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Ðåçþìå. Ó ðîáîòi ïðîâåäåíî àíàëiç ÷èñåëüíîãî ðîçâ'ÿçóâàííÿ äâîâèìið-
íîãî iíòåãðàëüíîãî ðiâíÿííÿ òåîði¨ ïîòåíöiàëó íà íåçàìêíåíèõ ïîâåðõíÿõ.
Íà ïðèêëàäi àíàëiçó êîíêðåòíî¨ ìîäåëüíî¨ çàäà÷i ïîêàçàíî, ÿê, âðàõîâóþ-
÷è ñïåöèôiêó ïî÷àòêîâèõ äàíèõ, âèðiøèòè ïðîáëåìó ñïåöiàëüíîãî çîáðà-
æåííÿ ñàìîãî iíòåãðàëüíîãî ðiâíÿííÿ. Òàêå çîáðàæåííÿ äîçâîëÿ¹ ïðè
ïîáóäîâi âiäïîâiäíî¨ íàáëèæåíî¨ ñõåìè ñóòò¹âî ñïðîñòèòè âèêîðèñòàííÿ
àïðiîðíî¨ iíôîðìàöi¨ ïðî õàðàêòåð ïîâåäiíêè øóêàíîãî ðîçâ'ÿçêó. Îñòàí-
í¹ âiäiãðà¹ âàæëèâó ðîëü ó ïðîöåñi ðåàëiçiàöi¨ ðiçíèõ ïðîöåäóð óòî÷íåííÿ
îòðèìóâàíèõ íàáëèæåíèõ ðîçâ'ÿçêiâ íà îñíîâi ñïåöiàëüíî ïîáóäîâàíèõ
îöiíþâà÷iâ. Ó ðîáîòi ïðåäñòàâëåíi ðåçóëüòàòè ÷èñåëüíèõ åêñïåðèìåíòiâ.
Abstract. The numerical solution of two-dimensional integral equation on
unclosed surfaces is analyzed in present paper. Such equations with weak
singularities in the kernels are considered in potential theory. General prob-
lem of integral equation solving, and besides that special representation of
considered equation, are exempli�ed by the model task, taking into account
the speci�city of initial date. In the process of appropriate numerical scheme
constructing such a representation gives the possibility to essentially simplify
the use of a priori information on desired solution. The last is important for
objectifying various correction procedures of obtained results on the basis of
special estimators. The results of numerical experiments are presented.

1. Introduction
In previous paper [2] with a similar research object various aspects of numer-

ical schemes construction for solving integral equations of the �rst kind were
considered. In this connection we had to deal with two-dimensional equations
in the form as

(Aσ)(M) ≡
∫∫

S

σ(P )|M − P |−1dSP = U(M), M ∈ S, (1)

where, in general case, S is an open Lipschitz surface; M and P are the points of
Euclidean space R3. In present article, by solving one typical model problem, we
analyze the proposed schemes adaptive possibilities for maximal taking account
of desired solutions speci�city in order to receive the results with preassigned
accuracy. The equations of type (1) have been used in mathematical modelling
of some boundary value problems in electron optics [3]. Ordinary generalization
of (1) is an assumption that S is formed by the aggregate of m surfaces, so

Key words. Two-dimensional integral equation, weak singularity, rational representation,
numerical scheme construction, correction of obtained results, special estimators.
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that S :=
⋃m

i=1 Si. In this case, we interpret σ(P ) as a desired total charge
distribution density on S, that is σ(P ) := {σi(P ), P ∈ Si}m

i=1.
It is possible to research the solvability of integral equation (1) in various

functional spaces. However, it should be taken into account the speci�city of
investigated physical phenomenon. In this connection, the modelling of elec-
trostatic �eld in the substantially spatial setting foresees the account of desired
charge distribution density σ(P ) behavior near the contour of unclosed surface
S. As to right hand side of (1), we consider that U(M), M ∈ S, is the given
boundary value of potential on an electrode which is actually simulated by a
surface S (U(M) ≡ const). At last, the solvability of (1) can be expressed by
the following inequalities [4, 6]:

m1‖σ‖H
−1/2
00 (S)

≤ ‖Aσ‖H1/2(S) ≤ m2‖σ‖H
−1/2
00 (S)

(0 < m1 ≤ m2),

where H1/2(S) is a trace space, H−1/2
00 (S) is dual space with respect to H

1/2
00 (S).

Note that S is an open surface treated as a component of some close surface
Σ. In addition, H

1/2
00 (S) is di�erent from H1/2(S), and in the case of smooth

S, relevant norm may be de�ned as

‖σ‖2

H
1/2
00 (S)

= ‖σ‖2
H1/2(S)

+ ‖ρ−1/2σ‖2
L2(S),

where ρ(M) is the distance from M ∈ S to the smooth edge ∂S.

