
Æóðíàë îá÷èñëþâàëüíî¨ 2015
òà ïðèêëàäíî¨ ìàòåìàòèêè �2 (119)

Journal of Computational
& Applied Mathematics

UDC 519.6

GENERALIZATION OF THE KHOVANSKII'S METHOD
FOR SOLVING MATRIX POLYNOMIAL EQUATIONS

A.M.NEDASHKOVSKA

Ðåçþìå. Ðîçãëÿíóòî àëãîðèòì ðîçâ'ÿçóâàííÿ ïîëiíîìiàëüíèõ ìàòðè÷íèõ
ðiâíÿíü. Çàïðîïîíîâàíi ðåêóðåíòíi ôîðìóëè îá÷èñëåííÿ íàáëèæåíèõ ðîç-
â'ÿçêiâ äëÿ ðiâíÿíü ñòåïåíÿ n. Äîñëiäæåíî çáiæíiñòü ìåòîäó äëÿ ðiâíÿíü
äðóãîãî ñòåïåíÿ. Íàâåäåíî ðåçóëüòàòè ÷èñåëüíèõ åêñïåðèìåíòiâ, ùî ïiä-
òâåðäæóþòü ñïðàâåäëèâiñòü òåîðåòè÷íèõ âèêëàäîê.
Abstract. The article deals with the algorithm for solving the polynomial
matrix equations. Recurrent formulas for calculating approximate solutions of
equations of degree n are proposed. The convergence of the method for equa-
tions of the second degree has been researched and the results of the numerical
experiments that con�rm the validity of the calculations are provided.

1. Introduction
The method reduces itself to the consistent application of a certain matrix

operator to the given vector and occupies a special place among various gen-
eralizations of continued fractions. In a simpler form, this method has been
considered by Euler. He used it to calculate the approximate expression x

p
q .

Here x is a known number, p and q are integers.
Euler's method has also been considered by Laurie, Kraft and Muller. But

the possibility of practical use of the method hasn't been considered in these
works. Later Khovanskii applied this method to the approximate value of the
roots of some degrees and to �nd approximate solutions of polynomial equations
over the �eld of real numbers.

In particular, the scheme of �nding the roots of the equation
x2 = u (1)

has been considered in [1].
It has been shown that the solution of equation (1) can be found as the

fraction Pn
Qn

, where valid values Pn and Qn are interconnected by relations
(

Pn

Qn

)
=

(
a u
1 a

)(
Pn−1

Qn−1

)
(n = 1, 2, . . .) . (2)

Here a is a free parameter.
The equation (2) implies that

Pn

Qn
=

aPn−1 + uQn−1

Pn−1 + aQn−1
,

Key words. Polynomial matrix equations; generalization of the Khovanskii's method; the
convergence of the method.
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that is
Pn

Qn
=

a Pn−1

Qn−1
+ u

Pn−1

Qn−1
+ a

. (3)

Let limit lim
n→∞

Pn−1

Qn−1
exists and is �nite. We denote it as x. Than from (3)

we receive
x =

ax + u

x + a
or

x2 = u, x = ±√u.

So, if the limit lim
n→∞

Pn−1

Qn−1
exists, then it may be equal to √u or to −√u.

Accordingly, if u < 0, then the process (2) diverges.
A similar scheme has been proposed in [1] for solving the quadratic equation

x2+px+q=0:(
Pn

Qn

)
=

(
a −q
1 a + p

)(
Pn−1

Qn−1

)
(n = 1, 2, . . .) . (4)

From (4) it follows that

Pn

Qn
=

a Pn−1

Qn−1
− q

Pn−1

Qn−1
+ a + p

. (5)

Let the limit lim
n→∞

Pn−1

Qn−1
exists and is �nite. We denote it as x. Then from

(5) we receive
x =

ax− q

x + a + p
or

x2 + px + q = 0, x1,2 =
−p±

√
p2 − 4q

2
.

In [1] the conditions for the convergence of the iterative formulas (3) and (5)
have been analysed.

