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ABSTRACT. We investigate the estimation problems of linear functi-
onals from solutions to systems of variational equations in Hilbert
spaces with unknown right-hand sides. The unknown right-hand si-
des and the unknown correlation operator of estimation error are
supposed to belong to the certain sets. It is shown that the linear
mean square estimates of the above-mentioned functionals and esti-
mation errors are expressed via solutions to the systems of variational
equations of the special type. We elaborate the numerical algorithms
for finding such estimates. The obtained results are applied to the
case when the system of variational equations is a stationary heat
equation with right-hand side satisfying to the linearized Navier-
Stokes equation.

KEYWORDS: linear functional, variational equation, observation, mean
square estimate.

PE3IOME. B crarTi mocmimKyoThesa 3a1adi OIIHIOBAHHS PO3B’sI3KiB
BapialiftHIX PiBHAHD B CIIEMIAJBHUX TiIbOEPTOBUX MPOCTOPAX 3 HEBI-
JIOMAMU IIPABUMH YaCTUHAMY Ta HOXHUOKaMU CrocTepekenb. [Ipuiry-
CKA€TDhCs, 10 B MIPABi YaCTUHYU TAKUX PIBHAHBb BXOJSATH BEKTOPH, SKi
B CBOIO Y€pPIy, € PO3B’SI3KaMU BapialliiiHUX PIBHSHb TAKOXK 13 HEBIIO-
MHUMUJ TpaBuMH dacTuHamu. [Ipn yMoBi, M0 HEBioMI BeKTOpHU HaJIe-
2KaTh IPABUM YaCTHHAM BUBYAIOTHCHA CIOYATKY MUTAHHS PO OIIHKU
JIHITHUX HemepepBHUX (DYHKITIOHAJIB Bij PO3B’I3KiB Ta MpaBuX da-
CTHUH TaKUX PiBHAHBb. BBOJATHCA rapaHTOBaHI cepeHBOKBAIPATHIHI
JTIHIIHI OIIHKY Ta TapaHTOBaHI CEPeIHbOKBAIPATUIHI TOXUOKU TAKUX
ominok. ITokazamo, Mo Taki OIMIHKK Ta MOXMOKW OIIHIOBAHHS BHUpPAa-
JKaIOThC depe3 PO3B’I3KN CHCTeM Bapiamiiinnx piBHaHb. [lokazamo
TaKOK, IO TAPAHTOBAHI OIMHKYU JIHIHHIX (DYHKIIOHAIB JAI0Th 3MO-
Iy 3HAMTU rapaHTOBaHI OIIHKYU PO3B’I3KiBBapialiffHUX PiBHSHDL MIPHU
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CITOCTEPEKEHHAX 3 MOXUOKaMu. JIj1s1 HaOIMKEHOTO 3HAXOIKEHHS Ta-
PAHTOBAHUX OIIHOK ITPUBOJAUTHCS CUCTEMA JIHIHHUX aJredbpalaTHux
PIBHSIHDB, Yepe3 Ky BUPAXKAIOTh Taki ominku. /loBoauThes, 1Mo Ha-
OrKeHi OIiHKY 30irafoThest 10 rapanToBanux. Oep:kaHi pe3ysibra-
THU 3aCTOCOBYIOTHCS Y BUMIAKY, KOJIM BapialliiiHe piBHIHHS TOPOIKe-
He KPaoBOIO 33/1a9€I0 U5l CTAIlIOHAPHAPHOI'O PiBHAHHS IEPEHOCY 3
audysieo 3 IPaBoi0 YACTUHOIO, IO € PO3B’SI3KOM JIiIHEAPU30BAHOI'O
cramionapHaoro pisusinist Hap’e-CToKca B yMOBaX HEBU3HAYEHOCTI.
KJIF04OBI CJIOBA: jiHiiiHui DyHKITIOHAJ, BapialliiiHe piIBHSHHSI, CIIO-
CTepeXKeHHs, CePeIHOKBAIPATUIHA OIIHKA.

INTRODUCTION

The problems of optimal estimation of solutions to BVPs for partial di-
fferential equations with unknown parameters arise in geophysics, optics,
acoustics, etc.

In order to reduce the estimation errors, the observation of their soluti-
ons in certain points or domains are needed.

Depending on assumptions regarding unknown parameters and observati-
on errors, there is variety of approaches of solving such problems. In many
cases these approaches are reduced to the estimation of solutions of vari-
ational equations in certain Hilbert spaces.

In the present paper we apply the guaranteed approach for finding
linear mean square estimates of a solution to a system of variational
equations in Hilbert spaces.

1. NOTATIONS

If X is a separable Hilbert space over R with inner product (-,-)y and
norm | - ||x, then by Jx € £(X, X’) we will denote an operator, called
a canonical isomorphism from X onto dual space X', and defined by the
equality (v,u)x = < v,Jxu >xxx» Yu,v € X, where
<z, f >xxxi= f(z) for x € X, f € X', and L(X,Y) is the set of
bounded linear operators mapping X into a Hilbert space Y.

Let D be an open bounded set in R™ with Lipschitzian boundary I'.
Let D(D) (or D(D)) be the space of infinitely differential functions wi-
th compact support contained in D (or D). A continuous linear form on
D(D) is called a distribution on D. We denote by D’(D) the set of di-
stributions on D. If T' € D'(D) we denote by < T, ¢ > its value on the
function ¢ € D(D).

