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EXPONENTIALLY CONVERGENT METHOD
FOR DIFFERENTIAL EQUATION IN BANACH

SPACE WITH A BOUNDED OPERATOR
IN NONLOCAL CONDITION

V.B.Vasylyk

Ðåçþìå. Ðîçãëÿäà¹òüñÿ äâîòî÷êîâà íåëîêàëüíà çàäà÷à äëÿ äèôåðåí-
öiàëüíîãî ðiâíÿííÿ ïåðøîãî ïîðÿäêó ç íåîáìåæåíèì îïåðàòîðíèì êîåôi-
öi¹íòîì â áàíàõîâîìó ïðîñòîði X. Â íåëîêàëüíié óìîâi ìiñòèòüñÿ îáìåæå-
íèé îïåðàòîðíèé êîåôiöi¹íò. Ïîáóäîâàíî òà îáãðóíòîâàíî íîâèé åêñïî-
íåíöiàëüíî çáiæíèé ìåòîä ó âèïàäêó, êîëè îïåðàòîðíèé êîåôiöi¹íò A ó
ðiâíÿííi ¹ ñåêòîðiàëüíèì i âèêîíàííi óìîâè iñíóâàííÿ òà ¹äèíîñòi ðîçâ'ÿç-
êó. Öåé ìåòîä ãðóíòó¹òüñÿ íà çîáðàæåííi îïåðàòîðíèõ ôóíêöié çà äîïîìî-
ãîþ iíòåãðàëà Äàíôîðäà-Êîøi âçäîâæ ãiïåðáîëè, ùî îõîïëþ¹ ñïåêòð îïå-
ðàòîðà A, òà âiäïîâiäíié êâàäðàòóðíié ôîðìóëi, ùî ìiñòèòü íåâåëèêó
êiëüêiñòü ðåçîëüâåíò. Åôåêòèâíiñòü çàïðîïîíîâàíîãî ìåòîäó äåìîíñò-
ðó¹òüñÿ çà äîïîìîãîþ ÷èñåëüíèõ ðîçðàõóíêiâ.
Abstract. The two-pointed nonlocal problem for the �rst order di�eren-
tial equation with an unbounded operator coe�cient in a Banach space X
is considered. The nonlocal condition involves a bounded operator coe�-
cient. A new exponentially convergent method is proposed and justi�ed in
the case when the operator coe�cient A in equatuion is strongly positive
and some existence and uniqueness conditions are ful�lled. This method is
based on representations of operator functions by a Dunford-Cauchy integral
along a hyperbola enveloping the spectrum of A and on the proper quadra-
tures involving short sums of resolvents. The e�ciency of proposed method
is demonstrated by numerical examples.

1. Introduction
Problems with nonlocal conditions arise in many applications particulary in

the theory of physics of plasma [12], nuclear physics [9], waveguides [7] etc. The
nonlocal problems for a di�erential equation with various nonlocal conditions
are also interesting from theoretical point of view and are ones of the important
topics in the study of di�erential equations.

Di�erential equations with operator coe�cients in some Hilbert or Banach
space can be considered as meta-models for systems of partial or ordinary di�er-
ential equations and are suitable for investigations using tools of the functional
analysis (see e.g. [8, 11]). Nonlocal problems often are considered within this
framework [1�3,18,19].

Key words. Nonlocal problem; di�erential equation with an operator coe�cient in Banach
space; operator exponential; exponentially convergent methods.
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In this work we consider the following nonlocal two-pointed problem:

u′t + Au = f(t), t ∈ [0, T ]

u(0) + Bu(T ) = u0, 0 < T,
(1)

where B : X → X is a bounded operator, f(t) is a given vector-valued function
with values in Banach space X, u0 ∈ X. The operator A with domain D(A) in
Banach space X is assumed to be a densely de�ned strongly positive (sectorial)
operator, i.e. its spectrum Σ(A) lies in a sector of the right half-plane with the
vertex at the origin and with a resolvent that decays inversely proportional to
|z| at the in�nity (see estimate (2) below).

