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GENERALIZATION OF THE KHOVANSKII'S METHOD
FOR SOLVING MATRIX POLYNOMIAL EQUATIONS

A.M.NEDASHKOVSKA

PE3IOME. Po3risiHyTO airoput™ po3B’s3yBaHHs ITOTIHOMIAJIbHAX MATPUIHUAX
piBH#IHB. 3anpOIIOHOBaHL peKypeHTHI (hopMysin 06uncIeHHs HAOJIMKEHUX PO3-
B'SI3KIB 17151 piBHAHB cTenens: n. Jlocaimkeno 361K HICTH METOIY JJIst PiBHSIHD
apyroro crenend. HaBemeHo pe3ynpTaTy UnCeIbHUX €KCIIEPHUMEHTIB, IO MiJ-
TBEP/RKYIOTH CIIPABeJINBICTD TEOPETUIHUX BUKJIAIOK.

ABsTrRACT. The article deals with the algorithm for solving the polynomial
matrix equations. Recurrent formulas for calculating approximate solutions of
equations of degree n are proposed. The convergence of the method for equa-
tions of the second degree has been researched and the results of the numerical
experiments that confirm the validity of the calculations are provided.

1. INTRODUCTION
The method reduces itself to the consistent application of a certain matrix
operator to the given vector and occupies a special place among various gen-

eralizations of continued fractions. In a simpler form, this method has been
P

considered by Euler. He used it to calculate the approximate expression xd.
Here z is a known number, p and ¢ are integers.

Fuler’s method has also been considered by Laurie, Kraft and Muller. But
the possibility of practical use of the method hasn’t been considered in these
works. Later Khovanskii applied this method to the approximate value of the
roots of some degrees and to find approximate solutions of polynomial equations
over the field of real numbers.

In particular, the scheme of finding the roots of the equation

2 =u (1)

has been considered in [1].
It has been shown that the solution of equation (1) can be found as the
fraction £2  where valid values P, and Q,, are interconnected by relations

o
<£Z):<61l Z)(ézj) (n=1,2,...). (2)

Here a is a free parameter.

The equation (2) implies that
& _ aPp_1 +uQp-1
Qn Pn—l + aQn—l ’

Key words. Polynomial matrix equations; generalization of the Khovanskii’s method; the
convergence of the method.
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that is b,
P, a—Q:‘:l +u

= . 3

Let limit lim P"‘ll exists and is finite. We denote it as . Than from (3)
n—oo ¥n—
we receive
_ar+u
 z+a
or

22 = u,z = +Va.
So, if the limit lim 5"*11 exists, then it may be equal to /u or to —/u.
n—oo ¥n—

Accordingly, if u < 0, then the process (2) diverges.
A similar scheme has been proposed in [1] for solving the quadratic equation
2?2 +pr+q=0:

(8)-(5 i) oman

From (4) it follows that

Pn1 _
Pn o aanl q (5)
Qn - P + a4+ '
Qn—l p

Let the limit lim SH
n—oo wn—1

(5) we receive

exists and is finite. We denote it as . Then from

axr —q
r=———
rT+a—+p

—p++/p?—4q
5 .

In [1] the conditions for the convergence of the iterative formulas (3) and (5)
have been analysed.

or

2? +pr+q=0m319=

2. THE COMPUTATIONAL SCHEME OF THE METHOD
Let us try to generalize the scheme proposed in [1] and apply it to solving
the matrix equation

Ap X"+ Ap 1 X" 4 Ay o X" 2 4 4 X AX +A=0.  (6)

Here matrices Ag, A1, Ao, ..., Ap_9, Apn_1, Ay, € R™*™ are given coefficients of
equation (6) and X € R™*™ is an unknown solution.

Suppose, that X is a non singular matrix and let us denote Yy = X 1. ...
After the right multiplication of the equation (6) with X ! we receive

An X" b Ay 1 X2 4 Ay o X" ApX + AL+ AYy =0 (T)

Let Y1 = YoX ! = (X_l)2 and let us right multiply the equation (7) with
Xt

Aan—Q + An_lX”_3 + An_QXn_4 + ...+ A+ A1Yg+ AgY: = 0.
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Accordingly, after (n — 2) the right multiplication of the equation (6) with
X! we get

AnX2 4+ A, 1 X4+A, o+ A, 3Yo+...+AY, 5+ A1Y, 4+ AyYn_3=0, (8)

where

Yo= (X)L vi= (X )2 Y= (X2

We introduce the parameter, a non singular matrix L € R™*™ and left
multiply equation (8) with L :

LAX?+ LA, 1 X+ LA, o+...+ LAY, 5+ LAY, 4+ LAY, 3=0.(9)
Obviously the equation (9) is equivalent to
LAX?*+ (LA, 1 +K —K)X + LA, o +...+
+ LAY, 5+ LAY,_4+ LAyY,_3=0.

