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INTERPOLATION FORMULAS FOR FUNCTIONS,
DEFINED ON THE SETS OF MATRICES WITH
DIFFERENT MULTIPLICATION RULES

L. A.YANOVICH, M. V. IGNATENKO

PE3IOME. Posrisimaerbcs 3ama9a inTeprosiii GyHKIHT Bi MATPUIT y BUAIAI-
Ky MHOKeHHs 3a npasuiamu Mopaana, Axamapa, ®pobeniyca, Kponekepa i
Jlammaca. OTprMaHo HOBHIT KJIaC IHTEPHOISIHIHIX MHOrOWIeHiB Jlarpan:xka
i Heiorona ¢dikcoBanoro cremenst st dyHKINH, BU3HAYEHUX HA MHOXKHHAX
CKIHYEHHHUX 1 HECKIHYEHHUX MATPHUIlb. BKa3aHO BUIJIfA OIEPATOPHUX ITOJIIHO-
MiB, ISt IKUX i (OpMysH iHBapiaHTHI.

ABsTrRACT. We consider the problem of matrix functions interpolation in the
case of Jordan, Hadamard, Frobenius, Kronecker and Laplace multiplication
rules. We give a new class of Lagrange and Newton interpolation polynomials
of fixed degree for functions, defined on the sets of finite and infinite matrices.
The type of operator polynomials, for which these formulas are invariant, is
indicated.

1. INTRODUCTION

Let X be a set of square or rectangular matrices of the fixed size. The
operator F': X — Y where Y is a given set, is called a function of the matrix.
In particular, Y may coincide with X, may be some other set of matrices, a
numerical set, a function space and others.

Approximation of functions of the matrix variables is a part of a more general
problem — interpolation of operators [1-4].

General form of the interpolation formulas is determined by the structure
and properties of elements of the set X, on which the interpolated function
F (A) is given, as well as the interpolation nodes. A number of interpolation
formulas on the sets of square and rectangular matrices was obtained in the
works [1, 2; 5-8].

Along with the commonly accepted operation of matrix multiplication, the
other matrix multiplication rules are also used and can be applied in mathe-
matics and its applications. Such an approach is also effective at constructing
of interpolation methods for functions of matrices. In this paper the interpo-
lation formulas, using both the ordinary matrix multiplication and the matrix
multiplication by Jordan, Hadamard, Frobenius and others, are obtained.

Key words. Interpolation; matrix functions; interpolation matrix polynomial; interpola-
tion formula of Lagrange and Newton type; matrix multiplication by Jordan, Hadamard,
Frobenius and Kronecker, Laplace discrete convolution.
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2. INTERPOLATION FORMULAS WITH MULTIPLICATION
OF SQUARE MATRIX BY JORDAN

Let X be a set of square matrices of the fixed size, the operator F': X — X.
The Jordan product A o B of two matrices A and B from X is defined by the
following rule: Ao B = % (AB + BA). It is commutative, but not associative.
So, if the Jordan product contains more than two matrices, then in some cases
it is required to indicate the execution order of the multiplication in the given
product for uniqueness.

Let us first consider interpolation formulas of Lagrange type of the arbitrary
order, which are constructed on the basis of such rules of multiplication of
square matrices. Here are three variants of the formulas for constant matrices.
We denote by l,x (A) the product

lnk (A) = Bk:O o) (A - Ao) ¢} Bk:l o...0 Bk,k—lo
o(A—Ag_1)oBgro(A—Apt1) 0o Brpy10...0Bpp_10(A—Ay) 0By,

where Ay (k= 0,1, ...,n) are interpolation nodes, By, = By, (k,v =0,1,...,n)
are arbitrarily given matrices. Let the order of execution of multiplication oper-
ation in [, (A) be determined in advance. We introduce the matrix polynomials
of the form

Lon (A) = " F(Ag) o {I,} (Ar) o Lk (A) } (1)
k=0

Lo (A) = " {F (Ap) o} (A} o L (A), (2)
k=0

in which first the multiplication operation in the curly brackets is performed.
Since l;kl (Ag) o Lk (Ay) = 0 (k,v =0,1,...,n), where d, is the Kronecker
symbol, than for the formula (1) in the nodes Aj the interpolation conditions
Loy, (Ag) = F (Ag) are met.

These conditions are satisfied for the formula (2), if the associator

{F(A), Ly (A)) s Ly (A)} = 0.
It takes place in virtue of the equality
{F(A), Ly (Av), b (A)} =
= (F(A) olyy (A)) 0 lny (A)) = F (Ay) 0 (I (Ay) 0l (A))) =
= (F(A)) ol (A))) olw (A)) — F (A,) = 0.

It follows that (2) is the interpolation formula.
It is easy to check that the matrix polynomial of the n-th degree

Ly (A) =Y F(Ag) o ek (A) (3)
k=0

where

()= T B{(A=A)o(a,—4)"} B,
v=0,v#k
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B, (v =0,1,...,n) are arbitrary invertible matrices, also satisfies the conditions
L, (Ax) = F(Ag) (k=0,1,...,n), at that the product of matrices, indicated
in curly brackets, on B, and B, ! can be understood as the ordinary or in the
sense of Jordan. In the both cases Iy (Ay) = 0 I (k,v =0,1,...,n).