If T € D'(D) the derivative DT = g—; which coincides with the
usual differentiation of continuously differentiable functions, is defined by
<DT ¢ >=—<T,D;p >.

We denote by L?(D) the space of the real functions defined on D
with the second power absolutely integrable for the Lebesgue measure
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dxq ...dx,. This is a Hilbert space with the norm

1/2
el ooy = ( / \u(sc)r?dx)

(u,v)La(D):/Du(:E)v(az) dx.

The Sobolev space H'(D) is the space of functions in L?(D) with deri-
vatives of order 1 also belonging to L?(D). This is a Hilbert space with

the norm
1/2
|ullz1(py = (’uHLQ + Z | Djul|72 D))

and inner product

and inner product

(u, ’U)Hl(D) = (u, U)LQ(D) -+ Z(Dju, Dj’U)Lz(D).
j=1

The closure of D(D) in H*(D) is denoted by H (D).

Denote by 7y a bounded linear operator, called the trace operator,
which maps the space H!(D) into the space L?*(T') such that
You(r) = u(x) for u € D(D). It is known that H}(D) is equal to the
kernal of 7y, i. e. Hj(D) = {u € H'(D) : you = 0}.

We will also use the notation L?(D)™, H(D)", Hj(D)", D(D)" for the
spaces consisting of vector functions u = (uy, ..., u,) whose componets
belong to one of the spaces L?(D), H'(D), H}(D), D(D), respectively,
with usual product norms and inner products (exept D(D)" or D(D)"
which are not normed spaces).

For every v € D'(D) we put

Srat v =\ o 02, )

which defines the linear differential operator denoted by grad from D’'(D)
to D'(D)™.

We define the linear differential operator denoted by div from D'(D)™
to D'(D) by

divv —Zgzz Vv = (v1,...,v,) € D'(D)"

and the Laplace operator A from D'(D)" — D'(D)™ by

81}1 “ 82Un
AV—( 83,7118—‘%3)
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Set V ={u e D(D)", divu =0}, V = closure of V in Hj(D)".
The space V is a Hilbert space with inner product

n

(0, v)) =Y (Dia, D;v) g2 ().

i=1
In [1] it is shown that V = {u € H}(D)", divu = 0}.

By L?(€, X) we denote the Bochner space composed of random' vari-
ables ¢ = £(w) defined on a certain probability space (2, B, P) with values

in X such that ||§||%2(Q7X) = / l€(w)|[3dP(w) < oo. In this case there
0

exists the Bochner integral

Ee — /Qf(w) dP(w) € X (1)

which is called the mathematical expectation or the mean value of random
element &(w) and satisfies the condition

(h,E€)x = /Q (h.€(w))x dP(w) Vh e X. (2)

Being applied to random variable £ with values in R this expression leads

to a usual definition of its mathematical expectation because the Bochner

integral (1) reduces to a Lebesgue integral with probability measure dP(w).
In L?(Q, X) one can introduce the inner product

(i) = / (E@)n@)xdPw) Yene X(Q,X).  (3)

Applying the sign of the mathematical expectation, one can write relati-
onships (1)—(3) as

€122 (0.x) = ElE(@)I%, (4)
(h,E§)x = E(h,§(w))x Vhe X, (5)
(& mizex) = EEW) nw)x V& n e L*(Q, X). (6)

L*(2, X) equipped with norm (4) and inner product (6) is a Hilbert space.

2. STATEMENT OF ESTIMATION PROBLEM
Let V4, V4, Hy, and Hs be Hilbert spaces such that the following inclusi-
ons hold V; € H; and V, C Hy with

[ Ml < el - v and [ [ < coll - [lvs, (7)

where ¢; and ¢y are positive constants.

IRandom variable ¢ with values in Hilbert space X is considered as a function
¢ : Q) = X imaging random events E € B to Borel sets in X (Borel o-algebra in X is
generated by open sets in X).
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Consider the problem: given f; € Hy, fo € Ho, find 1 € Vi, o € Vi,
such that

ar(p1, Y1) = (Bpa + fi,¢¥1)m, Vi € V4, (8)

az(pa,¥2) = (f2,V2)m, Yiho € Vi, 9)

where B € L(H,, Hy). We make the following assumptions on the involved
bilinear forms a; : Vi3 x V; - R and as : Vo x V5 — R:

ai(+,-) and as(-,-) are continuous, that is

My > 0: Vo, 7 € Vi ai(or, 1) < Mi|lodlv ||7ilvs,

ElMQ >0: \V/O'277'2 € ‘/2 CLQ(O'l,Tl) S M2||0-2||V2||7_2||V2'
We also suppose that the following problems: given g; € H;, find ¢; € V;
such that
are well-posed. It follows from this assumptions that problem (8)-(9) is
also well-posed.

We suppose that functions f; and f5 in the right hand sides of equations

(8) and (9) are not known exactly. The estimation problem consists in the
following: from the observations

y=Cei+n, (11)
find optimal in a certain sense estimate of the functional
l(p1) = (lo; 1) m, (12)
in the class of estimates linear w.r.t. observations (11),
1) = (y,wn, +c (13)
under the assumption that errors n = n(w) in observations (11) are

realizations of random variables defined on a certain probability space
(Q, B, P) with values in a Hilbert space Hy over R belonging to the set
Go, and (f1, f2) € G1. Here C' € L(Hy, Hy) is a linear continuous operator,
u € Hy, c e R,

Gy :={(f1, o) € Hi x Hy: (Q:(fy = 1), fr = ),
+ (QQ(fQ - fg)an _fg>H2 < 1}7 (14)

Gy 1= {i] € L*(Q, Ho) : Eq) = 0, E(Qo7, M), < 1}, (15)
lo, [Y € Hy, and fY € H, are given elements, Q1, Q2, and @, are bounded
selfadjoint positive definite operators in Hy, Hs, and H, respectively, for
which there exist bounded inverse operators Q;', Q5 ', and Q.

