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BOUNDARY VALUE PROBLEM FOR THE
TWO-DIMENSIONAL

LAPLACE EQUATION WITH TRANSMISSION CONDITION
ON THIN INCLUSION

Yu.M. Sybil, B. E.Grytsko

Ðåçþìå. Ðîçãëÿíóòî çàäà÷ó äëÿ ðiâíÿííÿ Ëàïëàñà â îáìåæåíié äâîâè-
ìiðíié Ëiïøèöåâié îáëàñòi ç òîíêèì âêëþ÷åííÿì, íà ÿêîìó çàäàíà òðàíñ-
ìiñiéíà ãðàíè÷íà óìîâà, òîáòî óìîâà, ùî ìiñòèòü ÿê ñòðèáîê íîðìàëüíî¨
ïîõiäíî¨, òàê i ãðàíè÷íå çíà÷åííÿ øóêàíî¨ ôóíêöi¨. Äîâåäåíî åêâiâàëåíò-
íiñòü çàäà÷i ó äèôåðåíöiàëüíîìó ôîðìóëþâàííi òà âiäïîâiäíî¨ âàðiàöiéíî¨
çàäà÷i. Äîñëiäæåíî ïèòàííÿ iñíóâàííÿ òà ¹äèíîñòi ðîçâ'ÿçêó ïîñòàâëåíî¨
çàäà÷i ó âiäïîâiäíèõ ôóíêöiîíàëüíèõ ïðîñòîðàõ. Íà îñíîâi iíòåãðàëüíîãî
ïîäàííÿ ðîçâ'ÿçêó âèõiäíà äèôåðåíöiàëüíà çàäà÷à çâåäåíà äî ñèñòåìè
ãðàíè÷íèõ iíòåãðàëüíèõ ðiâíÿíü. Ïîáóäîâàíî àëãîðèòì ÷èñåëüíîãî ðîç-
â'ÿçóâàííÿ îòðèìàíî¨ ñèñòåìè iíòåãðàëüíèõ ðiâíÿíü ìåòîäîì êîëîêàöi¨.
Ïðåäñòàâëåíî ÷èñåëüíi ðåçóëüòàòè íàáëèæåíîãî ðîçâ'ÿçóâàíÿ äåÿêèõ êîí-
êðåòíèõ ãðàíè÷íèõ çàäà÷.
Abstract. We consider boundary value problem for Laplace equation in
bounded two-dimensional Lipschitz domain with thin inclusion. Transmission
boundary condition upon it consists of the jump of normal derivative and the
meaning of boundary value of seeking function. We prove the equivalence
of initial boundary value problem and connected variational problem. As a
result we obtain existence and uniqueness of solution of the posed problem in
appropriate functional spaces. Based on the integral representation formula
the considered boundary value problem is reduced to the system of bound-
ary integral equations. We construct the algorithm of numerical solution of
obtained system by collocation method. Our approach is illustrated by some
numerical examples.

The numerical results show that the proposed methods give a good accu-
racy of reconstructions with an economical computational cost.

1. Introduction
Boundary value problems for the second order elliptic equations with trans-

mission boundary conditions in nonsmooth domains are important class of
boundary value problems and were considered by many authors [1]- [4], [7, 8].

We consider a special case of the transmission conditions when they are posed
on an open Lipschitz curve. From the mathematical point of view such kind of
problem describes stationary temperature �eld in domain with thin inclusion
when the temperature passing through this inclusion is continuous and the heat
�ux is discontinuous and proportional to the boundary value of temperature.

Key words. Laplace equation; transmission condition; variational problem; open curve.
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In oder to obtain convenient mathematical model for this physical problem it's
useful to present thin objects as inclusion or crack like an open curve. As a
result we get essentially unregular domain and need to introduce corresponding
trace maps and appropriate functional spaces [1, 6].

In present paper we use a variational formulation of the posed boundary value
problem with transmission condition which gives us opportunity to obtain the
existence and uniqueness of solution.