Discretization methods for di�erential equations in Banach and Hilbert spa-
ces were intensively studied in the last decade (see e.g. [5,10,13,14,16,17] and
the references therein). Methods from [5, 10, 14, 16, 17] possess an exponential
convergence rate, i.e. the error estimate in an appropriate norm is of the type
O(e−Nα

), α > 0 with respect to a discretization parameter N →∞. For a given
tolerance ε such methods provide optimal or nearly optimal computational
complexity [4]. One of the possible ways to obtain exponentially convergent
approximations to abstract di�erential equations is based on a representation
of the solution through the Dunford-Cauchy integral along a parametrized path
enveloping the spectrum of the operator coe�cient and choosing a proper quad-
rature for this integral. In such way we obtain a short sum of resolvents. Since
the treatment of such resolvents is usually the most time consuming part of any
approximation this leads to a low-cost naturally parallelization techniques. Pa-
rameters of the algorithms from [5,10,14] were optimized in [20,21] to improve
the convergence rate.

Exponentially convergent method was constructed recently for nonlocal m-
point problem for the �rst order di�erential equation with an unbounded co-
e�cient in Banach space in [3]. But unlike this work there were considered
the case of scalar coe�cients in nonlocal condition. The aim of this paper is
to construct an exponentially convergent approximation to the problem for a
di�erential equation with two-pointed nonlocal condition with a bounded oper-
ator in abstract setting (1). The paper is organized as follows. In Section 2 we
discuss the existence and uniqueness of the solution as well as its representation
through input data. A numerical method for the homogeneous problem (1) is
proposed in section 3. The main result of this section is theorem 1 about the
exponential convergence rate of the proposed discretization.

2. Existence and representation of the solution
Let the operator A in (1) be a densely de�ned strongly positive (sectorial)

operator in a Banach space X with the domain D(A), i.e. its spectrum Σ(A)
lies in the sector. Additionally outside the sector and on its boundary ΓΣ the
following estimate for the resolvent holds true

∥∥(zI −A)−1
∥∥ ≤ M

1 + |z| . (2)
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Let us assume that operator B is bounded in Banach space X, i.e. ‖B‖ ≤
c < ∞.

The hyperbola
Γ0 = {z(ξ) = ρ0 cosh ξ − ib0 sinh ξ : ξ ∈ (−∞,∞), b0 = ρ0 tanϕ} (3)

is called a spectral hyperbola. It has a vertex at (ρ0, 0) and asymptotes which
are parallel to the rays of the spectral angle Σ. The numbers ρ0, ϕ are called
the spectral characteristics of A.

A convenient representation of operator functions is the one through the
Dunford-Cauchy integral (see e.g. [8, 11]) where the integration path plays an
important role. We choose the following hyperbola

ΓI = {z(ξ) = aI cosh ξ − ibI sinh ξ : ξ ∈ (−∞,∞)}, (4)
as the integration contour which envelopes the spectrum of A.

One can reduce problem (1) to homogeneous using the following way. Let
u = v + w, where v is a solution to the problem

v′t + Au = f(t), t ∈ [0, T ]

u(0) = 0.

Namely it has a representation

v(t) =
∫ t

0
e−A(t−τ)f(τ)dτ. (5)

Then for w(t) we obtain the problem
w′t + Aw = 0, t ∈ [0, T ]

w(0) + Bw(T ) = u0 −B

∫ T

0
e−A(T−τ)f(τ)dτ = ũ0, 0 < T.

Note that exponentially convergent method for approximating v(t) from (5)
was developed in [6] (see also [4]). So, we can consider homogeneous problem
(1) (f(t) ≡ 0).