2. The computational scheme of the method
Let us try to generalize the scheme proposed in [1] and apply it to solving

the matrix equation
AnXn + An−1X

n−1 + An−2X
n−2 + . . . + A2X

2 + A1X + A0 = 0. (6)
Here matrices A0, A1, A2, . . . , An−2, An−1, An ∈ <m×m are given coe�cients of
equation (6) and X ∈ <m×m is an unknown solution.

Suppose, that X is a non singular matrix and let us denote Y0 = X−1. . . . .
After the right multiplication of the equation (6) with X−1 we receive

AnXn−1 + An−1X
n−2 + An−2X

n−3 + . . . + A2X + A1 + A0Y0 = 0. (7)
Let Y1 = Y0X

−1 =
(
X−1

)2 and let us right multiply the equation (7) with
X−1 :

AnXn−2 + An−1X
n−3 + An−2X

n−4 + . . . + A2 + A1Y0 + A0Y1 = 0.
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Accordingly, after (n− 2) the right multiplication of the equation (6) with
X−1 we get
AnX2 +An−1X +An−2 +An−3Y0 + . . .+A2Yn−5 +A1Yn−4 +A0Yn−3 = 0, (8)

where
Y0 =

(
X−1

)1
, Y1 =

(
X−1

)2
, . . . , Yn−3 =

(
X−1

)n−2
.

We introduce the parameter, a non singular matrix L ∈ <m×m and left
multiply equation (8) with L :

LAnX2 +LAn−1X +LAn−2 + . . .+LA2Yn−5 +LA1Yn−4 +LA0Yn−3 = 0. (9)
Obviously the equation (9) is equivalent to

LAnX2 + (LAn−1 + K −K) X + LAn−2 + . . .+
+ LA2Yn−5 + LA1Yn−4 + LA0Yn−3 = 0.

Here K ∈ <m×m is a non singular matrix.
And it is evident that
LAnX2 + KX = (K − LAn−1) X − LAn−2 − . . .− LA1Yn−4 − LA0Yn−3

or
(LAnX + K) X = (K − LAn−1) X − LAn−2 − . . .− LA1Yn−4 − LA0Yn−3.

Then, assuming det (K − LAn−1) 6= 0 we get
X = (LAnX + K)−1 (

(K − LAn−1) X − LAn−2 − . . .−
− LA1Yn−4 − LA0Yn−3

)
.

(10)

Now let us consider the obvious equality
LAnXX−1 + KY0 = LAn + KY0

or
(LAnX + K) Y0 = LAn + KY0. (11)

Then from (11) we get
Y0 = (LAnX + K)−1 (LAn + KY0) . (12)

Applying similar transformations, we receive formulas for Y1, Y2, . . . , Yn−3 cal-
culation:

Y1 = (LAnX + K)−1 (LAnY0 + KY1) ;
Y2 = (LAnX + K)−1 (LAnY1 + KY2) ;
...
Yn−3 = (LAnX + K)−1 (LAnYn−2 + KYn−3) .

(13)

Then, on the basis of the formulas (10),(12) and (13) we get an approximate
calculation algorithm for solving the polynomial matrix equation (6):

1. Set the accuracy ε > 0;
2. Set the initial approximation, a non singular matrix X0 ∈ <m×m;
3. Set the counter n = 1;
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4. Calculate

Y
(0)
0 =

(
X(0)−1

)1
, Y

(0)
1 =

(
X(0)−1

)2
,

Y
(0)
2 =

(
X(0)−1

)3
, . . . , Y

(0)
n−3 =

(
X(0)−1

)n−2
;

5. Calculate
Y

(n)
0 =

(
LAnX(n−1) + K

)−1
(
LAn + KY

(n−1)
0

)
,

Y
(n)
1 =

(
LAnX(n−1) + K

)−1
(
LAnY

(n)
0 + KY

(n−1)
1

)
,

Y
(n)
2 =

(
LAnX(n−1) + K

)−1
(
LAnY

(n)
1 + KY

(n−1)
2

)
,

...
Y

(n)
n−3 =

(
LAnX(n−1) + K

)−1
(
LAnY

(n)
n−2 + KY

(n−1)
n−3

)
,

X(n)=
(
LAnX(n−1)+K

)−1×
×
(
(K−LAn−1)X(n−1)−LAn−2−. . .− LA0Y

(n)
n−3

)
;

(14)

6. Verify the condition
∥∥X(n) −X(n−1)

∥∥ < ε. If this condition is not satis-
�ed, , set the counter n = n + 1 and go to step 5, or else return X(n).