2. Functional spaces and trace operators
Let Ω+ ⊂ R2 be a bounded connected Lipschitz domain. This means that

its boundary curve Σ is locally the graph of a Lipschitz function [5, 6]. Let us
note that Σ can be piecewise smooth and have corner points. Ω+ = Ω+ ∪ Σ.
We suppose that S is an open Lipschitz curve with the end points c1 and c2,
S = S ∪ {c1, c2} and S ⊂ Ω+. We denote Ω = Ω+ \ S and consider S as a part
of a some closed bounded Lipschitz curve Σ0 = S ∪ S0, Σ0 ⊂ Ω+.

Since Σ and S are Lipschitz almost everywhere we can de�ne outward point-
ing vector of the normal ~nx, x ∈ Σ or x ∈ S. Depend on the direction of ~nx,
x ∈ S, we consider S as a double sided curve with sides S+ and S−.

In Ω+ we consider the Laplace operator

Lu = −∆u = −
2∑

i=1

(
∂u

∂xi

)2

and connected bilinear form

a(u, v) = (∇u,∇v)L2(Ω+) =
∫

Ω+

{
2∑

i=1

∂u

∂xi

∂v

∂xi

}
dx.

We use the Hilbert spaces H1(Ω+) and H1(Ω+, L) of real functions with
norms and inner products

‖u‖2
H1(Ω+) =

∫

Ω+

{|∇u|2 + u2
}

dx, (u, v)H1(Ω+) =
∫

Ω+

{(∇u,∇v) + uv} dx,

‖u‖2
H1(Ω+,L) = ‖u‖2

H1(Ω+) + ‖Lu‖2
L2(Ω+),

(u, v)H1(Ω+,L) = (u, v)H1(Ω+) + (Lu,Lv)L2(Ω+).

The trace operators γ+
0,Σ : H1(Ω+) → H1/2(Σ) and γ+

1,Σ : H1(Ω+, L) →
H−1/2(Σ) are continuous and surjective [5, 6]. Here γ+

1,Σu ∈ H−1/2(Σ) =
(H1/2(Σ))′ and coincides with ∂u

∂nx
for u ∈ C1(Ω+).

Let us denote by C∞
0 (Ω) the class of in�nitely di�erentiable functions with

compact support in Ω. We introduce the Hilbert spaces H1(Ω) and H1(Ω, L)
of real functions with norms

‖u‖2
H1(Ω) =

∫

Ω

{|∇u|2 + u2
}

dx, (1)

‖u‖2
H1(Ω,L) = ‖u‖2

H1(Ω) + ‖Lu‖2
L2(Ω),
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where derivatives ∂u
∂xi

∈ L2(Ω) are de�ned as
(

∂u

∂xi
, ϕ

)

L2(Ω)

= −
∫

Ω
u

∂ϕ

∂xi
dx = −

(
u,

∂ϕ

∂xi

)

L2(Ω)

for all ϕ ∈ C∞
0 (Ω).

We consider some trace maps in Ω. We denote γ±0,S and γ±1,S the restrictions of
trace maps γ±0,Σ0

and γ±1,Σ0
on S respectively [9]. Then we have γ±0,S : H1(Ω) →

H1/2(S) and γ±1,S : H1(Ω, L) → H−1/2(S).
We introduce the space

H1
0 (Ω) = {u ∈ H1(Ω) : γ±0,Su = 0, γ+

0,Σu = 0}
and denote dual space H−1(Ω) = (H1

0 (Ω))′. We also have that H1
0 (Ω) is a

closure of C∞
0 (Ω) in the norm (1).

In what follows we use the next trace maps: [γ0,S ] = γ+
0,S − γ−0,S , [γ1,S ] =

γ+
1,S − γ−1,S . Analogously as it was obtained in [9, 10] for R3 we can show that

[γ0,S ] : H1(Ω) → H
1/2
00 (S), [γ1,S ] : H1(Ω, L) → H

−1/2
00 (S),

where H
1/2
00 (S) = {g ∈ H1/2(S) : p0g ∈ H1/2(Σ0)}. Here p0g is extension by

zero of the function g on S0. The norm in H
1/2
00 (S) is given as

‖g‖
H

1/2
00 (S)

= ‖p0g‖H1/2(Σ0).

