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EXPONENTIALLY CONVERGENT METHOD
FOR DIFFERENTIAL EQUATION IN BANACH
SPACE WITH A BOUNDED OPERATOR
IN NONLOCAL CONDITION

V.B. VASYLYK

PE3IOME. Po3srisgmaerbca ABOTOYKOBA HEJIOKAJIbHA 3ajad4a s JudepeH-
IIaJIbHOTO PIBHSHHS TIEPIITOTO MOPSIKY 3 HEOOMEKEHIM OMEePATOPHUM Koedi-
mieaToM B 6aHaxoBoMy mpoctopi X. B memokambHii yMOBI MicTUTHCS 0OMexKe-
Huil oneparopuwmii koedimient. [lobynoBano Ta 0OrpyHTOBAHO HOBHII €KCIIO-
HEHIAJIBHO 301KHUI METOJ[ y BUMAIKY, KOJU Ooneparopuuii kKoedimient A y
PIBHSIHHI € CEKTOPiaIbHUM | BUKOHAHHI YMOBHY ICHYBAHHS Ta €MHOCTI PO3B’s13-
Ky. Leit meTon rpyHTYETHCH Ha 300 pakeHH] OrrepaTopHuX BYyHKIH 32 JOIOMO-
roio iurerpasa Jaudopma-Komri 3108k rimep60/in, 10 OXOILIIOE CIIEKTP OITe-
paropa A, Ta BigmoBimmilt kBaapaTypHiii Gopmysi, MO MICTUTH HEBEIUKY
KUIBKICTh pe30sibBeHT. EdeKTuBHICTH 3aIIPOIIOHOBAHOIO METOMY JIE€MOHCT-
PYETBHCS 33 JOMOMOTOI0 YHCEIBHUX PO3PAXYHKIB.

ABsTRACT. The two-pointed nonlocal problem for the first order differen-
tial equation with an unbounded operator coefficient in a Banach space X
is considered. The nonlocal condition involves a bounded operator coeffi-
cient. A new exponentially convergent method is proposed and justified in
the case when the operator coefficient A in equatuion is strongly positive
and some existence and uniqueness conditions are fulfilled. This method is
based on representations of operator functions by a Dunford-Cauchy integral
along a hyperbola enveloping the spectrum of A and on the proper quadra-
tures involving short sums of resolvents. The efficiency of proposed method
is demonstrated by numerical examples.

1. INTRODUCTION

Problems with nonlocal conditions arise in many applications particulary in
the theory of physics of plasma [12], nuclear physics [9], waveguides [7] etc. The
nonlocal problems for a differential equation with various nonlocal conditions
are also interesting from theoretical point of view and are ones of the important
topics in the study of differential equations.

Differential equations with operator coefficients in some Hilbert or Banach
space can be considered as meta-models for systems of partial or ordinary differ-
ential equations and are suitable for investigations using tools of the functional
analysis (see e.g. [8,11]). Nonlocal problems often are considered within this
framework [1-3,18,19].

Key words. Nonlocal problem; differential equation with an operator coefficient in Banach
space; operator exponential; exponentially convergent methods.
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In this work we consider the following nonlocal two-pointed problem:

uy + Au = f(t), te0,T]

u(0) + Bu(T) = up, 0<T, 1)
where B : X — X is a bounded operator, f(t) is a given vector-valued function
with values in Banach space X, ug € X. The operator A with domain D(A) in
Banach space X is assumed to be a densely defined strongly positive (sectorial)
operator, i.e. its spectrum X(A) lies in a sector of the right half-plane with the
vertex at the origin and with a resolvent that decays inversely proportional to
|z| at the infinity (see estimate (2) below).

Discretization methods for differential equations in Banach and Hilbert spa-
ces were intensively studied in the last decade (see e.g. |5,10,13,14,16,17] and
the references therein). Methods from [5,10,14,16,17| possess an exponential
convergence rate, i.e. the error estimate in an appropriate norm is of the type
O(e™N"), a > 0 with respect to a discretization parameter N — oo. For a given
tolerance € such methods provide optimal or nearly optimal computational
complexity [4]. One of the possible ways to obtain exponentially convergent
approximations to abstract differential equations is based on a representation
of the solution through the Dunford-Cauchy integral along a parametrized path
enveloping the spectrum of the operator coefficient and choosing a proper quad-
rature for this integral. In such way we obtain a short sum of resolvents. Since
the treatment of such resolvents is usually the most time consuming part of any
approximation this leads to a low-cost naturally parallelization techniques. Pa-
rameters of the algorithms from [5,10, 14] were optimized in [20,21] to improve
the convergence rate.

