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INTERPOLATION FORMULAS FOR FUNCTIONS,
DEFINED ON THE SETS OF MATRICES WITH

DIFFERENT MULTIPLICATION RULES

L.A.Yanovich, M.V. Ignatenko

Ðåçþìå. Ðîçãëÿäà¹òüñÿ çàäà÷à iíòåðïîëÿöi¨ ôóíêöi¨ âiä ìàòðèöi ó âèïàä-
êó ìíîæåííÿ çà ïðàâèëàìè Éîðäàíà, Àäàìàðà, Ôðîáåíióñà, Êðîíåêåðà i
Ëàïëàñà. Îòðèìàíî íîâèé êëàñ iíòåðïîëÿöiéíèõ ìíîãî÷ëåíiâ Ëàãðàíæà
i Íüþòîíà ôiêñîâàíîãî ñòåïåíÿ äëÿ ôóíêöié, âèçíà÷åíèõ íà ìíîæèíàõ
ñêií÷åííèõ i íåñêií÷åííèõ ìàòðèöü. Âêàçàíî âèãëÿä îïåðàòîðíèõ ïîëiíî-
ìiâ, äëÿ ÿêèõ öi ôîðìóëè iíâàðiàíòíi.
Abstract. We consider the problem of matrix functions interpolation in the
case of Jordan, Hadamard, Frobenius, Kronecker and Laplace multiplication
rules. We give a new class of Lagrange and Newton interpolation polynomials
of �xed degree for functions, de�ned on the sets of �nite and in�nite matrices.
The type of operator polynomials, for which these formulas are invariant, is
indicated.

1. Introduction
Let X be a set of square or rectangular matrices of the �xed size. The

operator F : X → Y , where Y is a given set, is called a function of the matrix.
In particular, Y may coincide with X, may be some other set of matrices, a
numerical set, a function space and others.

Approximation of functions of the matrix variables is a part of a more general
problem � interpolation of operators [1�4].

General form of the interpolation formulas is determined by the structure
and properties of elements of the set X, on which the interpolated function
F (A) is given, as well as the interpolation nodes. A number of interpolation
formulas on the sets of square and rectangular matrices was obtained in the
works [1, 2; 5�8].

Along with the commonly accepted operation of matrix multiplication, the
other matrix multiplication rules are also used and can be applied in mathe-
matics and its applications. Such an approach is also e�ective at constructing
of interpolation methods for functions of matrices. In this paper the interpo-
lation formulas, using both the ordinary matrix multiplication and the matrix
multiplication by Jordan, Hadamard, Frobenius and others, are obtained.

Key words. Interpolation; matrix functions; interpolation matrix polynomial; interpola-
tion formula of Lagrange and Newton type; matrix multiplication by Jordan, Hadamard,
Frobenius and Kronecker, Laplace discrete convolution.
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2. Interpolation formulas with multiplication
of square matrix by Jordan

Let X be a set of square matrices of the �xed size, the operator F : X → X.
The Jordan product A ◦ B of two matrices A and B from X is de�ned by the
following rule: A ◦ B = 1

2 (AB + BA). It is commutative, but not associative.
So, if the Jordan product contains more than two matrices, then in some cases
it is required to indicate the execution order of the multiplication in the given
product for uniqueness.

Let us �rst consider interpolation formulas of Lagrange type of the arbitrary
order, which are constructed on the basis of such rules of multiplication of
square matrices. Here are three variants of the formulas for constant matrices.
We denote by lnk (A) the product

lnk (A) = Bk0 ◦ (A−A0) ◦Bk1 ◦ ... ◦Bk,k−1◦
◦ (A−Ak−1) ◦Bkk ◦ (A−Ak+1) ◦Bk,k+1 ◦ ... ◦Bk,n−1 ◦ (A−An) ◦Bnn,

where Ak (k = 0, 1, ..., n) are interpolation nodes, Bkν ≡ Bk,ν (k, ν = 0, 1, ..., n)
are arbitrarily given matrices. Let the order of execution of multiplication oper-
ation in lnk (A) be determined in advance. We introduce the matrix polynomials
of the form