H
−1/2
00 (S) = (H1/2(S))′, H−1/2(S) = (H1/2

00 (S))′.
We have the �rst Green's formula for bounded domain with an open curve

which in presented case for u ∈ H1(Ω, L) and v ∈ H1(Ω) has the following
form:
a(u, v) = (Lu, v)L2(Ω) + 〈γ+

1,Su, [γ0,S ]v〉+ 〈[γ1,S ]u, γ−0,S ]v〉+ 〈γ+
1,Σu, γ+

0,Σv〉. (2)

Here 〈·, ·〉 are relations of duality between H
1/2
00 (S) and H−1/2(S), H1/2(S) and

H
−1/2
00 (S), H1/2(Σ) and H−1/2(Σ) respectively.
Let Ω1 ⊂ Ω+ be a Lipschitz domain bounded by the closed curve Σ0. Ω1 =

Ω1 ∪ Σ0, Ω2 = Ω+ \ Ω1. We denote by ui the restriction of u ∈ H1(Ω) to Ωi,
i = 1, 2. It's obviously that ui ∈ H1(Ωi), i = 1, 2.

Lemma 1. The trace map γ−0,S : H1(Ω+) → H1/2(S) is continuous and sur-
jective.

Proof. Let g ∈ H1/2(S) be an arbitrary function. We denote by pg ∈ H1/2(Σ0)
the extension of g on Σ0. The trace map γ−0,Σ0

: H1(Ω1) → H1/2(Σ0) is con-
tinuous and surjective. Thus there exists function u1 ∈ H1(Ω1) with trace
γ−0,Σ0

u1 = pg and
‖pg‖H1/2(Σ0) ≤ c‖u1‖H1(Ω1). (3)

Analogously there exists the function u2 ∈ H1(Ω2) that γ+
0,Σ0

u2 = pg. Thus we
have function u ∈ H1(Ω+) where ui are the restrictions of u to Ωi, i = 1, 2.
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Then from (3) we obtain
‖g‖H1/2(S) = inf

pg∈H1/2(Σ0)
‖pg‖H1/2(Σ0) ≤ c‖u1‖H1(Ω1) ≤ c‖u‖H1(Ω+).

Here c - some positive constant. ¤

3. Boundary value problem with transmision boundary
condition and it's variational formulation

Let us state the following boundary value problem in domain Ω.
Problem T . Find a function u ∈ H1(Ω, L) that satis�es

Lu = −∆u = 0 in Ω,

[γ0,S ]u = 0, [γ1,S ]u + λγ−0,Su = f,

γ+
0,Σu = g.

Here f ∈ H
−1/2
00 (S), g ∈ H1/2(Σ) and λ ∈ C(S̄) are given.

A partial case of the problem T when γ+
0,Σu = 0 we denote as problem T0.

We can connect with problem T0 the next variational problem.
Problem V T0. Find a function u ∈ H1

0 (Ω+) = {u ∈ H1(Ω+) : γ+
0,Σu = 0}

that satis�es
b(u, v) = l(v)

for every v ∈ H1
0 (Ω+).

Here
b(u, v) = (∇u,∇v)L2(Ω+) + (λγ−0,Su, γ−0,Sv)L2(S),

l(v) = 〈f, γ−0,Sv〉. (4)

Lemma 2. If λ ∈ C(S̄), λ(x) ≥ 0, x ∈ S̄, then bilinear form b(u, v) : H1
0 (Ω+)×

H1
0 (Ω+) → R is continuous and H1

0 (Ω+)-elliptic.

Proof. Since trace map γ−0,S : H1
0 (Ω+) → H1/2(S) is continuous we have

|(λγ−0,Su, γ−0,Sv)L2(S)| ≤ M‖γ−0,Su‖L2(S)‖γ−0,Sv‖L2(S) ≤
≤ M‖γ−0,Su‖H1/2(S)‖γ−0,Sv‖H1/2(S) ≤ Mc‖u‖H1

0 (Ω+)‖v‖H1
0 (Ω+),

where M = maxx∈S̄ |λ(x)|.
|(∇u,∇v)L2(Ω+)| ≤ ‖∇u‖L2(Ω+)‖∇v‖L2(Ω+) ≤ ‖u‖H1

0 (Ω+)‖v‖H1
0 (Ω+).