The interpolation polynomials (1)—(3) are exact for the matrix polynomials

Py, (A) = Dyo{l) (A) ol (A)},
v=0

Puo(A) =Y {Dyol} (A)} oln, (A), Pu(A)=)_D,ol, (A),
v=0 v=0

respectively, where D, are arbitrary square matrices. As already mentioned,
the interpolation conditions for the formula (2) are satisfied, if and only if
associator

{F(Ak) , lgkl (Ag) s Lok (Ak)} =0 (k=0,1,....,n).

This imposes additional conditions on the operator F' and the interpolation
nodes.

If n =1, and By, (k,v =0,1) are the identity matrices, then the formula
(1) with the nodes Ap and A; is reduced to the equality

Lo (4) = F (A0) + [F (A1) = F (49)] o { (41 — 40) "o (A— 49)} . (4

It is exact (invariant) for the polynomials Pp; (A) = Do{(A1 —Ap)to A}+C’,
where D and C are arbitrary matrices.

In the particular case, when A; — Ag = I, the linear interpolation formula
(4) takes the form

Lo (A) = F (Ao) +
+ % [(F (A1) — F (Ao)) (A — Ao) + (A — Ao) (F (A1) — F (4o))]

and it will be invariant for the matrix polynomials P; (A) = DA+ AD + C,
where D and C are arbitrary fixed matrices.
Here is another formula of the linear interpolation with the multiplication
by Jordan:
Li(A)=F(Ag) + (A— Ag) o B+

+[F (A1) = F (4o) — (41 — Ag) 0 Bl o { (41 — 49) "o (A= Ag) },

where B is an arbitrary given matrix. This interpolation formula is exact for
polynomials of the form

P (A) :Do{(A1 —Ag)_loA}—i—BoA—i—C.
One of the quadratic interpolation formulas of the kind (3) has the form
Lo (A) = Lot (A) +{(A = A1) o (A2 — A1)~ o [{(A— Ag) o (A2 = 49) " } o

o (F (A2) = F (A1) = { (A= Ag) o (A1 = Ag) '} o (F (A1) = F (40))]
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where, as before, at the beginning matrices in the curly brackets are found, and
then in the usual order — in square brackets; Lo; (A) is the matrix polynomial of
the first degree (4). For it the following equalities Lo (4;) = F (A;), (i = 0,1, 2)
are valid.

Example 2.1. It is not difficult to show that the interpolation polynomial

Lig (4) = F (A0) + { (A = Ag) o (A1 = 40) "} o [F (41) = F (Ao)],

where the function F (4) = A2, and the nodes

1 2 0 2
AU - |: 3 4 :| bl A]. - |: 3 3 :| bl
has the form

1 [1 4], 11 4 6 8
LlO(A):gA[(s 7]+2[6 7}14[12 18]

Next, we consider the formulas of the linear and quadratic interpolation
on the set of square functional matrices, which are determined by the matrix
Stieltjes integrals. Let X = C (T") be the set of continuous on T' = [a, b] square
matrices; F': X — X, Ay (t), A1 (t) be interpolation nodes from X.

On the set of matrices with the Jordan multiplication, the interpolation
polynomial of the first degree with respect to the nodes Ay (t) and A; (¢) has
the form

Lio (4) = F (4o) + /T {14(7) = 4y (] 0 [41 (7) = Ay ()] "} o
odr P [Ag () + X (7,) (A1 (-) = Ao ()]

In the formula (5), as before, first the multiplication operation in the curly
brackets is carried out. This formula is invariant with respect to the polynomials

P1 (A) = K() + /T {A (t) o [Al (t) - Ag (t)]_l} oK (t) o} [Al (t) - AO (t)] dt,

(5)

where Ko, K (t) are some given matrices.
Example 2.2. The interpolation matrix polynomial of the form (5) with

respect to the nodes Ay (t) and A; (t) for the function F' (A) = f; A2 (t) dt takes
the form

b
Lo (4) = F (Ao) + / G[A(7), Ao (1), Ay (7)) dr,
where
G[Aa Ao,Aﬂ =
= % {(A — Ag) (A1 — Ag) ™" + (A1 — Ao) T (A - Ao)} (A2 A2)+

+ % (A7 - 47) {(A — Ao) (A1 — Ag) "+ (A1 — Ap) T (A - Ao)} :

Next, we consider the interpolation polynomials of the arbitrary degree for
functions of two matrix variables. Let F (A, B) be a function of two variable
square matrices A and B, the interpolation nodes {A,, B,} (v =0,1,...,n) are
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given, where A,,, B, are some square matrices. We introduce the following no-
tations: r; = r; (A4, B) is the vector with matrix coordinates {A — A;, B — B;};

Tk = 1k = Tu (Aky Br) = 11 (Ag, Be) (L k= 0,1,...,n).
The vector 7y has coordinates {Ax — A;, B — B;}. It’s obvious that ry =
ri (A;, B;) = 0. Assume that

(rl,rlk) = (A — Al) o (Ak — Al) -+ (B — Bl) o (Bk — Bl) (l, k=0,1, ,n) ,

(rus i) = (A, — A))* + (B — By)?
and, accordingly, we denote

I (A, B) = (10, 70k) - ("h—1,Tk—1k) (Tht15 Th+1,k) - (Tm, Trk) X

X [(Poks T0k) -+ (Th—1> "o 1) (Tt L Tht 1) - (P )] ™
Since I (Ay, By) = 0k, 1, then the matrix polynomial

L1, (A, B) sz A,B) F (A, By), (6)

where the product of the matrices Iy (A, B) and F (Ag, By) on the right side of
(6) may be usual or in the sense of Jordan, is also the interpolation polynomial
for the function F' (A, B) with respect to the nodes (Ax, Bx) (K =0,1,...,n).