3. The convergence of the method for equations of the second
power

Let us consider the equation
A2X

2 + A1X + A0 = 0. (15)
Like the equation (6) we left multiply (15) with a non singular diagonal matrix
L = l · E,L ∈ <m×m:

LA2X
2 + (LA1 + K −K) X + LA0 = 0

or
(LA2X + LA1 + K) X = KX − LA0. (16)

Here K = k · E, K ∈ <m×m is non singular diagonal matrix.
Assuming that det (LA2X + LA1 + K) 6= 0 from (16) we get

X = (LA2X + LA1 + K)−1 (KX − LA0)

or as a recurrent formula

X(n) =
(
LA2X

(n−1) + LA1 + K
)−1 (

KX(n−1) − LA0

)
(n = 1, 2, . . .) . (17)

Let A and B be real, square m × m matrix with det B 6= 0. Further mul-
tiplication operation B−1A will be written in the form of a matrix fraction
A
B .
Inasmuch

X =
KX − LA0

LA2X + LA1 + K
=

kX − lA0

lA2X + lA1 + kE
=

kX − lA0

lX + lA−1
2 A1 + kA−1

2

=
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X − l
kA0

X + A−1
2 A1 + k

l A
−1
2

=
X + A−1

2 A1 + k
l A

−1
2 − (

A−1
2 A1 + k

l A
−1
2 + l

kA0

)

X + A−1
2 A1 + k

l A
−1
2

,

then
X = E − A−1

2 A1 + k
l A

−1
2 + l

kA0

X + A−1
2 A1 + k

l A
−1
2

. (18)

Let P = A−1
2 A1 + k

l A
−1
2 and Q = l

kA0. Then (18) can be written as

X = E − P + Q

X + P
,

or as an in�nite matrix continued fraction

X = E − P + Q

P + E − P+Q
P+E−...

. (19)

The matrix continued fraction (18) also can be presented in a compact Prynh-
sheym's form

X = E − P + Q|
|P + E

− P + Q|
|P + E

− P + Q|
|P + E

− . . . (20)

Let us consider the continued fraction with real elements. It is evident that
a1|
|b1

+ a2|
|b2

+ a3|
|b3

+. . .+ an|
|bn

+. . .=

=
a1
b1

∣∣∣
|1 +

a2
b1

∣∣∣
|b2

+ a3|
|b3

+. . .+ an|
|bn

+. . .

=
a1
b1

∣∣∣
|1 +

a2
b1b2

∣∣∣
|1 +

a3
b2b3

∣∣∣
|1 + . . . +

an
bn−1bn

∣∣∣
|1 + . . .

(21)

Suppose that the matrix (P + E) is non singular and in (20) we perform
transformations similar to (21):

X = E − P+Q|
|P+E

− P+Q|
|P+E

− P+Q|
|P+E

− . . .− P+Q|
|P+E

− . . . =

= E − (P+E)−1(P+Q)|
|E − (P+E)−1(P+Q)|

|P+E
−

− P+Q|
|P+E

− . . .− P+Q|
|P+E

− . . . =

= E − (P+E)−1(P+Q)|
|E − (P+E)−2(P+Q)|

|E −
− (P+E)−2(P+Q)|

|E − . . .− (P+E)−2(P+Q)|
|E − . . .

(22)

In [2] Vorpitskyi's su�cient convergence sign has been generalized. It can be
used to analyse the convergence of matrix continued fractions of the form (22):
Theorem 1. Matrix branch continued fraction

n∑

k1=1

Ak1 |
|E +

n∑

k2=1

Ak1k2 |
|E + . . . +

n∑

k1=1

Ak1k2...kl
|

|E + . . .

is absolutely convergent if the condition

‖Ak1k2...ki‖ ≤
1
4n

(i = 1, 2, 3, . . . ; ki = 1, 2, . . . , n)
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is true.
Let us apply Theorem 1 to the continued fraction (22). It is obvious that

the branched continued fraction (22) will be convergent, if the condition
∥∥(P + E)−2(P + Q)

∥∥ ≤ 1
4

(23)

is satis�ed.
Substituting the values of P and Q in the formula (23) we get su�cient

condition for the convergence of the matrix continued fraction (22):∥∥∥∥∥
(

A−1
2 A1 +

k

l
A−1

2 + E

)−2 (
4A−1

2 A1 +
4k

l
A−1

2 +
4l

k
A0

)∥∥∥∥∥ ≤ 1.