According to the Hille-Yosida-Phillips theorem [22] the strongly positive op-
erator A generates a one parameter semigroup T (t) = e−tA and solution to (1)
(homogeneous case) can be represented by

u(t) = e−Atu(0). (6)
Combining the nonlocal condition from (1) and (6) we obtain

u(0) + Be−AT u(0) = u0, (7)
from where we have

u(0) =
[
I + Be−AT

]−1
u0,

in the case when
[
I + Be−AT

]−1 exists. Here I is an identity operator. So,
using (6) we obtain

u(t) = e−At
[
I + Be−AT

]−1
u0. (8)
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Let us looking for existing conditions for
[
I + e−AT B

]−1
. We have

∥∥∥
[
I + e−AT B

]−1
∥∥∥ ≤

(
1− ∥∥e−AT B

∥∥)−1 ≤ (1− ‖B‖)−1 ≤ c < ∞,

in the case
‖B‖ < 1. (9)

Remark 5. It is possible to obtain weaker conditions than (9) in the case when
the operator A is positive de�nite and selfadjoint A = A∗ ≥ λ0I, λ0 > 0. For
example if B = A then we have using spectral integral representation

∥∥Be−AT
∥∥ =

∥∥∥∥
∫ ∞

λ0

e−λT λdEλ

∥∥∥∥ ≤
e−1

T

∫ ∞

λ0

‖dEλ‖ =
e−1

T
.

Therefore, for T > e−1 we have
∥∥∥
[
I + e−AT B

]−1
∥∥∥ ≤

[
1− ∥∥e−AT A

∥∥]−1
<

[
1− e−1

T

]−1

=
T

T − e−1
< ∞.

3. Numerical approximation
Our aim in this section is to construct an exponentially convergent method

for the solution to homogeneous problem (1) with assumption (9). Additionally
we assume that the operators A and B are commutative: AB = BA.

Using the Dunford-Cauchy representation of u(t) (see [11]) analogously to [4]
we obtain

u(t) =
1

2πi

∫

ΓI

e−zt
[
I + e−zT B

]−1
(zI −A)−1u0dz (10)

Representation (10) makes sense only when the function e−zt
[
I + e−zT B

]−1 is
analytic in the region enveloped by ΓI . Let us show, that condition (9) guaranty
this analyticity [8].

Actually, the analyticity of e−zt
[
I + e−zT B

]−1 might only be violated when
e−zT B = −I, since in this case the function becomes unbounded. It is easy to
see that for an arbitrary z we have

∥∥I + Be−zT
∥∥ ≥ |1− ‖B‖| > 0,

provided that (9) holds true.
We modify the representation of u(t) to obtain numerical stability for small

t as follows (see [4]):

u(t) =
1

2πi

∫

ΓI

e−zt
[
I + e−zT B

]−1
[
(zI −A)−1 − 1

z
I

]
u0dz. (11)

After discretization of the integral such modi�ed resolvent provides better con-
vergence speed than (10) in a neighborhood of t = 0 (see [4, 6] for details).

Parameterizing the integral (11) by (4) we get

u(t) =
1

2πi

∫ ∞

−∞
F(t, ξ)dξ, (12)
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with
F(t, ξ) = FA(t, ξ)u0,

FA(t, ξ) = e−z(ξ)tz′(ξ)[I + Be−z(ξ)T ]−1

[
(z(ξ)I −A)−1 − 1

z(ξ)
I

]
,

z′(ξ) = aI sinh ξ − ibI cosh ξ.

Supposing u0 ∈ D(Aα), 0 < α < 1 it was shown in [4, 6] that

‖e−z(ξ)tz′(ξ)
[
(z(ξ)I −A)−1 − 1

z(ξ)
I

]
u0‖

≤ (1 + M)K
bI

aI

(
2
aI

)α

e−aI t cosh ξ−α|ξ|‖Aαu0‖, ξ ∈ R, t ≥ 0.

The part responsible for the nonlocal condition in (12), can be estimated in
the following way

∥∥∥∥
(
I + Be−z(ξ)T

)−1
∥∥∥∥ ≤ (1− ‖B‖)−1 = Q.