We give a slightly modified version of the interpolation formula of the form
(6). We introduce the notations

n

k(AB)= [ (A B), k(A B) = (ry,r8) 0 (rug, k)
v=0,v#k

Since I,y (Ag, Bx) = I, lx (Ay, B,) = 0, then I}, (A,, B,) = 6, 1. Thus, the

formula

Z F (Ag, By)

k=
is the interpolation polynomial of the degree not higher than n, for which the
equalities L, (A,,B,) = F (A,,B,) (v =0,1,...,n) are true.

Next, we consider formulas of the other form for the linear interpolation
of functions of two matrix variables on the set of constant matrix with the
multiplication by Jordan. Let F' (A, B) be a function of matrix variables A and
B; (Ai, B;) be interpolation nodes (i = 0,1, 2).

We introduce the following notations:

lo(A,B) =[(A— A1) o (B; — By) — (A} — Ay) o (B — By)] o D71,
I, (A,B) = [(A— Ag) o (By — By) — (A — Ag) o (B — By)] o D71,
I3 (A, B) =[(A— Agy) o (By— By) — (Ag — A1) o (B — By)] o D71,

where

= (A()—Al)o (Bl —Bg) — (Al —AQ)O(Bo—Bl).
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Note that the relations ; (A;, Bj) = 8;;1; lo (A, B) + 11 (A, B) + 12 (A,B) = I
take place. It is not difficult to verify that for matrix polynomial of the variables
A and B of the first degree of the form

il (A, B) = l~0 (A, B)OF (A(), BO)+Z~1 (A, B) oF (Al, Bl)+l~2 (A, B)OF (AQ, Bz)

i (7)
the interpolation conditions L; (A;, B;) = F (4;,B;) (i =0,1,2) are carried
out.

3. INTERPOLATION FORMULAS WITH MATRIX MULTIPLICATION
BY HADAMARD
Let A = [a;;] and B = [b;j] be some matrices of the same dimension. The
matrix C = A - B of the same size with elements c;; = a;;b;; is called the
Hadamard product of the matrices A and B. It is commutative, associative
and distributive with respect to the addition of matrices. The role of the
identity matrix for such rule of multiplication carries the matrix J, all elements

1

of which are equal to one. By A=1= [a} we denote the matrix that is inverse
ij

in the sense of Hadamard for the matrix A = [a;;] with the elements a;; # 0.
By the definition, the n-th degree of matrix A = [a;;] in the sense of

Hadamard, which is denoted as Aﬁ, is the matrix A;L:[a?j], where A" = J
for n = 0. The function f () = Y 3o, ax2z” of the matrix A = [a;;], analytical
in a neighborhood of each element of this matrix, is defined on the set of ma-
trices with Hadamard multiplication by the formula f (A4) = > 2, axA* and,
accordingly, it is the matrix f (A) = [f (a4j)].

Here are the special cases of interpolation formula [8] of the form

Lon (A) =Y F (AR) - 1 (Ag) - Lk (A) =

Lo (A) = (A — Ag) - oo (A= Aj_) - (A= Appr) - oo (A— Ay),

matrices [,k (Ax) do not have zero elements, matrix A and nodes A of the
same dimension, fil;- are elements of the matrix F'(Ay) (k=0,1,...,n). It is
obvious that the equalities Lo, (4;) = F (4;) (i =0,1,...,n) hold.

Consider the linear case of the interpolation formula (8). Let the interpo-
lation nodes Ay = [a%}, A = [a}j} be such that all elements of the matrix

Ay — A = [agj — al-lj] are different from zero. Then for the formula

Lot (A) = F(Ag) - (Ag — A1) (A= A)) + F (A1) - (A1 — Ag) ™' - (A — 4y)
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or, what is the same thing, for the formula

1 0
aij—a-» aij—a~
Loy (A) = F(Ao) - | g— 1| + F(A) - | +—5 |,
ag; — a;; a;; — ag;
where A = [a;;] is current matrix variable, the interpolation conditions

L01 (Al) =F (Az) (Z = 0, 1) are fulfilled.

During the construction of interpolation formulas, based on the Hadamard
multiplication of square matrices, it is useful to introduce yet another analogue
of the inverse matrix. Let A = [a;;] be a square matrix and a;; # 0. By A1
we denote the matrix, for which A - A = ACD . A = . where I is the
identity matrix in the ordinary sense of the same dimension as the matrix A.
This matrix will be A = diag {ai“} .