L0n (A) =
n∑

k=0

F (Ak) ◦
{
l−1
nk (Ak) ◦ lnk (A)

}
(1)

Ln0 (A) =
n∑

k=0

{
F (Ak) ◦ l−1

nk (Ak)
} ◦ lnk (A) , (2)

in which �rst the multiplication operation in the curly brackets is performed.
Since l−1

nk (Ak) ◦ lnk (Aν) = δkνI (k, ν = 0, 1, ..., n), where δkν is the Kronecker
symbol, than for the formula (1) in the nodes Ak the interpolation conditions
L0n (Ak) = F (Ak) are met.

These conditions are satis�ed for the formula (2), if the associator
{
F (Aν) , l−1

nν (Aν) , lnν (Aν)
}

= 0.

It takes place in virtue of the equality
{
F (Aν) , l−1

nν (Aν) , lnν (Aν)
}

=

=
(
F (Aν) ◦ l−1

nν (Aν)
) ◦ lnν (Aν)− F (Aν) ◦

(
l−1
nν (Aν) ◦ lnν (Aν)

)
=

=
(
F (Aν) ◦ l−1

nν (Aν)
) ◦ lnν (Aν)− F (Aν) = 0.

It follows that (2) is the interpolation formula.
It is easy to check that the matrix polynomial of the n-th degree

Ln (A) =
n∑

k=0

F (Ak) ◦ lkk (A) , (3)

where
lkk (A) =

n∏

ν=0,ν 6=k

Bν

{
(A−Aν) ◦ (Ak −Aν)

−1
}

B−1
ν ,
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Bν (ν = 0, 1, ..., n) are arbitrary invertible matrices, also satis�es the conditions
Ln (Ak) = F (Ak) (k = 0, 1, ..., n), at that the product of matrices, indicated
in curly brackets, on Bν and B−1

ν can be understood as the ordinary or in the
sense of Jordan. In the both cases lkk (Aν) = δkνI (k, ν = 0, 1, ..., n).

The interpolation polynomials (1)�(3) are exact for the matrix polynomials

P0n (A) =
n∑

ν=0

Dν ◦
{
l−1
nν (Aν) ◦ lnν (A)

}
,

Pn0 (A) =
n∑

ν=0

{
Dν ◦ l−1

nν (Aν)
} ◦ lnν (A) , Pn (A) =

n∑

ν=0

Dν ◦ lνν (A) ,

respectively, where Dν are arbitrary square matrices. As already mentioned,
the interpolation conditions for the formula (2) are satis�ed, if and only if
associator {

F (Ak) , l−1
nk (Ak) , lnk (Ak)

}
= 0 (k = 0, 1, ..., n) .

This imposes additional conditions on the operator F and the interpolation
nodes.

If n = 1, and Bkν (k, ν = 0, 1) are the identity matrices, then the formula
(1) with the nodes A0 and A1 is reduced to the equality

L01 (A) = F (A0) + [F (A1)− F (A0)] ◦
{

(A1 −A0)
−1 ◦ (A−A0)

}
. (4)

It is exact (invariant) for the polynomials P01 (A) = D◦
{

(A1 −A0)
−1 ◦A

}
+C,

where D and C are arbitrary matrices.
In the particular case, when A1 − A0 = I, the linear interpolation formula

(4) takes the form
L01 (A) = F (A0)+

+
1
2

[(F (A1)− F (A0)) (A−A0) + (A−A0) (F (A1)− F (A0))]

and it will be invariant for the matrix polynomials P1 (A) = DA + AD + C,
where D and C are arbitrary �xed matrices.

Here is another formula of the linear interpolation with the multiplication
by Jordan:

L1 (A) = F (A0) + (A−A0) ◦B+

+ [F (A1)− F (A0)− (A1 −A0) ◦B] ◦
{

(A1 −A0)
−1 ◦ (A−A0)

}
,

where B is an arbitrary given matrix. This interpolation formula is exact for
polynomials of the form

P1 (A) = D ◦
{

(A1 −A0)
−1 ◦A

}
+ B ◦A + C.