Definition 1. An estimate

o~
—

l(gpl) = <y7 ﬁ’)Ho +¢ (16)
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is called a minimaz estimate of the [(¢1), if elements u € Hy and a number
¢ are determined from the condition
inf 17
uellirolpeRa(u’ o), (17)
where o(u,c) = sup E[l(p1) — lT(pT)]Q, ©1 1s a solution to

f=(f1.f2)€CG1.m,€Go ~
problem (8),(9) when fi(x) = fi(x), f2(z) = fo(x),

—

1(951) = (g>u)Ho +c, (18)
and y = Cp1 + 1. The quantity
o = [o(a,8)]"? (19)

is called the error of the minimazx estimation of [(p1).

Thus, the minimax estimate is an estimate minimizing the maximal
mean-square estimation error calculated for the “worst” implementation
of perturbations.

3. REPRESENTATION OF MINIMAX ESTIMATES AND ESTIMATION
ERRORS

Introduce bilinear forms af(p;,¢;) in V; x V;, adjoint of a;(v;, 1), by

a; (i, ¥i) = ai(i, 1) Vi, b € VixV;, i=1,2. (20)

Let z1(u) € V1 and 29(u) € Va5 be a unique solution of the problem
aj(z1(w),¥1) = (lo — C*Jpyu, 1), Vi1 € V1, (21)
a5(z(u), o) = (B z1(u), o),  Viba € V2 (22)

where C* : H) — H; is an operator adjoint of C' defined by
(0, C*9)m, =< Cp,g >moxmy,  Yp € Hy, g € Hy

and B* € L(H,, H,) is a linear operator adjoint of B.?
Then the following result holds.

Lemma 1. The problem of minimax estimation of the functional (1)
(i.e. the determination of 4 and ¢) is equivalent to the problem of opti-
mal control of the system described by equations (21) — (22) with a cost

21t is easy to see that, owing to our restrictions on the bilinear forms ai(-,-) and
as(+,-), and on the operator B, problem (21)—(22) is well-posed and, in particular, the
following inequality holds

1Z(@)llvy + 1Z2(w)]lv, < esllulla, (23)
where (Z1(u), Z2(u)) is a solution of problem (21)—(22) at Iy = 0, ¢z = const > 0.
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function

I(“) = (Ql_lzl (u)v 21 (u))H1+
+ (Q3 " 22(u), 22(w) i, + (Qp 'w, u) g, — inf . (24)

u€Hop

Proof. From (71), we have
l(él) - l((ﬁl) = (lOv 951>H1 - (Cgél + ﬁau)Ho —-C
= (lo, P1)m, — < O, Ju,u > Hox H}, —(7,u)g, — ¢

= (lo - C*‘]Houv 351)H1 - (ﬁa U)Ho —C. (25)
Transform the first term in the r.h.s. Make use of equalities (21)-(22) and
(8)-(9) at fi = f1 and fy = f» to obtain

(lo = C" Jrou, @1)m, = ai(21(u), $1) = a1(f1, 21(w) = (BP2 + f1, 21(u))m,
(f1. 21(w) s, + (B@a, 21(w) ity = (fr, 20(u)) iz, + (f2, 22(w)) 1,
= (z1(w), fi= D)+ (22(w), fom f3) (20 (w), )ity +(22(w), £3) - (26)
From (25)(26) it follows that
UG — (30 = (a1(u), i = ),
),

+(22(u)7f~2_fg)H2 ( ( fl)Hl ( ( )7fg)H2_(ﬁ,U)H0_C- (27)
Taking into consideration the relationship D¢ = E(§ —E£)? = E&2 — (E€)?
that couples dispersion D¢ of the random variable & and its expectation
E¢ and equality (5), we obtain from the last formulas
— |1, i = D, + (2lw), fo = )

—2

E (1) = 1)

+(z1(u), )b, + (22(u), £9)m, — (7, u)g — 0‘2 +E|(f,u)ml*.  (28)

Therefore,

inf sup E|l(1) — U($1)]?
CERf (f1,f2)€G1,7€Go

—inf sup MM)f — 0+ (o), fo =

ol F=(f1.f2)€G1

+ (21(u), )+ (22(w), ), — (0w, — ¢

+ sup E |(777 U)Ho |2 : (29)
1€Go
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In order to calculate the first term on the right-hand side of (29) make use
of the generalized Cauchy—Bunyakovsky inequality and (14). We have

it sup [ o - i+ alu) o~ ),
R F=(f1.f2)€Cn
¥ (aal), £, + (o), ), — ()i, — €|

<inf  sup [(Q1 ' z1(w), 21(w) i, + (Q3 ' 22(w), 22(u)) |
R F=(f1.2)€G1

<[(@Q(fr = 1), fr = ) + (Qa(fo— 19), fo — £,
< Q1 21(u), 21(w) my + (Q 22(u), 22(u)) .- (30)
The direct substitution shows that that inequality (30) is transformed to
an equality on the element f(© = ( fl(o), f2(0)), where