2. The numerical scheme for model problem testing
Let us consider the calculation problem of plane-parallel condenser electro-

static �eld. From mathematical model point of view this condenser can be rep-
resented as a surface S, which is an aggregate of two parallel identical plates
S1 and S2 situated symmetrically with respect to a coordinate plane XY , so
that S := S1

⋃
S2. The distance between them equals 2h. Suppose that U1 and

U2 are the given potential values on S1 and S2, respectively. The electrostatic
treatment of problem (1) means that U1 and U2 are arbitrary constant. As we
mentioned in [2], this problem is not trivial, and the results of calculation are
especially sensitive with respect to variation of output data.

With a view to analyze integral equation (1) let us use such Sl representation

Sl :=
{

(x, y, z)> ∈ R3
∣∣∣(x, y) ∈ [−1, 1]2; z = (−1)l−1h; l = 1, 2; h > 0

}
. (2)

According to (2), we can represent S in the form of congruent components
combination:

S =
2⋃

l=1

( 4⋃

k=1

Slk

)
.

Taking into account subdivision of S1 and S2, integral equation (1), in its turn,
can be formally represented as

2∑

l=1

4∑

k=1

∫∫

Slk

σlk(P )|P −M |−1dSp = U(M) =

{
U1, M ∈ S1,

U2, M ∈ S2,
(3)
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where σlk(P ) := σlk(x, y) is the restriction of σ(P ) onto Slk;
M := (x0, y0, z0 = ±h)>; (x, y), (x0, y0) ∈ [−1, 1]2.

Then, applying in (3) some changes of variables, we realize the conversion
from integration over S to integration over its congruent constituent S11. As
a result, we get the system of eight linear integral equations with respect to
unknown density σj(x, y)(j = 1, 8), according to the chosen group of surface S
symmetry:

8∑

j=1

∫∫

41

σj(x, y)G|i−j|+1(x, y; x0, y0; h)dxdy = U(Mi), (i = 1, 8). (4)

Here, 41 := [0, 1]2; Mi :=
(
(−1)r−1x0, (−1)s−1y0, (−1)p−1h

)>
∈ Spq; in this

case i := 4(p − 1) + 2(r − 1) + s, and q := 2(r − 1) + s with p, r, s = 1, 2; Mi

are the points of collocation; (x0, y0) ∈ 41. The point of integration is

P :=
(
(−1)n−1x, (−1)m−1y, (−1)l−1h

)>
∈ Slk;

in this case, j := 4(l−1)+2(n−1)+m, and k := 2(n−1)+m with l, n, m = 1, 2;
and �nally

G|i−j|+1(x, y; x0, y0; h) := |P −Mi|−1.

It is easy to see that the system of integral equations (4) may be written in
the form of matrix operator equation

Aσ = U, (5)
where

σ := (σ1(x, y), σ2(x, y), . . . , σ8(x, y))>,

U := (U(M1), U(M2), . . . , U(M8))>;
and A := (Aij)8i,j=1, in this case, Aij is an integral operator that acts by the
rule

Aijσj(Mi) ≡
∫∫

41

σj(x, y)G|i−j|+1(x, y; x0, y0;h)dxdy.

Since an initial integral equation has an Abelian eighth order group of sym-
metry [7], then, we can split (5) into eight independent integral equations
A′σ′ = U

′, where A′ := F ·A · F−1, σ′ := Fσ, U
′ := FU . Here, F := (Fij)8i,j=1

is known matrix of Fourier transform [2,7]; A′ := (A′i)
8
i=1, in this case,

A′iσ
′
i(Mi) ≡

∫∫

41

σ′i(x, y)Ri(x, y;x0, y0; h)dxdy,

Ri(x, y; x0, y0; h) :=
8∑

j=1

FijG|i−j|+1(x, y; x0, y0; h),

σ′i(x, y) :=
8∑

j=1

Fijσj(x, y), U ′(Mi) :=
8∑

j=1

FijU(x, y).
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Solving every of independent integral equations, as the �nal result, it is possible
to reproduce σj(x, y).

Then, without loss of generality let us consider one special case of integral
equation (5) presentation. Namely, taking into account the antisymmetry of
boundary values of potentials on condenser plates (U := U1 = −U2), and in
accordance with this similar properties of (5) solutions, it is possible to represent
(5) in the form as

(Aσ)(x0, y0) ≡
∫∫

41

σ(x, y)R̂(x, y; x0, y0;h)dxdy = U(x0, y0),

(x0, y0) ∈ (0, 1)2,

(6)

where

R̂(x, y;x0, y0; h) :=
2∑

l=1

(−1)l−1
2∑

p=1

2∑

k=1

{
4h2(l − 1)+

+
[
(−1)p−1x + (−1)k−1x0

]2 +
[
y + (−1)ky0

]2
}− 1

2
.