Thus, we obtain the following estimate for F(t, ξ) using commutative prop-
erty of operators A and B:

‖F(t, ξ)‖ ≤ Q(1 + M)K
bI

aI

(
2
aI

)α

e−aI t cosh ξ−α|ξ|‖Aαu0‖, ξ ∈ R, t ≥ 0. (13)

Further, we have to estimate a strip around the real axis where the function
F(t, ξ) permit analytical extension (with respect to ξ). The analyticity of
function F(t, ξ + iν), in the strip

Dd1 = {(ξ, ν) : ξ ∈ (−∞,∞), |ν| < d1/2},

with some d1 could be violated if the resolvent or the part related to the nonlocal
condition become unbounded. To avoid this we have to choose d1 so that for
ν ∈ (−d1/2, d1/2) the hyperbola set Γ(ν) remains in the right half-plane of the
complex plane. For ν = −d1/2 the corresponding hyperbola is going through
the origin (0, 0). For ν = d1/2 it coincides with the spectral hyperbola and
therefore for all ν ∈ (−d1/2, d1/2) the set Γ(ν) does not intersect the spectral
sector.

The above requirements are ful�lled when (see [4])

d1 = arccos

(
ρ1√

ρ2
0 + b2

0

)
− ϕ, (14)
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where cosϕ = ρ0√
ρ2
0+b20

, sinϕ = b0√
ρ2
0+b20

. And for aI , bI

aI =
√

ρ2
0 + b2

0 cos
(

d1

2
+ ϕ

)

= ρ0

cos
(

d1
2 + ϕ

)

cosϕ
= ρ0

cos
(

arccos
(

ρ1√
ρ2
0+b20

)
/2 + ϕ/2

)

cosϕ
,

bI =
√

ρ2
0 + b2

0 sin
(

d1

2
+ ϕ

)

= ρ0

cos
(

d1
2 + ϕ

)

cosϕ
= ρ0

cos
(

arccos
(

ρ1√
ρ2
0+b20

)
/2 + ϕ/2

)

cosϕ
.

(15)

For aI and bI de�ned as above the vector valued function F(t, w) is analytic in
the strip Dd1 with respect to w = ξ + iν for any t ≥ 0.

Similarly to [15] (see [4]), we introduce the space Hp(Dd), 1 ≤ p ≤ ∞ of all
vector-valued functions F analytic in the strip

Dd = {z ∈ C : −∞ < <z < ∞, |=z| < d},
equipped by the norm

‖F‖Hp(Dd) =

{
limε→0(

∫
∂Dd(ε) ‖F(z)‖p|dz|)1/p if 1 ≤ p < ∞,

limε→0 supz∈∂Dd(ε) ‖F(z)‖ if p = ∞,

where
Dd(ε) = {z ∈ C : |Re(z)| < 1/ε, |Im(z)| < d(1− ε)}

and ∂Dd(ε) is the boundary of Dd(ε).
Similarly to [4] we have estimate for ‖F(t, w)‖

‖F(t, ·)‖H1(Dd1
) ≤ ‖Aαu0‖[C−(ϕ, α)

+ C+(ϕ, α)]
∫ ∞

−∞
e−α|ξ|dξ = C(ϕ, α)‖Aαu0‖

(16)

with
C(ϕ, α) =

2
α

[C+(ϕ, α) + C−(ϕ, α)],

C±(ϕ, α) = (1 + M)QK tan
(

d1

2
+ ϕ± d1

2

)
 2 cos ϕ

ρ0 cos
(

d1
2 + ϕ± d1

2

)



α

.

Note that the in�uence of both the smoothness parameter of u0 given by α and
of the spectral characteristics of the operator A given by ϕ and ρ0 is accounted
by that fact, that the constant C(ϕ, α) from (15) tends to∞ if α → 0, ϕ → π/2
or ρ1 → 0 (in this case due to (14) d1 → π

2 − ϕ).
We approximate integral (12) by the following Sinc-quadrature [4, 6, 15]:

uN (t) =
h

2πi

N∑

k=−N

F(t, z(kh)), (17)
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with an error
‖ηN (F , h)‖ = ‖u(t)− uh,N (t)‖

≤ ‖u(t)− h

2πi

∞∑

k=−∞
F(t, z(kh))‖+ ‖ h

2πi

∑

|k|>N

F(t, z(kh))‖

≤ 1
2π

e−πd1/h

2 sinh (πd1/h)
‖F‖H1(Dd1

)