. 1
A9 = 3621121(90;“) + 11,

N 1
Y = 5@ el ) + £,

d= [(Ql_lzl(u)v Zl(u))Hl + (Q2_1Z2<u)7 zZ(u))HJ

1/2
Therefore

in1£~ sup (Zl(u)afl_f{))Hl +(22(u)>f2_f20)H2
R F=(f1.f2)€G

2

+ (Zl(u)a f{))Hl + (ZQ(u)v fg)HQ - (ﬁvu)Ho —C

= (Ql_lzl(u)a Zl(u))Hl + (Q2_1Z2(u>7 22(u>>H2 (31)
with
= (21(w), N + (22(u), £2)n,-

In order to calculate the second term on the right-hand side of (29), note
that the Cauchy—Bunyakovsky inequality and (15) yield

sup E |<7717 ul)Ho |2 < (Q(?l% U)HO' (32)
n€Go

It is easy to see that (32) becomes an equality at
70 — vQ
{(Qo"u, w)my 172
and v is random variable with Ev = 0 and E|v|?> = 1. Therefore

sup E ’(ﬁa u)H0‘2 = (Qalu7 u)Hm (33)

n€Go

which proves the required assertion. The validity of Lemma 2.2 follows
now from relationships (29), (31), and (33). O
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Theorem 1. The minimazx estimate of the functional (1) has the form

l(@l) = (y7,&’)Ho + 67 (34)
where
¢= (’217 f{))Hl + (227 f§>H27 U= QOOPh (35)

and the elements Z,p1 € Vi and Zy € Va are determined from solution of
the following uniquely solvable problem:

ay(21,¢1) = (lo — C* I, QoCpr, 1 )m, Vi1 € V1, (
a5(22, ) = (B*21,¢0)u, Yo € V3 (37

a1(p1, 1) = (Q1'21 + Bpa, 1)m, Vb1 € Vi, (

ag(p2, Vo) = (Q5 ' 22, 02, Vi € Va. (

Here py € V5.
The error of estimation o is given by an expression

o= (Up)"”. (40)

Proof. Taking into account the inequalities (7) and (23), one can easily
verify that I(u) is a strictly convex lower semicontinuous functional on

H,. Also
I(w) > Q5w > cllul, Yu€ Hy, c-const.  (41)
Then, by Theorem 1.1 (see [2]), there exists one and only one element
u € Hy such that I(4) = inf,cp, I(u).
Therefore, for any 7 € R and v € H, the following relation is valid

d

El(ﬁ + Tv) = 0, (42)
Since z (0 + 7v) = z1(4) + 721 (v), 22(t +
(21(v), Z3(v)) is the unique solution to (21)—
relation (42) yields

Tv) = 2o() + TZ(v), where
(22) at w = v and [ = 0, the

1d .
0= §EI(U + 70)|r=0

= tim o { [(Q21(0 4+ 7o), 516+ 7)), — (@1 2a(a), 21(0))
Q7 201+ 7v), 201+ 70)) 1y — (@ 22(@), 22(0) s |+
—l—[(@gl(ﬂ—i-ﬂ)) i+ 70) g, — (Qp i, 0) Ho]}
= Q=1 (@), 21(0))m, + (Q (), 2 <v>>H2 Q' v)my:  (43)

Introduce functions p; € Vi and p, € V5 as the unique solution of the
problem

ar(p1, ¥1) = (Q7 'z1(@) + Bpa, 1)u, Vi1 € WA, (44)
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ag(p2, ) = (Q3 22(0), Y2)m,  Viby € V. (45)
Then from (43) we obtain
(Ql_lzl (@)7 Z (U))H1 + (Q2_122(ﬂ)7 22(U>>H2 + (Q(Tlﬁ’ U)Ho
= a1(p1, 21(v)) = (Bpa, 21(v)) + az(p2, 22(v)) + (Qy ', v)
= a;(21(v), p1) — (Bpz, 21(0)) i, + a5(22(v), p2) + (Qy ', v) a,
= —(p1, C*Juv)m, — (Bpa, 21(0))m, + (P2, B*Z1(0) a1, + (Qp 't 0) g
= _(Cpla U>H1 + (Qala’ U)HO =0.
Hence © = QyCp;.
Now let us establish the validity of formula (40). From (24) at u = @
and (35), it follows
o2 = I(0) = (Q7 21, 21)m, + (Qy " 22, 22) m, + (Qp 11, 1)
= (Q1'21, 20)m, + (Q3 22, 20) 1, + (Cpr, QoCp1) g -
Transform the sum of the first and the second terms in the r.h.s. of the
last relation. Make use of equality (38) to obtain
(Q1'21,20) i, + (Q3 22, 20) iy = (Aip1 — Bpa, 21)m, + (Aapa, 22) i,
= a1(p1, 21) — (P2, B 21) 1, + az(p2, 22)
= (p1,lo — C" T, QoCp1)m, = (lo,p1)m, — (Cp1, QoCp1)m,-
From the latter relations it follows that o = I(p). O
Obtain now another representation for the minimax mean square esti-

mate of quantity [(¢;) which is independent of [. To this end, introduce
vector-functions pi, 91 € Vi, Da, @2 € Vo as a solution to the problem

ai(P1, 1) = (C*JuyQoly — Cb1),¢1)m, Vi € V4, (46)
a5 (P2, Vo) = (B*Pr,Y2)m, Yiba € Vs, (47)

ar (1, 1) = (Q7'P1 + Bdo + f1,01)m, Vb1 € V4, (48)
(49)

az (P2, V2) = (Q3 Do + f5.0)m, Vbo € Vi 49

at realizations y that belong with probability 1 to space H.