We give formulas of the linear interpolation with the ordinary and the Hada-
mard multiplication. Let A = [a;;] be some square matrix that has nonzero
diagonal elements. Then for the linear interpolation formula

Lot (4) = F (4o) { (A9 — AV - (4= ap) b+
+ P (A { (A1 = 4) - (A= Ag)},

or for the same formula in another form

: Aii — aj; . i — ad.
Loi (A) = F (Ap) diag [aQ. — ﬂ + F (Ay) diag |:a,1, = aff] ’

equalities L10 (Ao) =F (Ao), L10 (Al) =F (Al) hold.

We consider the case n = 2 of the interpolation formula (8). The quadratic
interpolation formula with respect to the nodes Ag = [a%}, A = [a}j] and
Ay = {a?j}, such that all elements of the matrices

Ay — A = [a% — CLilj] ,Ag — Ag = [a?j — a?j] JAL — Ay = [azlj - a?j]

are different from zero, is a matrix polynomial of the form

ai; — ay; ) (i — af;
Loz (A) = F (Ap) - ( ) ( )

0 1 0 2
(a - ab) (ot - a)

PP i ) IR | O )

o) () L) ()
for which the conditions Lgg (4;) = F (A;) (i = 0,1,2) are fulfilled.
Next, we give formulas of the quadratic interpolation with the ordinary and

the Hadamard multiplication. Let A = [a;j] be some square matrix that has
different from zero diagonal elements. For quadratic interpolation with the
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same restrictions on the nodes Ag, A1 and As, as in the previous case, we have
the formula

(ag; — a3;) (af; — af;)
| (@i — ag) (@i — aF;) | (@i — a) (aii — aj;)
F(A F(As)d
A diag [(aé‘_’a%)(ak —»ai) E L) dine (ai'_'a%)(a%'_'ai) ’
which satisfies the conditions Loy (A;) = F (A;) (i =0,1,2).
air a2

a1 a2
tiplication only in the sense of Hadamard for the function F (A) = A? with

respect to the nodes
1 2 0 0
AU—|:3 4:|7A1_|:2 3:|’

the interpolation polynomial

a;; —al) (a; — a2
Loy (A) = F (Ap) diag [( “) ( “ n)

Example 3.1. On the set of matrices A = with matrix mul-

Lot (A) = F (Ag) + [F (A1) — F (Ag)] - (A1 — Ag) ™1+ (A — A)

takes the form
. 7 5 . 0 0 o 7@11 5@12 . 0 0
L01(A)—[9 13} A [12 30]_[9@1 13a22} [12 30]'
For the constructed polynomial the interpolation conditions

Lo (o) = F (o) = | 5 3o | I (4 =P a0 = ¢ o |

are also true. In the case if the interpolation nodes A = aiJ, where o
(k=0,1,...,n) are different in pairs numbers, then the formula (8) takes the
form

L (4) =

N (A—a) (Ao i) (A i) (A= and)
_k:O (Oék_Oé())-..(Oék—Oékfl) (ak—akJrl)---(ak—an) F( kJ)

Next, we consider interpolation formulas for operators, defined on the set of
functional matrices. Let X = C (T') be the set of continuous on T' = [a, b] square
matrices; an operator F' : X — X and Ay (t), A1 (t) be interpolation nodes from
X. Suppose also that A = A (t), interpolation nodes Ay (¢), A; (t) are matrices
of the same order, defined on the segment [a, b], and operator F' (A) is defined at
the nodes Ag (t), A1 (t) and on the matrix curve Ag (¢)+x (7,t) (41 (t) — Ap (1)),
where the function

L 7>t
) ={ g 725 v@n=0 x0=1 (@snr<o.
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One of the linear interpolation formulas on the set of continuous on the
segment [a, b] matrices can be written using the Stieltjes integral in the form

b °
Lo (A) =F(Ao)+/ [A () — Ao ()] - [A1 (1) — Ao ()] - dox
X F[Ag (t) + x (7, 1) (A1 (£) = Ao (1))],

on condition that all elements of the matrix A; (t)— Ay (¢) are different from zero
on [a, b] and in this formula integral exists. The equalities L1 (4;) = F (A;)
(i =0,1) are true.

In the space C™ [a, b] of rectangular matrices A(t) = [ai;(t)] of the dimen-

sion px g, for which the derivative A(™)(t) = [al(-;n) (t)] of order m is continuous

on the [a, b], we consider the matrix polynomial of the first degree

= k=0"1
where B = B(t), C; = Cj(t), Di(t,s) (j=0,1,..n; k=0,1,...,m) are fixed
(p X q)-matrices.

We denote by o01;(t) and H;(t) the matrices

o1:(t) = Ap(t) + A1(t;) — Ao(t;), Hi(t) = A(t) — Ao(t) — A(ti) + Ao(ts),

where t; (i =0,1,...n) are given points of the segment [a,b]; Ao (t) and A (t)
are interpolation nodes such that the matrices A; (¢;) — Ao (¢;) are reversible in
the sense of Hadamard.

For the formula

Li(A) = F(Ao)+

P (A) =B+ zn: A(t;) - Cj + i b Dy(t,s) - AP (s)ds (9)
j=0

i ; A9 = o)) [Aa() — Aaa] ™ [Flow) = Flanl+
1 < [t
+ Y ;/0 OF[o1i(-) + 7 (A1(+) — o1i(1)) 5 Hi ()]dr

the conditions Li(4;) = F(4;) (i=0,1) hold, and it is exact for matrix
polynomials of the form (9).