Exponentially convergent method was constructed recently for nonlocal m-
point problem for the first order differential equation with an unbounded co-
efficient in Banach space in [3]. But unlike this work there were considered
the case of scalar coefficients in nonlocal condition. The aim of this paper is
to construct an exponentially convergent approximation to the problem for a
differential equation with two-pointed nonlocal condition with a bounded oper-
ator in abstract setting (1). The paper is organized as follows. In Section 2 we
discuss the existence and uniqueness of the solution as well as its representation
through input data. A numerical method for the homogeneous problem (1) is
proposed in section 3. The main result of this section is theorem 1 about the
exponential convergence rate of the proposed discretization.

2. EXISTENCE AND REPRESENTATION OF THE SOLUTION

Let the operator A in (1) be a densely defined strongly positive (sectorial)
operator in a Banach space X with the domain D(A), i.e. its spectrum 3(A)
lies in the sector. Additionally outside the sector and on its boundary I'y the
following estimate for the resolvent holds true

11— ) < -2

14z 2)
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Let us assume that operator B is bounded in Banach space X, i.e. ||B] <
¢ < 0.
The hyperbola

Lo = {2(§) = pocosh§ —ibysinh{ : € € (—00,00), by = potan}  (3)

is called a spectral hyperbola. It has a vertex at (po,0) and asymptotes which
are parallel to the rays of the spectral angle ¥. The numbers pg, ¢ are called
the spectral characteristics of A.

A convenient representation of operator functions is the one through the
Dunford-Cauchy integral (see e.g. [8,11]) where the integration path plays an
important role. We choose the following hyperbola

Iy ={z(§) = aycosh& —ibysinh¢ : € € (—o0,00)}, (4)

as the integration contour which envelopes the spectrum of A.
One can reduce problem (1) to homogeneous using the following way. Let
u = v + w, where v is a solution to the problem

v+ Au= f(t), te€l0,T)]
u(0) = 0.

Namely it has a representation

o(t) = /O oA f () dr. (5)

Then for w(t) we obtain the problem
wy +Aw =0, tel0,T]

T
w(0) + Bw(T') = ug — B/ e AT f(1Ydr = @y, 0<T.
0

Note that exponentially convergent method for approximating v(t) from (5)
was developed in [6] (see also [4]). So, we can consider homogeneous problem
(1) (/(t) = 0).

According to the Hille-Yosida-Phillips theorem [22] the strongly positive op-
erator A generates a one parameter semigroup T'(t) = e~*4 and solution to (1)
(homogeneous case) can be represented by

u(t) = e u(0). (6)
Combining the nonlocal condition from (1) and (6) we obtain
u(0) + Be™Tu(0) = up, (7)

from where we have
u(0) = [I+ Be_ATT1 uo,

in the case when [I + Be_AT]_1 exists. Here I is an identity operator. So,
using (6) we obtain

u(t) = e~ [T + Be4T] ™ . (8)
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Let us looking for existing conditions for [I + e*ATB] ~'. We have
|r+e T8 < (1= e B|) T <1 - B <e < oo

in the case
1Bl < 1. 9)

Remark 5. [t is possible to obtain weaker conditions than (9) in the case when
the operator A is positive definite and selfadjoint A = A* > \ol, Ao > 0. For
example if B = A then we have using spectral integral representation

| Be ATH—H/ e TAdE, || < e_l/ [dB| = .
T T

Therefore, for T > e~ ! we have
—11-1
Hp+gﬂ3}wgp_wgmnml<p_f] T

T —e

3. NUMERICAL APPROXIMATION
Our aim in this section is to construct an exponentially convergent method
for the solution to homogeneous problem (1) with assumption (9). Additionally
we assume that the operators A and B are commutative: AB = BA.
Using the Dunford-Cauchy representation of u(t) (see [11]) analogously to [4]
we obtain
1

ulty=— [ e *[I+ e*ZTB]_1 (21 — A) lugdz (10)
2mi Jr,

Representation (10) makes sense only when the function e [I + e~*7 B] s
analytic in the region enveloped by I';. Let us show, that condition (9) guaranty
this analyticity [8].