Note that unique solvability of problem (46)—(49) at every realizati-
on can be proved similarly to the case of (36)—(39). Namely, setting
d = C*Jpu,Qoy, one can show that solutions to the problem of optimal
control of the system

ai(p1(v),¥1) = (d = C*Jpv,¥1)n, VY1 € V4
a3(P2(v), ¥2) = (B*p1(v), 2)m, V2 € Vo
with the cost function
I(v) = (@ (h1(v) = Quff), hr(v) = Quff)m,
+(Q3 (P2(v) — Q2f3), P2(v) — Qo f) my + (Qp v, 0y — vienzgo
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can be reduced to the solution of problem (46)—(49), where the optimal
control v is expressed via solution to this problem as v = QyC'¢1; the
unique solvability of the problem follows from the existence of the unique
minimum point % of functional (v).

Theorem 2. The minimaz estimate @ of the functional (1) has the
form
l(p1) = U(¢1), (50)

where element o1 € Vi is determined from the solution to the problem
(46)—(49). The random fields p1, p1 and pa, P2, whose realizations satisfy
problem (46)—(49), belong to the space LAQ,Vy) and LA, V3), respectively.

Proof. By virtue of (35), (46)—(49), and (36)—(39),

—
—

le1) = (Y, W)m, + ¢ = (Y, QCp1)m, + ¢ =
(C* TuyQoY; p1)m, + ¢ = ay(Pr, p1) + C* T, QoC' o1, p1)m, + €
= a1(p1, p1) + (C* T, QoCP1, p1)m, + ¢
= (Q1'21 4 Bp2,p1)m, + (Cp1,QoCpr)m, + ¢
= (Q1'P1, 21) 1, + (B*P1, p2) i, + (Ce1, QoCpr) i, + €
= a1(p1, 21) — (Bo2, 20)m, — (1, 20) 1 + a3(P2, p2) + (Cp1, QoCp1) e + €
= aj(21,¢1) — (P2, B 20, — (fY, 210 + a2(pa, Do) + (Cé1, QoCpr)m, + €
= (lo — C"Ju,QoCp1, $1) 1, — a3(Z2, P2)
—(f1, 21) i, + az2(p2, P2) + (C 1, QoCpr)y + €
= (lo, 1)1, — a2(P2, 22) = (1, 20)m, + (Q5 " 22, P2, + ¢
= (lo, 1), — (Q3 P2y 22) by — (f Z2)m, — (fY 20) 1 + (Q2 ' 22, Do), + €
= (lo, 1)1, = (1) O

4. NUMERICAL ASPECTS

Using the Galerkin method for solving the aforementioned equations,
we obtain approximate estimates via solutions of linear algebraic equati-
ons and show their convergence to the optimal estimates.

Introduce a sequence of finite-dimensional subspaces V" in V', defined
by an infinite set of parameters hq, ho, ... with limy_,qhy = 0.

We say that sequence {V"} is complete in V, if for any ¢ € V and € > 0
there exists an i = h(p,€) > 0 such that infyeyn || — [y < e for any

h < h. In other words, the completeness of sequence {V"} means that
any element ¢ € V may be approximated with any degree of accuracy by
elements of {V"}.
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Take an approximate minimax estimate of {(¢1) as

—

(1) = (y, 0"y +

where

¢= (ZA/{L) f{))Hl + (237 fg)Hza ah = Q()Cpllla

and elements 2 pt € V', 28 € V] are determined from the following

uniquely solvable system of variational equalities

ai (21, ¢1) = (lo = C* T, QoCPY, 1), Vi € V', (51)
a5(25, ) = (B2}, o)n, Viby € V' (52)
ar(p}, ¢1) = (Qy 2] + Bpy, 1), Vin € VY, (53)
as(ph, ) = (Q3 25, o),  Viba € V', (54)

where pi € VJ'. Then the following results hold.

Theorem 3. Approzimate minimaz estimate of I"(¢1) of l(p1) tends to

a minimaz estimate (1) of this expression as h — 0 in the sense that

—

lim E|7*(i21) — (1) = 0, (55)
and
lim B[ (01) — 1(01)]? = E|i(ip1) — 1(01)] (56)

h—0

Let us formulate a similar result in the case when an estimate of the
state ¢y is directly determined from the solution to problem (46)—(49).

Theorem 4. Let o' € V' and @4 € VJ' be an approzimate estimates
of the functions @1 and @9, respectively, which are determined from the
solution to the variational problem

a; (P, ) = (C* T, Qoly — CQY), )y Vi € VI, (57)
as(py,1h2) = (B*PY, 2)u, Viba € V3, (58)
a1 (P, 1) = (QU'PY + B@y + fld)m Vi € VI, (59)
ar(3,2) = (Q3 D5 + 3, 05)m,  Vn €V, (60)
where pi € VI* and pi € V.