Really, the equation Ly (Ag) = F' (Ap) is satisfied, since the second and third
terms in (10) become zero. Execution of interpolation condition at the second
node is also easy to verify, taking into account that in this case the integral in
(10) can be calculated exactly.

Let F (A, B) be also a function of two matrix variables A and B; (4;, B;) be
interpolation nodes (i = 0, 1,2). We introduce the following notations:

10 (A, B) = [(A— A1) - (By — Ba) — (Ay — Ag) - (B— By)] - D1,
11 (A, B) = [(A— o) - (Bz — Bo) — (A2 — Ao) - (B — Bo)] - D1,

ls (A, B) = [(A= Ag) - (Bo— B1) — (Ag— A1) - (B=By)] - D 1.
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Here the matrix D~ is reversible in the sense of Hadamard for
DZ(Ao—Al)-(Bl—BQ)—(Al—Az)'(Bo—Bl);

A, B are independent variables, interpolation nodes (A;, B;) and values
F (A;, B;) (i =0,1,2) are rectangular matrices of the same dimension.
For the interpolation formula

L1 (A, B) = lio (A, B) - F (Ao, Bo) +

+1l11 (A, B) - F (A1, B1) + 12 (A, B) - F (A2, Ba) (1

the conditions L1 (A;, B;) = F (A;, B;) (i = 0,1,2) are satisfied. The formula
(11) is invariant with respect to matrix polynomials of the form

P (A,B) = l19 (A,B) - Co + 11 (A,B) -C1+ 9 (A,B) - Cs. (12)

At that in the equation (12) arbitrary rectangular matrices C; are of the same
dimension as the matrices F'(4;, B;) (¢ =0,1,2).

Example 3.2. Let A = [a;5], B = [bjj] (i,j = 1, 2) be square matrices of the
second order. The interpolation formula (11) for the function F (A, B) = (AB)?
with respect to the nodes

1 1 0 2 1 2
AOZ[l 1]7302[0 1};141:[0 _1},

1 1 01 01
AR P IS E
takes the form

Lll [A, B] _ [ 8 — 8(111 + 4b11 1 + 4b12 :| '

—11 + 11(121 + 10()21 7 + 4@22 — 2b22

For Li; [A, B] the interpolation conditions

@)
Ne)

L11 [Ag, Bo] = F (Ao, Bo) = [ 09 ] ;
4 5)
L1 [A1,B] = F (A1, By) = [ B } )

L11[Ag, By = F (Ay, By) = { 280 153 ]
are true.

Note that in [1, 46 p.| the matrix I' is constructed as a sum of the powers of
the Hadamard matrices, which plays an important role in the construction of
the set of interpolating polynomials in the Hilbert space and in the justification
of a number of the results obtained on this set.
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4. INTERPOLATION FORMULAS WITH MATRIX MULTIPLICATION BY
FROBENIUS
Suppose that the matrices A = [a;;] and B = [b;;] have the same dimension.
Their product in the sense of Frobenius is defined as

AOB =" aijbi;.

This operation is commutative, and its result is a scalar. Interpolation for-
mulas for functions of matrices may be also constructed on the basis of such
multiplication rule.

Let interpolation nodes Ay (k=0,1,...,n) be different stationary or func-
tional matrices, and F' (Ay) be given fixed matrices, which dimension may differ
from the dimension of Ay, or some other mathematical objects over the field of
real or complex numbers. Then in the case of rectangular matrices of the same
dimension (including square matrices) for the formula

"\ Lk (A)

Ln (F; A) = F(Ar), (13)
k=0

where
Ink (A) = [(A = Ag) O (Ar — Ao)] ... [(A— A1) O (Ap — Ap—1)] X

X [(A = Ap1) & (A = Apg1)] - [(A = Ap) O (A — An)]
the equalities Ly, (F;A,) = F(A,) (v =0, 1, ..., n) take place.
If the interpolation nodes Ay such that tr (Ax — A,) # 0 (k,v =0,1,...,n),
then on the set of square matrices for the similar formula
Lo (Fiay =3 A
o Ink (Ax)

where
Lok (A) = tr (A — Ag) tr (A — Ag) - - - tr (A — Ap_y) tr (A — Ax_1) X
xtr (A — Agaq)tr (Ag — Agaq) - tr (A — Ap) tr (A — Ay)

the same interpolation conditions are fulfilled.

Obviously, the equation (13) remains an interpolation, if [,; (A) is replaced
by any number function ¢, (A) of matrix function arguments such that
¢nk (Ak) 75 0 for k = 0, 1, )

In particular, if n = 2 and n = 1, then the formula (13) takes the form
[(A— A1) & (Ao — A1) [(A— Ag) O (Ao — Ag)]
[(Ao — A1) & (Ao — A1)l [(Ao — A2) ¢ (Ao — A2)]
[(A = Ap) O (A1 — Ag)] [(A—A2) O (A

[(A1 — Ao) ¢ (A1 — Ag)] [(A1 — A2) & (A1 — Ap)]
(A~ A9) O (A2 — Ag)] (A — A1) O (A2 — A))] (As)

[
(45 = A) & (Az — Ag)) [(As — A1) O (As — Ay)]

LQ(F7A):

F (A()) +

A2)) F(A)+
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and
L (A=A O (A9 — Ay)
L A) = T AN 6 (Ag — Ay - Ao T 14
(A—Ay) O (A1 — Ay) F(AY)
(A1 — Ag) & (AL — Ag)~
respectively.