4. Computational experiments
To test the e�ectiveness of the practical application of recurrent formula

(14), a series of numerical experiments has been conducted in the FreeMat
environment.
Example 1. Let us consider the polynomial matrix equation

A2X
2 + A1X + A0 = 0, (24)

with

A2 =




1 0 0
0 1 0
0 0 1


, A1 =




1 2 3
2 3 4
3 4 5


, A0 =



−13 −13 −14
−16 −18 −18
−20 −21 −23


 .

Put l = 1, k = 1 and initial value

X0 =




1 0 0
0 1 0
0 0 1




then using the recurrent formula (17) we obtain the following results

Tabl. 1. Example 1

ε Number of Approximate solution, Xn Norm of residual
iterations, n

0.1 15



−8.9203 −9.9203 −9.9203
−0.5083 0.4917 −0.5083
8.9038 8.9038 9.9038


 0.0848

0.01 19



−8.9079 −9.9079 −9.9079
−0.5065 0.4935 −0.5065
8.8948 8.8948 9.8948


 0.0056

0.001 22



−8.9069 −9.9069 −9.9069
−0.5064 0.4936 −0.5064
8.8941 8.8941 9.8941


 0.0007
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These results show convergence of the iterative process (17) to the solution
of equation (24),

X =



−8.9070 −9.9070 −9.9070
−0.5064 0.4936 −0.5064
8.8942 8.8942 9.8942




with a decrease of ε.
Example 2. Now let us consider the polynomial matrix equation

A2X
2 + A1X + A0 = 0, (25)

with coe�cients

A2 =




1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1


, A1 =




−1 0 2 1
0 1 0 2
0 0 4 1
0 0 0 −5


,

A0 =




−8 −8 −10 −9
−9 −11 −9 −11
−11 −11 −16 −12
−1 −1 −1 3


 .

Let l = 1, k = 1 and initial value

X0 =




1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1




and we use the recurrent formula (17). We get the results from Table 2.

Tabl. 2. Example 2

ε Number of Approximate solution, Xn Norm of
iterations, n residual

0.1 12




−8.3232 −9.3232 −9.3232 −9.3232
5.7750 6.7750 5.7750 5.7750
2.4210 2.4210 3.4210 2.4210
−0.2323 −0.2323 −0.2323 0.7677


 0.0610

0.01 15




−8.3335 −9.3335 −9.3335 −9.3335
5.7775 6.7775 5.7775 5.7775
2.4216 2.4216 3.4216 2.4216
−0.2288 −0.2288 −0.2288 0.7712


 0.0070

0.001 18




−8.3323 −9.3323 −9.3323 −9.3323
5.7773 6.7773 5.7773 5.7773
2.4216 2.4216 3.4216 2.4216
−0.2293 −0.2293 −0.2293 0.7707


 0.0008
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These results show convergence of the iterative process (17) to the solution
of equation (25),

X =




−8.3325 −9.3325 −9.3325 −9.3325
5.7773 6.7773 5.7773 5.7773
2.4216 2.4216 3.4216 2.4216
−0.2292 −0.2292 −0.2292 0.7708




with a decrease of ε.

5. Conclusions
The article deals with the modi�cation of the method that was proposed by

A.N. Khovanskii [1] for solving polynomial equations de�ned over the set of
real numbers. Obtained computational scheme allows us to construct approx-
imate solutions of the equation (6), that are considered over the ring of non
commutative matrices. Su�cient conditions for the convergence of the iterative
process for the equation of the second degree and software implementation of
the method were presented. A number of numerical experiments con�rm the
applicability of the proposed scheme were conducted.
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