Then
161 — Pillva + P2 — @5llv, = 0 as h— 0.
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The proofs of Theorem 3 and Theorem 4 are similary to the proof of
Theorem 1.3 from [4].

The problem of finding 27, ph € V{* and 28 ph € V) from (51)-(54)
is equivalent to determination of coefficients in their expansions by basis
elements of the spaces V/* and VJ* from the corresponding system of linear
algebraic equations.

Introducing the basises in the spaces V" and VJ, problem (51)—(54)
can be rewritten as a system of liner algebraic equations. To do this, let
us denote the elements of the basis in V" by &} (iy = 1,..., N;) and in V!
by €2 (iy = 1,..., Ny), where N; = dim V", Ny = dim VJ*. The fact that
zn oph and 22 pt belong to the spaces V/* and Vi, respectively, means
the existence of constants z; ,p;, and z7,p7, such that

N N2 N
Zl - Z 2“511, pl Zpillgilp 23 = Z 21‘2251'227 pIZl = Zp?gé-’li'
=1 i1=1 i=1 ia=1
Settlng in (51)*(54) ’l/}l = 5111 (]1 = 1, ey Nl) and wg = ]1-2
(jo = 1,...,Ny), we obtain that finding 27 p? 22 pl is equivalent to
solving the following system of linear algebraic equations with respect
to coefficients 2 , p;, 22, p;, (1 = 1,...,Ny,ip = 1,..., Np) of expansi-
ons (61):

Za]1l1 7,1 +Zb11]1pzl gj17 jl = 1a'-->N1a

i1=1 11=1
Na
z: Joiz 22+§ :01111 11: , Je=1,..., Ny,
io=1 11=1
Nl N1
§ 1 1 § 2 : .
a’iljlpil + dll]l i1 + 612]1p12 - 7 J1 = ]-;"'7N17
i1=1 i1=1 12=1
N2 N2
2 : 2 2 2 : 2 .
aizjzpiz + hinlziQ _07 J2 = 17"'7N27
i9=1 io=1

where
aj; =a(&,6), ia=1,...,M,
al;, = ax(&,65,), 2 j2=1,...,Na,
bivjy = (C* Ty QoCEL & )y, i1, i =1, Ny,
Ciyjy = —(B” f“, ]2)H27 11=1,...,Ny, Jo=1,..., Ny,
diyj, = —(Q1 f“,fﬁ)Hl, 1,51 =1,..., Ny,
Cini1 = —(BfiZ,gjl)Hl, io=1,...,Ny, j1=1,..., Ny,
hiyj, = —(Q3 fzgvgjg)HQ, t2,J2 = 1,..., Ny,
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and
9j1 = (ZO?fjl'l)H“ jl = ]., Ce ,Nl.

Analogously, representing the elements p?, @ ph o as

Ny
szl i1 (151 Z@zl 1117 ﬁg - szg 129 952 Z(tpzz 127

i1=1 i1=1 t9=1 ia=1

we rewrite problem (57)—(60) as the following system of liner algebraic
equations with respect to the coefficients ﬁill, 95111 , ]3222, @22 of the expansions

(62):

M
E : j111p’L1+ E bz1]19011 95, J1 = 17'-'aN17
11=1 11=1
N2
E : ]212p’L2 + E C'll]lpzl - 7 J2 = 17 cee 7N27
12=1 11=1
Nl N1 NQ
1 ~1 ~2 ~2 1 s
> al Gl + > dig L+ Y ennfh =q), ji1=1,...,Ny,
i1=1 11=1 i2=1
N2
+ > hopbh, =4, Jj2=1,...,N
a’szzgp’bz 12]1pi2 - Qj27 J2=1,...,1Ng,
io=1 i2=1

where
Q;1:<f{)7£}1)H17 jlz]-)"'lea qjl‘gz(fga€]22)H2a j2:17"'aN27

gjl = (C*JHoQoyag;l)Hla jl = 17"'7N1-

5. COROLLARY FROM THE OBTAINED RESULTS
Setting in (8)-(9) H, = LX(D), V; = HY(D), Hy = L2(D)", V, =V,
¥1 :val :w EH{%(D)a P2 =V = (U17"'7vn)7 w2:u: (ula"'aun) €
V. h=fel*D), f=feL*D)",

ai(p1, 1) = ar (T, )

:/ (Zaa:zgi g“i(ﬂf’

a2(902;¢2) = a2(va 11) - V((V7u>> Vu € ‘/:

B:L*(D)" — L*(D), Bgy=Bv=>Y v(z)gx),

=1

(x)sz) dx Vi € Hi(D),
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where p(x), g1(z), ..., ga(z), and v = (91(z), ..., U,(x)) are given bounded
measurable functions in D, v = const > 0,> we arrive at the estimation
problem of the form: given

(fvf)EGla y:CT+77> (64)

where observation error 1 in (64) is a realization of stochastic prosess
belonging to Gy, find the minimax estimate of the quantity

I(T) = /D Io(2)T(x) da, (65)

where function T € H}(D) satisfies to the following uniquely solvable
variational problem:
(x)T¢> dx

T O -
/ (Z ax,a;i ;”’(x)
-/ <f<x>+zvi<x>gi<x>) vy de € HY(D), (66)

v((v,u)) = (f, u)LQ(D)n Vue V. (67)
Here |y € L*(D) is a prescribed function, v € V,

Gy = {(f.f): f e L}(D),f € L*(D)",
(Q1(f—fo)af—fo)L2 +(Qof — £, — fo)r2pyn < 1} (68)

fo € L*(D) and fy = (fo1,..., fon) € L*(D)"™ are given functions, @,
and @, are bounded selfadjoint positive definite operators in L?(D)™ and
L%(D), respectively, for which there exist bounded inverse operators Q;"*
and Q5.