Example 4.1. The interpolation formula (14), based on the nodes

1 2 0 2
w=ls i) a= 53]
for the function F (A) = A2, has the form

1 1 4 119 0

Example 4.2. Let A = [ T Tz T3 ] be a functional matrix and
T21 T2 T23
1
0

1 0 2 1 0
AO_{?) 5 0]’ Al_[Z 5
be the interpolation nodes. Then
(Ag — A1) O (Ao — A1) = (A1 — Ag) & (A1 — Ag) =2,
and the interpolation formula (14) takes the form
1 1
L (F;A) = 5(“3 + x91 — 3) F' (Ap) — B (13 + 221 — 5) F (A1),

and, therefore, we get that Ly (F; Ag) = F (Ao), L1 (F; A1) = F (A4y).

Next, we consider a formula of the linear interpolation, similar to (7) and
(11), with the multiplication in the case of Frobenius. We introduce the follow-
ing notation:

loo (4, B) = % (A= A1) O (Br — Ba) — (A1 — A2) & (B — B,
1 (4,B) = & [(A~ 40) & (B2 — Bo) — (4> — 40) & (B~ Bo)],
I (A, B) = 3 [(A— 40) & (Bo — B1) — (Ao — A1) & (B~ By)),

where D is the numeric value, which is calculated by the formula
D = (Ag — A1) ¢ (B1 — Bg) — (A1 — A2) < (Bo — By) -
The interpolation formula
L11 (A, B) = loo (A, B) F (Ao, By) +
+111 (A, B) F (A1, By) + 122 (A, B) F (A2, By)

satisfies the interpolation conditions L1; (4i, B;) = F (A4, B;) (i = 0,1,2).
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Example 4.3. Let A = [a;;] and B = [b;;] be square matrices of the second
order. We construct interpolation formulas of the form (7), (11) and (15) for
the function F (A, B) = (AB)? on the nodes

11 0 2

1 2 11 01
e[t 4] me [ 2wt )|

In the case of the formula (7) we have

1
L1 [A, Bl = —
1[4, B] 2% X
—38 + 91a11 — 156a19 + 22a91 + 123a9s + 122b17 — 144b15 4 16bo1 + 246b9o
1440 4 32a11 — 388a12 + 206a21 — 192a22 + 58b11 — 328b12 4 176b21 — 378baa
—102 + 940,11 — 16(112 — 52(121 + 126(122 + 16b11 + 8b12 — 64b21 + 168b22
128 + 211@11 - 364@12 + 138@21 + 131(122 + 82b11 — 136b12 + 24b21 + 262b22 ’

Using the rule (11), we get that

Lii[A, B = 8 — 8a11 + 4b11 1+ 4b12 } .

—11 + 11asy 4+ 10b21 7 + 4ass — 2bos

Finally, for the formula (15) the value D = —3, and the required polynomial
has the form

Ly, [A,B] =

4 (=44 2a11 — a12 + 2a22 — by1 — 2b1a + 2ba1 + 5bao)
—40 + 20a11 — 21ais + 22a21 + 20a92 + b11 — 20b19 + 20b91 + 39b9s

35 — 4aqy + 4ag — 4age + 4b11 + 4b1a — 4bay — 12bg9
19 + 4a11 — 14a12 + 24a1 + 4azz + 10017 — 4b12 + 4boy — 2bao |-

1
3

We note that all formulas, obtained in this example, have a different form,
but for them the same interpolation conditions

0 9
Lll [A()vBO] :F(AOaBO) = |: 09 :| )

L1 [A,B] = F (A1, By) = [ _4 ; } ;

8 5
L1 [Ag, By = F (A2, By) = { ]
are fulfilled.
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5. KRONECKER MATRIX MULTIPLICATION AND CORRESPONDING
MATRIX POLYNOMIALS
If A = [a;5] and B = [b;;] are some matrices of the dimensions m x n and
p X g, respectively, then the Kronecker product of these matrices A ® B is a
matrix of dimension mp X ng, which is defined by the formula

anB algB alnB
A ® B = ang CLQQB CLQnB
amlB amaB ... amnB

In general, the Kronecker product of matrices, in contrast to the Jordan mul-
tiplication, non-commutative, but has the property of associativity. The Kro-
necker multiplication is distributive with respect to the addition of matrices.