Thus we obtain
|b(u, v)| ≤ (Mc + 1)‖u‖H1

0 (Ω+)‖v‖H1
0 (Ω+).

If λ(x) ≥ 0, x ∈ S̄, then using Friedreich's inequality in H1
0 (Ω+) we can get

b(u, u) = ‖u‖2
L2(Ω+) + ‖λ1/2γ−0,Su‖2

L2(S) ≥ c‖u‖2
H1

0 (Ω+).

Thus b(u, v) is H1
0 (Ω+) - elliptic. Here c - some positive constants which don't

depend on u and v. ¤
Theorem 1. Problems T0 and V T0 are equivalent.
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Proof. Let u be a solution of the problem T0. It means that u ∈ H1(Ω, L) and
[γ0,S ]u = 0, γ+

0,Σu = 0. Thus u ∈ H1
0 (Ω+). From the �rst Green's formula

(2) we have b(u, v) = l(v) for every v ∈ H1
0 (Ω+). Thus u is a solution of the

problem V T0.
Let now u ∈ H1

0 (Ω+) be a solution of the problem V T0. Then for every
v ∈ H1

0 (Ω+) we have
(∇u,∇v)L2(Ω+) = 〈f − λγ−0,Su, γ−0,Sv〉. (5)

By de�nition 〈Lu, v〉 = (∇u,∇v)L2(Ω+) for every u ∈ H1(Ω+) and v ∈ H1
0 (Ω+).

Here Lu ∈ H−1(Ω+) = (H1
0 (Ω+))′. If v ∈ C∞

0 (Ω) from (5) we can get the
following relation:

(∇u,∇v)L2(Ω+) = 〈Lu, v〉 = 0.

It means that Lu ∈ H−1(Ω) = (H1
0 (Ω))′ and Lu = 0 in Ω.

Since u ∈ H1
0 (Ω+) it follows that [γ0,S ]u = 0. Then from the �rst Green's

formula (2) for arbitrary v ∈ H1
0 (Ω+) we can get:

〈[γ1,S ]u− f + λγ−0,Su, γ−0,Sv〉 = 0.

The trace map γ−0,S : H1
0 (Ω+) → H1/2(S) is surjective. Thus 〈[γ1,S ]u − f +

λγ−0,Su, g〉 = 0 for arbitrary g ∈ H1/2(S). It gives us that [γ1,S ]u + λγ−0,Su = f
and as a consequence we obtain that function u is a solution of the problem
T0. ¤
Theorem 2. If λ ∈ C(S̄), λ(x) ≥ 0, x ∈ S̄, then problem V T0 has a unique
solution for arbitrary f ∈ H

−1/2
00 (S).

Proof. Lemma 2 gives us that the bilinear form b(u, v) : H1
0 (Ω+)×H1

0 (Ω+) → R
is continuous and H1

0 (Ω+)-elliptic
It's easy to show that the functional l : H1

0 (Ω+) → R given by (4) is contin-
uous. Since the trace map γ−0,S : H1

0 (Ω+) → H1/2(S) is continuous we have:
|l(v)| = |〈f, γ−0,Sv〉| ≤ ‖f‖

H
−1/2
00 (S)

‖γ−0,Sv‖H1/2(S) ≤ c‖f‖
H
−1/2
00 (S)

‖v‖H1
0 (Ω+),

where c - some positive constant which does not depend on v. Then by the
Lax-Milgram Lemma we obtain what was to be proved. ¤
Theorem 3. If λ ∈ C(S̄), λ(x) ≥ 0, x ∈ S̄, then problem T has a unique
solution for arbitrary f ∈ H

−1/2
00 (S) and g ∈ H1/2(Σ).