It is easy see that integral equation (6) is an equation with weak singularity
in the kernel. In addition, (6) has mentioned singularity only in one item of
the sum R̂(x, y;x0, y0; h), where k = l = 1, p = 2. Moreover, in the process of
numerical scheme constructing it is necessary to take into consideration special
behavior of desired solution only on S11.

It is known [5] that desired solution σ(x, y) has singularities in the neighbor-
hood of S11 corner point and at the points which border on a straight edge of
S11. In the �rst case, the charge singularity is proportional to ρ−0,7034, and,
in the second case, the charge singularity is proportional to ρ−0,5, where ρ
is the distance from the vertex and straight edge of S11, respectively. These
singularities can be expressed by the following weight function

(1− x)γ + (1− y)γ

[
(1− x)(1− y)

]1/2
(γ = 0, 2966).

This function is applied for mentioned singularities isolation in the notation
of charge distribution density σ(x, y). But such accounting of desired solution
characteristics is rather complicated from practical point of view. So, we apply
the di�erent method, based on progressive analysis and correction of obtained
results.

Using the collocation method under the condition of piecewise-constant ap-
proximation of desired density σ(x, y), two-dimensional integral equation (6)
was reduced to the following system of linear algebraic equations

Nx∑

j=1

Ny∑

i=1

σij

xi+
Hx
2∫

xi−Hx
2

yj+
Hy
2∫

yj−Hy
2

R̂(x, y; x0, y0, h)dxdy = U(x0, y0),
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where Hx := N−1
x , Hy := N−1

y (Nx, Ny ∈ N);

x0 ∈
{Hx

2
(2i− 1)

}Nx

i=1
, y0 ∈

{Hy

2
(2j − 1)

}Ny

j=1
;

σij are approximate values of desired density σ(x, y) at the points of collocation
(x0, y0). In this case, we used uniform subdivision of S11 onto elements, that is
Hx = Hy, and Nx = Ny.

3. A posteriori error estimation of (6) numerical
solution under the condition of 41 irregular

partition onto elements
In numerical solving of integral equation (6) the problem of obtained results

error estimation is actual from practical point of view. Taking into account
a priori information of desired density special behavior, the method based on
experience proved to be the most acceptable. Let us note that stable results ob-
taining is also important problem independently of S11 uniform or nonuniform
partition onto elements.

Let σε(P ) be a numerical solution of integral equation (6) that belongs to the
chosen approximation space. It generates approximate potential value at arbi-
trary point Q between charged condenser electrodes simulated by appropriate
surfaces:

Uε(Q) = (Aσε)(Q).

In addition, general error function eU of integral equation (6) approximate
solution may be represented as [1]

eU = Aσ −Aσε = A(σ − σε) = Aeσ,

where eσ is a solution of such integral equation

(Aeσ)(M) = U − (Aσε)(M), M ∈ S11. (7)

Integral equation (6) solution has irregular behavior near the contour of
unclosed surface S (essentially in the neighborhood of its corner points) [5].
Therefore, the reproduction of error function eU , speci�ed the level of boundary
values satisfaction, is established onto elements De. These elements appear in
the process of surface S sequential nonuniform partition (in the present case,
its congruent component S11). On De the function eU may reach maximum
values. Moreover, on De the function eσ is approximately equal to its value at
checking point T (see �g.1, �g.2):

eσ(T ) =
U − (Aσε)(T )∫

De

|T − P |−1dSP

.
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Fig. 1. Nonuniform partition

Fig. 2. Nonuniform partition in progress

Fig. 3. Checking elements Di

Selecting the furthest strategies of obtained results correction, it is possible
to use various methodologies. Let us consider the method, di�erent from pro-
posed in the paper [2], which is su�ciently e�ective for two-dimensional integral
equations numerical solution. The main idea of this strategy consists of the fol-
lowing. In the process of domain41 nonuniform subdivision let us consider not

55



B.OSTUDIN, YA.GARASYM, A.BESHLEY

only one special element De but some set of elements where the desired function
errors are inadmissible. Taking into account the symmetry of obtained results
it is advisable to select such elements not far from the part of plate contour
(for example, on the last horizontal layer). Let D1, D2, . . . , DN (N ∈ N) be
above mentioned elements (see �g. 3). Then, if we use piece-wise approxima-
tion of eσ and equation (7), it is possible to �nd solution error on every element
Di, (i = 1, N):

eσ(Ti) =
U − (Aσε)(Ti)∫

De

|Ti − P |−1dSP

.