Let X be a set of square matrices, an operator F': X — Y, where Y is also
a set of square matrices of the fixed dimension, interpolation nodes Ay € X
(k=0,1,...,n) and there are inverse matrices (4; — Aj)_1 (i # j). In addition,
the dimension of matrices of the set Y coincides with the dimension of square
matrices of the form (A—A,)® I

We introduce the notation

e (A) =[(A—Ag) @ 1] .. [(A = Ap1) @ I][(A = App1) @ 1] . [(A = Ap) @ 1]
Then for the polynomials

Lon (A) =) F(Ap) ;' (Ar) e (A), (16)

WM:
S ()

Lo (A) = > 1k (A) I (Ax) F (Ay) (17)
=0
the equalities Lo, (Ar) = Lno (Ak) F (Ay) are true, because

L (AR) e (Ay) = Ik (A)) 1 (Ak) = o

Here and further the orders of matrices F' (Ay) are consistent with the order of
the interpolation fundamental square matrices [, (A). If we select the expression

e (A) = [T @ (A— Ag)] .. [ © (A— Ap )] [T @ (A= Agyy)] - [[® (A — Ay)]

for the function I (A) in (16) and (17), we come to some other kind of these
formulas.
The formulas Ly, (A) and Ly (A) are exact for the matrix polynomials

Py, (A ZBkl (Ag) 1y (A) Zlk ' (Ag) By,

where B, (v =0, 1, ...,n) are arbitrary matrices from the set Y, respectively.
We comnsider formulas of the linear interpolation

Lot (A) = F (Ao) + [F (A1) = F (40)] [T @ (41 — 40) | [T @ (A - 4g)],

Lo (A) = F (Ag) + [(A — Ag) ® I] [(Al —A) '@ I} [F' (A1) — F (Ao)].
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The formula Lo (A) is exact for matrix polynomials of the form Py (A) =
A® B+ D. Really,

Lyg [Pro; A] = Ag®B+D+[(A — Ag) ® I] | (A1 — Ao) " @ T| [(A1 — Ag) ® B] =

=Ag®@B+D+(A—Ag) (A —Ag) (A — Ay) ® B =
=A)®@B+ D+ (A—Ay) ®@B=Py(A4).
Similarly, the formula Lg; (A) is exact for matrix polynomials of the form
Py (A)=B® A+ D.

We consider the application of the Lagrange—Sylvester formula to construct
the corresponding interpolation formulas, using several properties of the Kro-
necker multiplication for this. One of the important properties of this multipli-
cation for the given problem is that the spectrum of the Cartesian product of
matrices is clearly expressed through the spectrum of its factors.

Suppose that the matrix C has the form C = A ® B, and square matrices
A and B of the orders p and ¢ have the eigenvalues \; (i = 1,2,...,p) and p;
(J=12,..9), respectively Then [9] the matrix C' has pq eigenvalues A;u;
(i=1,2,. ,p, =1,2,...,9).

If the eigenvalues /\Z,u] are different, then for the matrix C' the Lagrange—
Sylvester formula takes the form

= kMV) s
k=

1 Uy )\kﬂu

where

w©@= T TI © rumh),

lkl/ (Akul/) = H H (Akuu - )\iﬂj) )
i=1,i#k j=1,j7v
I, is the identity matrix of the pg-dimension.
We give the trigonometric variant of the Lagrange-Sylvester formula for the
Kronecker product of matrices C = A ® B:

p q
lkl/

—1v lk‘l/ ()‘k,uy)

()‘kuu)_ (_)‘kMV) .
2sin (Agfiy) sinC )

M
M

Ipg +

" (F()\kuu) +F(—)\kﬂu)
2

where

Ik (C) = H H (cos €' — cos (Aiptg) Ipg)

i=1,i#k j=1,j#v
B p q
lew (Akp) = H H (cos (Appi) — cos (Aipy)) ,

i=1,i#k j=1,j#v
and I, is the identity matrix of the pg-dimension as before.
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6. INFINITE MATRIX AND SOME INTERPOLATION FORMULAS

Operators of the discrete convolution, as well as continuous, are widely used
in the solution of many mathematical and applied problems [10-12]|. Discrete
convolutions can be applied to the interpolation problem of functions with many
variables and infinite matrix variables.

Matrix A = [a;;] with real or complex elements a;; is called infinite, if 4,5 =
1,2,... or at least one of the indices ¢ or j has infinite number of the values.
Addition and multiplication of the infinite matrices A = [a;;] and B = [b;]
is defined the same way as in the finite-dimensional case. In contrast to the
finite matrices, the product AB = [¢;;] may not exist, since the series ¢;; =
> peq aikbrj (i, =1,2,...) may be divergent or nonsummable for all or only
for the several ¢ and j values. Moreover, if there is the existing product BA, the
product AB may not exist. In general, the multiplication of infinite matrices
is not associative: (AB)C # A (BC).

On the set of infinite matrix A, on condition that the matrices A* (k > 2)
exist, for entire functions f (z) (z € C) the matrices f (A) may be determined
by the usual rules.

The theory of infinite matrices, as one of the sections of mathematical analy-
sis, and its applications are interconnected with the theory of separable Hilbert
spaces, including the coordinate Hilbert space [s.