Proof. Let function w ∈ H1(Ω+) satis�es Lw = 0 in Ω+ and γ+
0,Σw = g. Then

[γ0,S ]w = 0 and [γ1,S ]w = 0. As a corollary of theorem 1 and theorem 2 we
obtain that the problem T0 has a unique solution for arbitrary f ∈ H

−1/2
00 (S)

if λ ∈ C(S̄), λ(x) ≥ 0, x ∈ S̄. It means that there exists a solution u0 of the
problem T0 with boundary condition [γ1,S ]u0 + λγ−0,Su0 = f − λγ−0,Sw. Then
it's easy to verify that the function u = u0 − w ∈ H1(Ω) is a solution of the
problem T . ¤

Let us note that our approach remains true when S =
⋃n

i=1 Si, where Si are
open Lipshitz curves without common points.
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4. System of boundary integral equations
Let Q(x, y) = 1

2π ln 1
|x−y| - be fundamental solution of the operator L = −∆.

Then the solution u of the problem T with condition γ−0,Σu = γ+
0,Σu has the

following integral representation
u(x) = V τ(x) + VΣµ(x), x ∈ Ω+,

where τ = [γ1,S ]u, µ = [γ1,Σ]u,

V τ(x) =
∫

S

Q(x, y)τ(y)dsy, VΣµ(x) =
∫

Σ

Q(x, y)µ(y)dy.

Using boundary conditions we can reduce problem T to the following system
of boundary integral equations:

{
τ + λKτ + λγ+

0,SVΣµ = f,

γ+
0,ΣV τ + KΣµ = g,

(6)

where

Kτ(x) =
∫

S

Q(x, y)τ(y)dSy, γ+
0,SVΣµ(x) =

∫

Σ

Q(x, y)µ(y)dSy, x ∈ S,

KΣµ(x) =
∫

Σ

Q(x, y)µ(y)dSy, γ+
0,ΣV τ(x) =

∫

S

Q(x, y)τ(y)dSy, x ∈ Σ.

We use collocation method for solving of obtained system (6). Let us denote
by NS and NΣ number of boundary elements of the second order given upon
curves S and Σ respectively. Finally we derive the following system of linear
algebraic equations:

(
A11 A12

A21 A22

)(
τ̃
µ̃

)
=

(
f̃
g̃

)
.

Here

A11 =





δij + λ(xi)
∫

Sj

Q(xi, y)dsy





, i, j = 1, NS ,

A12 =





λ(xi)
∫

Σj

Q(xi, y)dsy





, i = 1, NS , j = 1, NΣ,

A21 =





∫

Sj

Q(xi, y)dsy





, i = 1, NΣ, j = 1, NS ,

A22 =





∫

Σj

Q(xi, y)dsy





, i, j = 1, NΣ,
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τ̃ = (τ1, · · · , τNS
), µ̃ = (µ1, · · · , µNΣ

),

f̃ = (f(x1), · · · , f(xNS
)), g̃ = (g(x1), · · · , g(xNΣ

)),
xi � collocation points on S or Σ.

Approximate meaning of searching solution of the problem T we can get
from the next expression:

u(x) =
NS∑

i=1

τi

∫

Si

Q(x, y)dsy +
NΣ∑

i=1

µi

∫

Σi

Q(x, y)dsy.

5. Numerical examples
Example 1. We consider the domain Ω bounded by circle Σ of the radius

R = 2 and with open curve S = {(x1, x2) : x2 = x1,−1 < x1 < 1} (see Fig. 1):

Fig. 1

The obtained numerical result for given meaning of λ, f and g is presented
in Fig. 2a and Fig. 2b.

a)

b)

Fig. 2. λ = 1, g = 1, f = 5, NΣ = 800, NS = 160
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If we take another meanings of functions g and f we can get the following
results (see Fig. 3a, Fig. 3b, Fig. 4a and Fig. 4b):

a)

b)

Fig. 3. λ = 1, g = x2, f = 5, NΣ = 800, NS = 160

a)

b)

Fig. 4. λ = 1, g = x2, f = 10x2, NΣ = 800, NS = 160
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Example 2. We consider the next domain where S consists of two parts as
it presented on Fig. 5

Fig. 5

Numerical result for given meanings of λ, f and g for this example is pre-
sented in Fig. 6a and Fig. 6b.

a)

b)

Fig. 6. λ = 1, g = 1, f = 1, NΣ = 640, NS = 320
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