Here K € R™*™ is a non singular matrix.
And it is evident that

LAX>+ KX =(K — LA, 1) X — LA, o—...— LAY, 4 — LAgY, 3
or
(LA,X + K)X = (K — LAp_1) X — LAy_o— ... — LA Yp_4 — LAY, _s.
Then, assuming det (K — LA,,_1) # 0 we get
X =(LAX +K) ' (K~ LAy 1) X — LAp 5 — ...~

(10)
— LAY, 4 — LAOYn_;»,).
Now let us consider the obvious equality
LA XX '+ KYy = LA, + KY
or
(LA, X + K)Yy = LA, + KY). (11)
Then from (11) we get
Yo = (LAX + K) ' (LA, + KYp). (12)
Applying similar transformations, we receive formulas for Y1, Ys,...,Y,_3 cal-
culation:
Vi = (LAX + K) ' (LA,Yy + KY3) ;
Yy = (LAX + K) ' (LAY, + KY3) ; 13)

Yo 3= (LAX + K) ' (LAY, o+ KY,_3).
Then, on the basis of the formulas (10),(12) and (13) we get an approximate
calculation algorithm for solving the polynomial matrix equation (6):

1. Set the accuracy € > 0;
2. Set the initial approximation, a non singular matrix Xy € R™*"™;
3. Set the counter n = 1;
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4. Calculate
v — <X(o)*1)1 YO (X(o)*l)Q,

YQ(O) _ (X(o)71>3,m7yn(o_)3 _ (X(o)ﬂ)n—z;
5. Calculate
Y™ = (LA, XD 4 K)”
Y™ = (LAX(D 4 K)~
Y™ = (LA, X 4 k)~

1 LA, +KYO(n—l)) :

LAn}/O(n) +KY1(7L*1) ,
LAnY'l(n)_i_KYZ(”*U ,

1

1
: (14)
V%= (LA X0+ ) (LAY kYY)
X(n):(LAnX("flﬂ-K) —1x

X((K— LAy ) XD~ LAy 5= — LAY,

6. Verify the condition HX(”) — X1 H < e. If this condition is not satis-
fied, , set the counter n =n 4+ 1 and go to step 5, or else return X

3. THE CONVERGENCE OF THE METHOD FOR EQUATIONS OF THE SECOND
POWER
Let us consider the equation

A X%+ A1 X + Ayg = 0. (15)
Like the equation (6) we left multiply (15) with a non singular diagonal matrix
L=1-E L ecRmm:
LAsX? + (LA + K —K)X + LAy =0
or
(LAsX + LA, + K) X = KX — LA. (16)
Here K = k- E, K € R™*™ is non singular diagonal matrix.
Assuming that det (LA2X + LA + K) # 0 from (16) we get
X = (LAX + LA, + K) ' (KX — LA)
or as a recurrent formula

XM — (LA2X<”—1> L LA+ K>_1 (KX(”_” — LAO) (n=1,2,...). (17)

Let A and B be real, square m X m matrix with det B # 0. Further mul-
tiplication operation B~'A will be written in the form of a matrix fraction
A

Inasmuch
KX — LA kX — 1Ay kX — 1Ay B

X = = = =
LAX + LA+ K 1A X +1A1+kE  [X +1A7T A + kA
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—pAo X ATA A - (AT A+ AT+ pA)
X+ Ay A+ Ayt X+ Ay Ay + kAt ’
then

v _p_ AT AL+ EAT 4 LA, 8
X+ Ay A + AT

Let P= Ay Ay + %Agl and Q = L Ag. Then (18) can be written as

P+Q
X=F-—
X+ P
or as an infinite matrix continued fraction
P
X—E— +QP+Q . (19)
P+ E— P+E—..

The matrix continued fraction (18) also can be presented in a compact Prynh-
sheym’s form

P+Q P+Q P+Q
\P+E |P+E |P+E

Let us consider the continued fraction with real elements. It is evident that

X=E- (20)

aq

as| as| an| _
o +|b2+\b ++\b +...=

as

—|1+|b2+|b+ A+l (21)

a ’ a3 ‘ an

a1
_h byby bp—1bn

bob —
= R TR

Suppose that the matrix (P + E) is non singular and in (20) we perform
transformations similar to (21):

X — F— P+Q|  P+Q|  P+Q| _ P+Q|
[P+E ~ [P¥E ~ [P+E ~ " [P¥E
_p_ PHR)UPHQ)| (B H(PHQ)|
N _ P+Q| ” P1Q) e
TPrE T T PrE T (22)

_p_ PEIPQ)  (P+E)EP4Q)|

B |E |E

(P+E)~2(P+Q)| (P+E)~2(P+Q)|

5 2

In [2] Vorpitskyi’s sufficient convergence sign has been generalized. It can be
used to analyse the convergence of matrix continued fractions of the form (22):

Theorem 1. Matriz branch continued fraction

i Akl’ + i Ak1k2 + Z Akle kl
|E |E

k1=1 ko=1 k1=1

is absolutely convergent if the condition

1 .
| Ak kg ;|| < R(z:1,2,3,...;ki: 1,2,...,n)
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18 true.