We consider some formulas for the interpolation of functions, given on the
set of infinite sequences, which we denote by [. Each element z (infinite-
dimensional vector) from [ is defined by its coordinates: = = {zg}re, =
{xo, 1, T2,...}, where x; (k=0,1,...) are complex numbers or complex ran-
dom values with given distribution laws. Here the addition of elements of the
set and its multiplication by a number are determined by the usual rules, and
the product x * y is given by the discrete convolution of the Laplace according

to the rule
oo

k

x*y:{zxk—uyu} )
v=0 k=0

the product z * y also belongs to [. For this multiplication rule the sequence
I =1{1,0,0,...} is the unit, and in this case the set [ is a commutative algebra.
Let F' be operator, mapping the set [ into [, and the elements zo = apl,
x1 = a1l and 2 = al, where I is the unit element in I, o; € C, aj # «; for
j#i(i,7 =0,1,2), are taken as the interpolation nodes. Then simplest on [

formulas are formulas of the linear and quadratic interpolation

Ly (F;x) :F(ﬂso)—l—alim][F(xl)—F(:po)] x (x — x0),
Ly (F;x) = o al)l(ao - a2)F (xo) * (& — 1) * (x — 22) +
1
(051_050) (041 _a2)F(x1) (.f—l‘o)*(l’-ﬂ?g)—f—
1

(042 - ao) (a2 _ al)F(xQ) * (.’E —1‘0) * (.ZL' — x1)7
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respectively, for which Ly (F;xz9) = F(x9), Li(F;x1) = F(z1) and
LQ (F; {L'Z) =F (l’z) (Z = O, 1, 2).

For the same system of interpolation nodes x; = ;I on condition that o #
a;, j #i (i, =0,1,2,...,n), the Lagrange formula of the n-th order is written
in the analogous form

ank ) F (o), (18)

where

(x—apl) (x—al) - (x —ag_1I) (x — agy1l) -+ (z — anl)
(g — o) (o — an) -+ (e — ag—1) (g — 1) -+ (g — )

I is the unit element of the algebra [. It’s obvious that L, (F;zx) = F (xg)
(k=0,1,...,n).

Let us consider a slightly different variant of (18). By {"*™ we denote the
set of m x m-matrices of the form X = [z"], where % are elements from I,
ie. Y = {xzj}k (1,7 =1,2,...,m). Here the operations of addition and
multiplication of ma,trlces by a number are ordinary, and the multiplication of

matrices X = [2¥] and Y = [y¥] from [™*™ is carried out according to the
rule:

wnk (x) =

C=XxY = [cij],

where ¢ = " 2™ %y ie. 2™ * y* means the product of sequences 2%
and %/ also in the sense of the Laplace convolution given above. This set of
matrices with indicated rules of multiplication also form an algebra.

We consider the formula of the form (18), in which the interpolation nodes

T, are m X m-matrices

xil :C,EQ :c,%m
21 22 2m
T T T
T, = v v s (r=0,1,...,n)
xml wm2 mm

with the elements 27 from 1. Tt is required of nodes x,, that the matrices x, —x
are reversible in the ordinary sense.
Let the interpolation nodes be matrices of the form

T, =x,1 = [ﬂcfjj,O,Q ] (i,j=1,2,....m; v=0,1,....,m) .

Then for an operator F': ["™*™ — [™*™ and the formula

ank x F (Zy),

where
O () = Lo () % lpg () % - x b o1 (@) * lg g () %2+ % Ly (2)

Iy (x) = (x —Ty) * (Tfy — :il,)_1 =(x—Ty) * (zg — :101,)_1 I (k,v=0,1,...,n)
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the interpolation conditions L, (F;Z) = F (#;) (k=0,1,...,n) are fulfilled.
These conditions take place by virtue of the equalities Wy (Z,) = O, I, where,
as before, dp,, is the Kronecker symbol.

Example 6.1. Let A and B be infinite rectangular matrices of the dimen-
sions 2 X co and oo X 2, respectively:

[ D11 b1z T
ba1  bao
a a a . .
A a11 a12 aln ]’ B : :
21 @2 -+ Q2p -
bnl bn2

S11 Si2

Their product is a (2 x 2)-matrix AB = [ So1 S

], where the elements

Sij (1 <1,j <2) are given by series

o0 o0 oo oo
S = E aiibi1, Si2 = g a1ibi2, S21 = E az;bi1, S22 = E a2ibja.
i=1 i=1 i=1 i=1

For the existence of the product AB it is required that these series are con-
verging in some sense. For example, if the elements of matrix A and B are
random values or processes, then one of the variants of the convergence may be
the convergence of mathematical expectations of the summands of these series.
We consider an example with this type of convergence.

Suppose that

0 = mw4i—2 (£), as = (21'1_2)!WM+2 )
‘ _(—17)1+i 4i—2 , _(_17)1_2' 4i+2
M=t 9 o o0

where W (t) is standard Wiener process, £ (¢) is a random Gaussian process with
zero mean value and variance o = o (t). We assume that these processes are
stochastically independent. We remind that the k-th moments of the processes
W (t) and £ (t) are given [13] by the equalities

k | Q-1 k=2
E{W (t)}_{ 0, k=2v+1,

_f Quv=1)Ne¥, k=2
E{{k(t)}{ 0, kE=2v+1

(v=0,1,...). In this case, the series £{S;,} (j =1,2; v =1,2) converge.
Since

E{Sll} = iE {alibil} = sin (tO‘ (f,)) 5 E {522} = i E{agibig} =to (t) COS (tO’ (t)) 5

then the mathematical expectation of the trace of matrix AB has the simple
form
E {tr (AB)} =sin (to (t)) + t3¢> (t) cos (to (1)) .
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Construction and research of interpolation operator polynomials in the Hil-
bert spaces, which theory in some cases is interconnected with the infinite
matrix theory, are considered in the articles [14-15].
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