is linearly independent (representing, for example,a subset
of points (3.4)), then an interpolation problem with two-dimensional function
is invariantly solvable and has a single solution with minimum norm under the
condition m ≤ p, where p is the dimension of space of polynomials in n-th power
de�ned in E2.

Thus, with Theorem 3.1 taking into account, for the function f : E2 → R1

we obtained better results compared to inequality (2.4) (see [7]).
Example.Consider the derivation of an interpolational polynomial with min-

imum norm (3.1) of the second power P2(x, y). The interpolation nodes are
selected from the set of points (3.4), so that

γ1 = (0, 0), γ2 = (1, 0), γ3 = (−1, 0),

γ4 = (0, 1), γ5 = (1, 1),

γ6 = (0,−1)

Based on formula (3.5), the vectors si will be written as
s1 = (1, 0, 0, 0, 0, 0), s2 = (1, 1, 0, 1, 0, 0), s3 = (1,−1, 0, 1, 0, 0),

s4 = (1, 0, 1, 0, 0, 1), s5 = (1, 1, 1, 1,
√

2, 1), s6 = (1, 0,−1, 0, 0, 1)
(11)

Since the vectors si, i = 1,m are linearly independent, the matrix Γ de�ned
by formula (3.6) is invertible. So we come to the conclusion that in order to
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construct the interpolant (3.1) we may select any subsystem of vectors (3.7),
meaning that the interpolation problem is invariantly solvable and has a unique
solution in the event when m ≤ 6 (m is the number of nodes from set (3.4)).
Compared to inequality (2.4), where m ≤ 3, we obtain a better result.

As noted above, in practice we may encounter problems where the number
of interpolation nodes and the function values in these nodes are less than p.
In this case the interpolation task treated in classical manner [8] has nonunique
solution.

If for solving this problem (at m ≤ p) we use an interpolant with minimum
norm from [1-3] and take the subsystem of vectors si from (3.5) for construction
of the matrix Γ, then the solution will be invariant and unique. For our example
we take m = 4 and the subsystem s1, s2, s3, s4 from (3.7). In this case the
matrix Γ is invertible, the interpolation polynomial P2(γ) will be written as

P2(γ) = P2(x, y) =<
−→
f ,Γ−1

2∑

p=0

{(xix + yiy)p}4
i=1 >=

4∑

i=1

li(γ)f(γi)

that satis�es the conditions P2(γi) = f(γi), where li(γ) = li(x, y) are Lagrange
fundamental polynomials of the second power, li(γj) = δij , δij is the Kronecker
symbol, i, j = 1, 4, l1(x, y) = 1 − x2 − 1/2y − 1/2y2, l2(x, y) = 1/2x + 1/2x2,
l3(x, y) = −1/2x + 1/2x2, l4(x, y) = 1/2y + 1/2y2.

Now let us perform comparative analysis of the structure with two inter-
polants: that corresponding to the classical approach [8], and that suggested
here for m = p. We choose the system of nodes from the set of points (3.4).
In constructing the polynomial (3.2), the problem transforms into search for
solutions of linear algebraic equations (3.3) with inverse matrix of general
form. In the �rst case for the solution we use the Gauss method requiring
Q(m) = 2

3m3 +O(m2) arithmetical operations. In the other case for construct-
ing the polynomial (3.1) we have to de�ne the vector

Γ−1
n∑

p=0

{(xix + yiy)p}m
i=1 = z

which is equivalent to solving the system

Γz =
n∑

p=0

{(xix + yiy)p}m
i=1 = l(x, y) (12)

where l(x, y) is the two-variable polynomial of n-th power. The solution to
system (3.8) with its symmetric nonsingular matrix Γ will be sought by the
square-root method demanding Q(m) = 1

3m3 + O(m2) arithmetic operations -
with the constant at m3 twice less than by the Gauss method.

Thus, when comparing the two methods for constructing the interpolation
polynomial for the function f : E2 → R1 we may conclude that when m = p
(m is the number of nodes, and p - dimension of the space of second-power
polynomials in E2) and the interpolation nodes selected correspond to system
(3.4), then interpolants (3.1) and (3.2) are coincident, but the polynomial with
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minimum norm is preferable due to less number of arithmetic operations, so
that its formula is easier for applications.

If m < p then for construction (3.2) under conditions (3.3) with nodes (3.4)
the classic approach [8] does not ensure uniqueness of solution. On the other
hand, polynomial interpolation (3.1) is invariant and unique. In fact, we have
obtained a consistent formula making it possible to construct the interpolant
of rather simple con�guration.

The above results can be extended to the function of many variables f :
Ek → R1, where Ek is k-dimensional Euclidean space. Let the solution of
interpolation problem be sought in the space Πkn where Πkn is the space of k-
variable polynomials of n-th power. Then, as noted in [8], we always can (�nd
a system of nodes (xi1 , xi2 , . . . , xik) ∈ Ek such that the task of interpolation of
multivariable function will have a single solution while the system of vectors si

can be written as

si =
{(

j!
j1!j2! · · · jk!

)1/2

xj1
i1

xj2
i2
· · ·xjk

ik
, j1 + j2 + · · ·+

+ jk = j, 0! = 1
}n

j=0
, i = 1, p

(13)

where p = (n+ k)!/n!k!. Then we may speak of generalization of Theorem 3.1.

Theorem 2. Let the function f : Ek → R1 be given its values f(γi), i = 1,m.
If the interpolation nodes γi choose so that the relevant subsystem from vectors
(3.9) are linearly independent then in the space Πkn interpolation problem of
k-variables function with the condition Pn(γi) = f(γi), i = 1,m, Pn ∈ Πkn is
invariantly solvable and its has a unique solution with minimum norm under
the condition m ≤ p, where p - the dimension of the space Πkn.
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