Let us denote by ek the solution error eσ on the element Dk (k = 1, N), that
is ek = eσ(Tk). Then, it needs to calculate the value ξ:

ξ =

√√√√√
N∑

k=1

‖ek‖2

N
.

At that time for the completeness of domain 41 subdivision process the
following condition must be ful�lled

‖ek‖
ξ

· 100% < TOL ∀ek, k = 1, N. (8)

If the condition (8) is ful�lled only for certain elements Dk and appropriate
errors ek, then it is needed later on to eliminate such elements out of previous
de�ned checking. Let us note that the disposition of elements Dk does not
strictly allocate, so its sampling must be realized in various ways. In this
connection, it is always necessary to control the obtained results of calculation.

4. The analysis of numerical experiments
Example 1. Illustration of calculation stability and analysis of results relia-

bility Using piece-wise approximation of σ(P ) (charge distribution density) for
Nx = Ny = 40 (the number of collocation points is 1600) we obtained the
following results:
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Fig. 4. Charge distribution density. Nx = Ny = 40
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Let us note, that uniform subdivision of S11 can be selected so that there
exists a point of collocation which will be present at the next division area. For
example, the following divisions of Nx = Ny = 6, Nx = Ny = 18 contain the
collocation point with coordinates (0.75 0.75). Justi�cation of approximation
schemes stability and hence the approximate solution results of integral equa-
tion solving are shown in the Tabl. 1. Approximative values of density σ(x, y) at
the checking points are not much di�erent from the values which were obtained
in the previous step of division.

Tabl. 1. Charge distribution density. Illustration of calculation stability
Point of collocation (x,y) Nx = Ny

6 18 54
(0.250,0.250) 0.0531427 0.0519844 0.0515285
(0.250,0.917) 0.2005168 0.1459617 0.1482432
(0.917,0.250) 0.2005168 0.1459617 0.1482432
(0.917,0.917) 0.3955893 0.2588432 0.2699086

Absolute error eU of reproduced boundary values for Nx = Ny = 40 is
represented in the following �gure:
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Fig. 5. Absolute error of boundary values. Nx = Ny = 40
Example 2. Illustration of nonuniform partition approach. The comparison

between approaches Nonuniform partition is applied for better approximation
of charge distribution density function and decreasing error function, especially
near the contour of unclosed surface. Two parameters are important for this
approach: the �rst one is initial partition of the surface, and the second is the
number or steps of nonuniform partition; these parameters a�ect to the results
of calculation. Absolute error of reprodused boundary values is shown in the
Fig. 6, in the case when initial partition is Nx = Ny = 2. The number of
iterations (steps) for nonuniform partition is 9.

The results in this �gure re�ect the impact of initial partition parameter
to the error function: error was reduced near the contour of surface but was
not decreased onto others elements. So, next �gure displays the results of
calculation with di�erent initial partition.
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Fig. 6. Absolute error of reproduced boundary values. Nonuniform partition
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Fig. 7. Absolute error of boundary values. First partition (Nx = Ny = 8)
The Fig. 7 presents an absolute error of boundary values for the �rst partition

Nx = Ny = 8 and the number of iteration for nonuniform division is 6.
The following two tables represent comparing of surface partition approaches

(uniform and nonuniform) and summarize obtained results. The tables contain
values of error function at checking points near the contour and comparison of
these tables concludes that nonuniform partition is more e�ective for solving
integral equations of such type.

Tabl. 2. Uniform partition
y/x 0.85 0.95 0.995 0.9995
0.85 0.00303 0.00124 0.08051 0.09443
0.95 - 0.02228 0.10008 0.11801
0.995 - - 0.15808 0.17186
0.9995 - - - 0.18295

The Tabl. 2 represents Nx = Ny = 8. The number of collocation points is 64.
In the Tabl. 3 initial partition Nx = Ny is equal to 2. The number of steps

for nonuniform partition is 4. The number of collocation points is 79.
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Tabl. 3: Nonuniform partition
y/x 0.85 0.95 0.995 0.9995
0.85 0.00385 0.01239 0.04937 0.06633
0.95 - 0.02971 0.04802 0.07266
0.995 - - 0.110306 0.13008
0.9995 - - - 0.14557

So, by the example of the concrete model problem solving it is shown how,
taking into account the speci�city of initial data, to solve the problem of integral
equation special representation. In the process of appropriate numerical scheme
constructing such a representation gives the possibility to essentially simplify
the use of a priori information on desired solution. The last is important for
objectifying various correction procedures of obtained results on the basis of
special estimators. With the help of proposed estimators the e�ective solution
of initial integral equation were received.
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