Definition 1 of the the minimax estimate transforms in the considered
case as follows:

3the bilinear form a1 (T,1)) is supposed to be such that homogeneous variational
problem

n

"L OT Oy _
/D< %@+;m(> Lo+ ola )m) dr =0 Vi € Hg(D)

=
has only the trivial solution 7' = 0. From this suggestion it follows (see [1]) that
nonhomogeneous variational problem

/(ngzgﬁi z:: 1/””’ )T1/’> dfﬂ:/Dgi/fdx Vg € HE(D)  (63)

has a unique solution T' € H{ (D) for any function g € L?(D). Sufficient conditions for
uniqueness, and hence solvability, of the problem (63) are given by Theorem 2.1 in [3].
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An estimate

UT) = (y, @), + ¢ (69)
is called a minimax estimate of the [(T), if elements 4 € Hy and a number
¢ are determined from the condition

inf
ueIIJI(J17ceR o (u,c), (70)
where -
o(u,c) = sup E[I(T) — (1)),

f=(f£)€G1,7,€Go
T is a solution to problem (3)~(67) when f(x) = f(x), f(z) = f(z),

—

UT) = (5, w)m, + ¢, (71)
and
§=CT+1.
The quantity
o = [o(i,¢)]Y? (72)

is called the error of the minimax estimation of I[(T).

Reasoning as in the proof of Lemma 2.1 from [1], we can prove that
problem (66)-(67) is equivalent to the following system of heat and Stokes
equations: 4

SAT4Y B G + T = (V@) g + 1) B D, (73

T=0 on T, (74)
—vAv+gradp=f in D, (75)
divv=0 in D, (76)
v=0 on I (77)

in the sense that if 7" and v satisfy (3)—(67) then they satisfy (73)—(77)
and vice versa. Here by a solution of the system of equations (73)—
(77) we mean a pair of functions (T,v) € H}(D) x HL(D)™ satisfy-
ing these equations in the following weak sense: there exists a unique
(up to a constant) function p € L?*(D) such that —vAv+gradp= f
in the distributive sense in D; functions 7" and v satisfy (73) and (76)
in the distributive sense in D; boundary conditions (74) and (77) are
understood as 7' = 0 and yov = 0.

“From physical point of view scalar functions T, p and vector-function v represent
the temperature, the pressure, and the velosity of fluid, respectively, which are defined
in the domain D and the positive constant v is the coefficient of kinematic viscosity.

100



THE MINIMAX APPROACH TO THE ESTIMATION ...

Taking into account the notations mentioned above, one can easely
verify that the following assertions are direct consequences of the previous
theorems.

Theorem 5. The minimaz estimate of the functional [(T) has the form

WT) = (y,0)m + ¢, (78)

where

i~ [ a@h@ ds+ [ @@ @) dz, 0=QCn, (1)

and the functions %y, py € HY(D), and zy = (252),...,27(12)) € V are

determined from solution of the following uniquely solvable variational
problem.:

821 a% G5 Gw
/ (Z oz, Oz, ;U £ +021¢1>
_ / (o — C* T, QoCpi ) dz Yabn € HA(D), (80)
D
o' 92 oyl 922 oy
VZ / <8xz ox; + ox;, 0x; Tt ox; 0x; du

:Z/élgid)f)dx Vaby = (02 0P @) eV, (81)
i=1 YD

Op1 0 - 8
/ Z D1 % p1w1+PP1¢1 dx
ox; (99(;2 P
= / (Q;lmz;p?’gi) Yide Y, € Hy(D), (82)
b i=1

Vi / o ov? o o ol ow?

=2 /D@;lzzwi” dv Wy = (W2, 057, ) e V. (83)
=1

Here py = (pf), o ,pg)) eV.
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—
p——

Theorem 6. The minimazx estimate [(T') of I(T) has the form

—
———

UT) =UT), (84)

where function = H}(D) is determined from the solution to the problem

Op1 Oy _ Oy .
/ (Z Ox; Ox; ;%m ox; ) du
- / C* TuQly — CT)ynde Vi, € HA(D), (85)
D
A(Q a¢ A(Q)G (2) aA(2)a (2)
1 Ops” Oty pr” O,
_Z/plgﬂp Ve Wiy = @20 e@) eV, (36)
oT o
/ (Z ox; 0x; ;vl >
=/ (Qflﬁl +Z@§2)gz‘+fo> Urdr Vi € Hy(D), (87)
D i=1
Z / 00, awl LTl L XA W

_Z/ (Q2'Po)i + for) i de Wby = (017,47, 4P e V.
(88)

Here p1 € HY(D) pa = (p2,....pP) €V, ¥ = (d1,...,0,) € V.