Actually, the analyticity of e=* [I + e*ZTB] ! might only be violated when
e *TB = —1I, since in this case the function becomes unbounded. It is easy to
see that for an arbitrary z we have

|1+ Be™ || > 1 — || B >0,

provided that (9) holds true.
We modify the representation of u(t) to obtain numerical stability for small
t as follows (see [4]):
_ 1
u(t) = / ¢ [[+e "B [(z[ — A)7! = =T updz. (11)
2 I z

T

After discretization of the integral such modified resolvent provides better con-
vergence speed than (10) in a neighborhood of t =0 (see [4,6] for details).
Parameterizing the integral (11) by we get

/ F(t,&)de, (12)
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with
f(taé) = FA(taé.)um

Fa(t, &) = e O/ (&)[T + Be *OT) 1 [(z(é) T— At - 2(15) I] 7

2 (€) = aysinh & — iby cosh €.
Supposing ug € D(A%), 0 < a < 1 it was shown in [4,6] that

2O [ (2 — A — 1| w
o O%(©) | (7 = ) = 1]l

ar \ar

br 2\
<(1+MKL <) emarteosh&—aldly gag 1l ¢ e R, t > 0.

The part responsible for the nonlocal condition in (12), can be estimated in
the following way

H (r+ Be—z@)T)‘lH <(-|B) =0

Thus, we obtain the following estimate for F(t, ) using commutative prop-
erty of operators A and B:

b 2\¢
FLOI < QU+ MK L () et el geu), €€ R, e20. (13

ar \ar

Further, we have to estimate a strip around the real axis where the function
F(t,€) permit analytical extension (with respect to £). The analyticity of
function F(¢,& + iv), in the strip

Ddl = {(§7V) 1§ € (_00700)7’V’ < d1/2}7

with some d; could be violated if the resolvent or the part related to the nonlocal
condition become unbounded. To avoid this we have to choose d; so that for
v € (—di/2,d1/2) the hyperbola set I'(v) remains in the right half-plane of the
complex plane. For v = —d;/2 the corresponding hyperbola is going through
the origin (0,0). For v = d;/2 it coincides with the spectral hyperbola and
therefore for all v € (—dy/2,d1/2) the set T'(v) does not intersect the spectral
sector.
The above requirements are fulfilled when (see [4])

P1
dy = arccos | ———= | — ¢, (14)
(v%+%>
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— _p ; — _bo
where cos p = TR sin o = TR And for ay, by

2
COS (%1 + <p) cos <arccos (W) /2 + (p/2>
= po = Po )
cos p Ccos

. [(d
by = \/pg + b3 sin <21+<p>

cos (%1 + (p) cos <arccos (W) /2+ <p/2> |

= Po = Po
Ccos cos

For a;y and by defined as above the vector valued function F(¢,w) is analytic in
the strip Dy, with respect to w = & + v for any ¢t > 0.
Similarly to [15] (see [4]), we introduce the space HP(Dy), 1 < p < oo of all
vector-valued functions F analytic in the strip
Dg={2€C:—-00 <Rz < 00,|]z| < d},

equipped by the norm
lime—o(fp, 0 IF(IPIdz) P if 1 < p < o0,
|1 Fllerp,) = a .
lime—o sup;eap, (o) |17 (2| if p = oo,
where
Dy(e) ={z € C:|Re(z)| < 1/e,|Im(2)] < d(l —€)}
and 0Dg(e) is the boundary of Dy(e).
Similarly to [4] we have estimate for ||F (¢, w)]|

IF ()l (p,,) < [A%u0l[[C- (e, @)

+Culp.a)] [ e = Ol A%uo]

—0o0

with
C(p,0) = 2 [C1(p,0) + C- (0]

«

Ci(p, ) = (1 + M)QK tan <d2 +<pid21> Qdcow
Po COS (71 +eox %)
Note that the influence of both the smoothness parameter of ug given by o and
of the spectral characteristics of the operator A given by ¢ and pg is accounted
by that fact, that the constant C(¢, a) from (15) tends to oo if & — 0, p — 7/2
or p1 — 0 (in this case due to (14) di — § — ).
We approximate integral (12) by the following Sinc-quadrature [4,6,15]:

2m Z F(t, 2(kh)) (17)
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with an error

[l (F5 )| = Jlu(t) — unn (2]

< ult) — g S0 Ft k) + 5 3 F b, 2(kR))]
k=—o00 |k|>N

6—7rd1/h

<l T R
~ 27 2sinh (7dy /h) H'(Day)

, Cle.ahlA"u|

5 > exp[—artcosh (kh) — akh]
T

k=N+1

o —ndi/h
< lA%u| { ¢ + exp[—ast cosh (N + 1)h) — a(N + 1)h}},

a sinh (7d;/h)
where the constant ¢ does not depend on h, N, t. Equalizing the both exponen-
tials for ¢ = 0 implies
2mdy

= = a(N +Dh,

- 2md;
h= \/ a(N+1) (18)

With this step-size the following error estimate holds true

or after the transformation

c Tdio
mmf,h)usaexp(— . <N+1>>|1Aauou, (19)

where the constant ¢ independent of ¢, V. In the case ¢ > 0 the first summand
in the argument of exp[—artcosh (N + 1)h) — (N + 1)h] from the estimate
for ||nn(F, h)|| contributes mainly to the error order. Setting in this case h =
¢1In N/N with some positive constant ¢; we remain, asymptotically for a fixed
t, with an error

”nN(F7 h)H <ec e—ﬂ'le/(Cl In N) +e—cla1tN/2—clalnN:| HAO[Ul)H? (20)

where ¢ is a positive constant. Thus, we have proven the following result.

Theorem 1. Let A be a densely defined strongly positive operator and ug €
D(A%), a € (0,1), then the Sinc-quadrature (17) represents an approzimate so-
lution of the homogeneous nonlocal value problem (1) (i.e. the case when f(t) =
0) and possesses an exponential convergence rate which is uniform with respect
tot > 0 and is of the order O(efc\/ﬁ) uniformly in t > 0 for h = O(1/v/'N)
(estimate (19)) and of the order O (mam{e*”dN/(Cl InN) e’q“’tN/Q’Clo‘lnN})
for each fized t > 0 when h = ¢1In N/N (estimate (20)).
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TABL. 1. The error for x = 0.5, ¢t = 0.5.

E1,N €2.N

8 | 0.4686576088595737062¢-1 0.1900886270925846e-2
16 | 0.934021577137014178¢-2 | 0.852946984325721275711e-4
32 | 0.1546349721567053042¢-3 | 0.810358320985172283872¢-5
64 | 0.0159641801061596051e-3 | 0.01035505780238307696e-5
128 | 0.735484912605954949¢e-5 | 0.91841759148488051333e-6
256 | 0.146908016254907436e-7 | 0.24806555113840622551¢-7
512 0.8577765610e-8 0.1165963141e-8

1024 0.7339799837e-11 0.1591565422e-11

TABL. 2. The estimate of ¢

N c
2.372652515388745588587496
8 | 1.120148732795449515627946
16 | 1.458741976765153165445005
32 | 1.527648924601130131250452
64 | 1.476794596387591759032900
128 | 1.499935011373075736075927
256 | 1.506597339081609844717370

e

4. NUMERICAL EXAMPLE
We consider the problem
ou B 9%u
ot 0x?’
u(0,t) = u(1,t) =0,

u(z,0) + Bu(z, 1) = uo,

with
ui(x,t) 0.2 0.1
(@, t) = ( u;(q:,t) ) B = ( 0.1 04 ) (21)
(A + 0.2¢"™ ) sin(rz) + 0.1e 4™ sin(27z)
uo(®, ) = < 0.le ™ sin(mz) 4+ (1 + 0.4e~4™) sin(2mz) ) (22)

It is easy to check that exact solution is

ua, 1) = ( sin () ) , (23)

sin(27x)

The error of computation is presented in Tabl. 1.
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Due to Theorem 1 the error should not be greater then ey = O (efc‘/ﬁ> .

The constant c in the exponent can be estimated using the following a-posteriori
relation:

c=1In (EN) (V2—=1)7IN"Y2 = In(uy) (V2 —1)"INTYV2

€N

The numerical results are presented in Tabl. 2. Note that the constant can be
estimated as ¢ = 1.5 when N — oo.
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