+
C(ϕ, α)h‖Aαu0‖

2π

∞∑

k=N+1

exp[−aIt cosh (kh)− αkh]

≤ c‖Aαu0‖
α

{
e−πd1/h

sinh (πd1/h)
+ exp[−aIt cosh ((N + 1)h)− α(N + 1)h]

}
,

where the constant c does not depend on h, N, t. Equalizing the both exponen-
tials for t = 0 implies

2πd1

h
= α(N + 1)h,

or after the transformation

h =

√
2πd1

α(N + 1)
. (18)

With this step-size the following error estimate holds true

‖ηN (F , h)‖ ≤ c

α
exp

(
−

√
πd1α

2
(N + 1)

)
‖Aαu0‖, (19)

where the constant c independent of t,N. In the case t > 0 the �rst summand
in the argument of exp[−aIt cosh ((N + 1)h)− α(N + 1)h] from the estimate
for ‖ηN (F , h)‖ contributes mainly to the error order. Setting in this case h =
c1 lnN/N with some positive constant c1 we remain, asymptotically for a �xed
t, with an error

‖ηN (F , h)‖ ≤ c
[
e−πd1N/(c1 ln N) + e−c1aI tN/2−c1α ln N

]
‖Aαu0‖, (20)

where c is a positive constant. Thus, we have proven the following result.

Theorem 1. Let A be a densely de�ned strongly positive operator and u0 ∈
D(Aα), α ∈ (0, 1), then the Sinc-quadrature (17) represents an approximate so-
lution of the homogeneous nonlocal value problem (1) (i.e. the case when f(t) ≡
0) and possesses an exponential convergence rate which is uniform with respect
to t ≥ 0 and is of the order O(e−c

√
N ) uniformly in t ≥ 0 for h = O(1/

√
N)

(estimate (19)) and of the order O (
max

{
e−πdN/(c1 ln N), e−c1aI tN/2−c1α ln N

})
for each �xed t > 0 when h = c1 lnN/N (estimate (20)).
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Tabl. 1. The error for x = 0.5, t = 0.5.

N ε1,N ε2,N

8 0.4686576088595737062e-1 0.1900886270925846e-2
16 0.934021577137014178e-2 0.852946984325721275711e-4
32 0.1546349721567053042e-3 0.810358320985172283872e-5
64 0.0159641801061596051e-3 0.01035505780238307696e-5
128 0.735484912605954949e-5 0.91841759148488051333e-6
256 0.146908016254907436e-7 0.24806555113840622551e-7
512 0.8577765610e-8 0.1165963141e-8
1024 0.7339799837e-11 0.1591565422e-11

Tabl. 2. The estimate of c

N c

4 2.372652515388745588587496
8 1.120148732795449515627946
16 1.458741976765153165445005
32 1.527648924601130131250452
64 1.476794596387591759032900
128 1.499935011373075736075927
256 1.506597339081609844717370

4. Numerical example
We consider the problem

∂u

∂t
=

∂2u

∂x2
,

u(0, t) = u(1, t) = 0,

u(x, 0) + Bu(x, 1) = u0,

with
u(x, t) =

(
u1(x, t)
u2(x, t)

)
, B =

(
0.2 0.1
0.1 0.4

)
(21)

u0(x, t) =
(

(1 + 0.2e−π2
) sin(πx) + 0.1e−4π2

sin(2πx)
0.1e−π2

sin(πx) + (1 + 0.4e−4π2
) sin(2πx)

)
(22)

It is easy to check that exact solution is

u(x, t) =
(

sin(πx)
sin(2πx)

)
, (23)

The error of computation is presented in Tabl. 1.
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Due to Theorem 1 the error should not be greater then εN = O
(
e−c

√
N

)
.

The constant c in the exponent can be estimated using the following a-posteriori
relation:

c = ln
(

εN

ε2N

)
(
√

2− 1)−1N−1/2 = ln (µN ) (
√

2− 1)−1N−1/2.

The numerical results are presented in Tabl. 2. Note that the constant can be
estimated as c ≈ 1.5 when N →∞.
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