Let us apply Theorem 1 to the continued fraction (22). It is obvious that
the branched continued fraction (22) will be convergent, if the condition

[P+ B) 2P+ < 23)

is satisfied.
Substituting the values of P and () in the formula (23) we get sufficient
condition for the convergence of the matrix continued fraction (22):

k - Ak Al
<A21A1 + 7A;l + E) <4A21A1 + A7+ kA0>

<1.
I =

4. COMPUTATIONAL EXPERIMENTS
To test the effectiveness of the practical application of recurrent formula
(14), a series of numerical experiments has been conducted in the FreeMat
environment.
Ezample 1. Let us consider the polynomial matrix equation

A2X2 + A1 X + Ay =0, (24)
with
1 00 1 2 3 —-13 —-13 —-14
Ay = 01 0 |,A = 2 3 4 |, A= —16 —18 -—18
0 0 1 3 4 5 —20 —21 -23

Put I =1,k =1 and initial value

Xo =

S O =
O = O
= o O

then using the recurrent formula (17) we obtain the following results

TaBL. 1. Example 1

€ Number of Approximate solution, X, Norm of residual
iterations, n

—8.9203 —-9.9203 —9.9203
0.1 15 —0.5083 0.4917 —0.5083 0.0848
8.9038  8.9038  9.9038
—-8.9079 —-9.9079 —-9.9079
0.01 19 —0.5065 0.4935 —0.5065 0.0056
8.8948  8.8948  9.8948
—8.9069 —9.9069 —9.9069
0.001 22 —0.5064 0.4936 —0.5064 0.0007
8.8941  8.8941  9.8941
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These results show convergence of the iterative process (17) to the solution
of equation (24),

—8.9070 —9.9070 —-9.9070
X =1 —0.5064 0.4936 —0.5064
8.8942  8.8942  9.8942

with a decrease of ¢.
Ezample 2. Now let us consider the polynomial matrix equation

A X2+ A1 X + Ag =0, (25)
with coefficients
1 000 -1 0 2 1
0100 0 10 2
A= go10|M= 0 04 1 |

00 0 1 0 00 =5

-8 -8 —10 -9
Ay = -9 —11 -9 -—11

-11 —-11 -16 -—-12

Let [ =1,k =1 and initial value

Xo =

O = OO
o o O

10
0 1
0 0
0 0
and we use the recurrent formula (17). We get the results from Table 2.

TABL. 2. Example 2

€ Number of Approximate solution, X, Norm of
iterations, n residual
—8.3232 —9.3232 -9.3232 —9.3232
5.7750 6.7750 5.7750 5.7750
0.1 12 2.4210 2.4210 3.4210 2.4210 0.0610
—0.2323 —0.2323 —-0.2323 0.7677
—8.3335 —9.3335 —9.3335 —9.3335
5.7775 6.7775 9.7775 D.7775
0.01 15 2.4216 2.4216 3.4216 2.4216 0.0070
—0.2288 —0.2288 —0.2288 0.7712
—8.3323 —9.3323 -—-9.3323 —-9.3323
5.7773 6.7773 5.7773 5.7773
0.001 18 2.4216 2.4216 3.4216 2.4216 0.0008

—0.2293 —-0.2293 —-0.2293 0.7707
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These results show convergence of the iterative process (17) to the solution
of equation (25),

—8.3325 —9.3325 —-9.3325 —9.3325
90773 6.7773 57773 5.T773
24216 24216  3.4216  2.4216
—-0.2292 —-0.2292 -0.2292 0.7708

X:

with a decrease of ¢.

5. CONCLUSIONS

The article deals with the modification of the method that was proposed by
A.N. Khovanskii [1] for solving polynomial equations defined over the set of
real numbers. Obtained computational scheme allows us to construct approx-
imate solutions of the equation (6), that are considered over the ring of non
commutative matrices. Sufficient conditions for the convergence of the iterative
process for the equation of the second degree and software implementation of
the method were presented. A number of numerical experiments confirm the
applicability of the proposed scheme were conducted.
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