If we put approximate minimax estimate of [(T") as

—

lh(T) = (ya ah)Ho + éha

where

é:/ szodx+2/ 2 foida, 0" = QCp,
D i=1 7D
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and elements 27, pi € {H}(D)}", 2l = (2},,...,2},,) € V" are determi-
ned from the following uniquely solvable system of variational equalities:

Oz} Oy 5 s o
/(zkma% gy”a oA
= [ (lo — C*JgQCpM )by dx  Vapy € {HF(D)}", (89)
D
822 ' awl | 0%y o) e

ZZ / g de Yy = (WP 0P, . 9P) e VE(90)
i=1 7D

op" 0 - 8
/(Xhﬁéﬁ 4 m%+wm0
= / (QI%HZ@%) drde Y € {HY(D)Y, (91)
D i=1

L (0phaou | onh, vy Ol O

n

= / Q12w dr Wby = (P WP wP) e VE(92)
=1

D

where p} = (p’gvl, N pgn) € V" then the following result is valid.

Theorem 7. Approzimate minimax estimate oflh(/?) of I(T) tends to a

———

minimazx estimate [(T') of this expression as h — 0 in the sense that

—

lim B|i*(T) — ()| =0, (93)
and
lim E|I*(T) — {(T)|? = E[I(T) — I(T)|* (94)

h—0

Let us formulate a similar result in the case when an estimate of the
state (T, v) is directly determined from the solution to problem (85)—(88).
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Theorem 8. Let T" € {HYND)Y' and ¥" = (oh,...,0") € V" be an
approximate estimates of the functions T € HI(D) nd v € V determined
from the solution to the variational problem

. 8]5? 8¢1 — ~h @Z}l ~h
A (il 8IZ (’“):E, + zzl ViP1 g, 8 +Pp1¢1 dr
- / C* Iy Qly — CT"y dz Wy € {HA(D)}", (95)
D
oph, o Op, oy 0Py OV
21/ ((9@ ox; + ox; Ox; ot o 0x; 8@ dr
=3 [ o dr v = @l uP) eV (00
i=1 /D
OT" O,
/ (Z dx; Oz, Z::” )
= / (Qflﬁ?+zﬁﬁgi+fo> Urde Vi € {H)(D)}Y", (97)
D

=1

aoh o' 6@3 o Ao o)
VZ/ (89&1 ox; (%Ui ox; Tt ox; 0x; du

—Z/ (Q5'Ph)i+ for) 0 dr Wby = ({0, . Py e Vi (98)

where pi € {Hy(D)}" and py = (p 1, ..., p5,). Then
1T — Tl gypy + IV = %"y =0 as h—0.

Denoting the elements of the basis in {Hj(D)}" by and V" by &
(iy =1,...,N;) and in V" by 5 = ( 1217""51'227n) (ia =1,...,Ny),
N; = dim {H YD)}, Ny = dim Vh, respectively, we obtain the following
expansmns

N2 N2
E E ~h __ E 22 ¢2 h __ E 2 2
117 p'll 117 Z2 - Z’i2€i27 p2 - piggig'

i1=1 i1=1 io=1 io=1
and
Ny N2
§ § 1 1 E E “ 2
pll 217 n1§i17 p’LQ 12’ U'i2€i2'
11=1 i1=1 ig=1 iog=1
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for solutions of problems (89)-(92) and (95)-(98) in which constants z; ,
pzll, 2?2, p?Q and ]5111 Tzll, ]5?2, 0;, are found from systems of linear algebraic

equations
E :a]111 11 + § bll]lpzl 95, 1= 17 cee 7N17
i1=1 11=1
N2
E:azm 12+§ Civj1 % 11: s ]2:1a---7N2a
i0=1 11=1
Nl N1
1 1 .
Zailjlpil + 2 :dll]l “iy + E :el2j1ng - 07 J1 = 7"'7N17
i1=1 i1=1 io=1
N2 N2
2: 2 .2 2: 52 .
aizj2pi2 + hinlziz = O, Jo = 1, ey N27
i2=1 i10=1
and
N1
E 1 ~1 2 ~ .
aj1i1p’bl + bll]l i1 gjl? jl - 17 e 7N17
i1=1 11=1
Na
§ : _]ngplg + E :Clljlpzl - 7 J2 = 17"‘7N27
i2=1 11=1
_ 1 .
2 :alljl i T E :dlljlpzl + E 61231 =q;, Ja=1...,Ny,
i1=1 i1=1 ig=1
Na
2 9 .
Z @iy gy 22 + Z h%2j1pz‘2 =G, J2= 1,..., N,
ig=1 =1

respectively, where

n agl n 78531 1 11 o
“]1 _/ ( 8x, Ox; ;vi ox; & 6.8 | de, =1,

N17

Z/ 1 ?21+85’22 ”2+ +a§’2’ 0 O dz,igjy =1,...N
12]2 3371 813z (91:2 8561 8131 8;1;’1 a2 et

biljl :/ C*JHQC€31(ZL‘)§]11($) dr, i1,51=1,..., Ny,
D
Ci1j2:_2/gi§i11§72'2,idx7 i1:17"'7N17 j2:]~7"'7N27

11]1: /Ql 11 31( )d.ﬁl?, ilajlzla-"aNla
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€irj1 — —Z/ 5322&915]11 dl’, ig = ]_, .. .,NQ, jl = 1, e ,Nl,

Z2J2 = Z/ Q2 1512 ]2, 12,J2 = 17"'7N27

and

9 = /logjldl’ j1:17"'7N17

q]l /fogld‘rJ j1:17"'7N17

q;QZZ/fOlgjgldx j2:17"'7N27
i=1 YD
gj, = / C*JIuQy(z) jll(x) de, j1=1,..., Ny.
D
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