One of the quadratic interpolation formulas of the kind (3) has the form

L21 (A) = L01 (A)+
{

(A−A1) ◦ (A2 −A1)
−1

}
◦
[{

(A−A0) ◦ (A2 −A0)
−1

}
◦

◦ (F (A2)− F (A1))−
{

(A−A0) ◦ (A1 −A0)
−1

}
◦ (F (A1)− F (A0))

]
,
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where, as before, at the beginning matrices in the curly brackets are found, and
then in the usual order � in square brackets; L01 (A) is the matrix polynomial of
the �rst degree (4). For it the following equalities L21 (Ai) = F (Ai), (i = 0, 1, 2)
are valid.
Example 2.1. It is not di�cult to show that the interpolation polynomial

L10 (A) = F (A0) +
{

(A−A0) ◦ (A1 −A0)
−1

}
◦ [F (A1)− F (A0)] ,

where the function F (A) = A2, and the nodes

A0 =
[

1 2
3 4

]
, A1 =

[
0 2
3 3

]
,

has the form

L10 (A) =
1
2
A

[
1 4
6 7

]
+

1
2

[
1 4
6 7

]
A−

[
6 8
12 18

]
.

Next, we consider the formulas of the linear and quadratic interpolation
on the set of square functional matrices, which are determined by the matrix
Stieltjes integrals. Let X = C (T ) be the set of continuous on T = [a, b] square
matrices; F : X → X, A0 (t), A1 (t) be interpolation nodes from X.

On the set of matrices with the Jordan multiplication, the interpolation
polynomial of the �rst degree with respect to the nodes A0 (t) and A1 (t) has
the form

L̃10 (A) = F (A0) +
∫

T

{
[A (τ)−A0 (τ)] ◦ [A1 (τ)−A0 (τ)]−1

}
◦

◦dτF [A0 (·) + χ (τ, ·) (A1 (·)−A0 (·))] .
(5)

In the formula (5), as before, �rst the multiplication operation in the curly
brackets is carried out. This formula is invariant with respect to the polynomials

P1 (A) = K0 +
∫

T

{
A (t) ◦ [A1 (t)−A0 (t)]−1

}
◦K (t) ◦ [A1 (t)−A0 (t)] dt,

where K0, K (t) are some given matrices.
Example 2.2. The interpolation matrix polynomial of the form (5) with

respect to the nodes A0 (t) and A1 (t) for the function F (A) =
∫ b
a A2 (t) dt takes

the form
L̃10 (A) = F (A0) +

∫ b

a
G [A (τ) , A0 (τ) , A1 (τ)] dτ,

where
G [A,A0, A1] =

=
1
4

{
(A−A0) (A1 −A0)

−1 + (A1 −A0)
−1 (A−A0)

}(
A2

1 −A2
0

)
+

+
1
4

(
A2

1 −A2
0

){
(A−A0) (A1 −A0)

−1 + (A1 −A0)
−1 (A−A0)

}
.

Next, we consider the interpolation polynomials of the arbitrary degree for
functions of two matrix variables. Let F (A, B) be a function of two variable
square matrices A and B, the interpolation nodes {Aν , Bν} (ν = 0, 1, ..., n) are
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given, where Aν , Bν are some square matrices. We introduce the following no-
tations: rl ≡ rl (A,B) is the vector with matrix coordinates {A−Al, B −Bl};

rl,k ≡ rlk ≡ rlk (Ak, Bk) ≡ rl (Ak, Bk) (l, k = 0, 1, ..., n) .

The vector rlk has coordinates {Ak −Al, Bk −Bl}. It's obvious that rll =
rl (Al, Bl) = 0. Assume that

(rl, rlk) = (A−Al) ◦ (Ak −Al) + (B −Bl) ◦ (Bk −Bl) (l, k = 0, 1, ..., n) ,

(rlk, rlk) = (Ak −Al)
2 + (Bk −Bl)

2

and, accordingly, we denote
lk (A,B) = (r0, r0k) ... (rk−1, rk−1,k) (rk+1, rk+1,k) ... (rn, rnk)×
× [(r0k, r0k) ... (rk−1,k, rk−1,k) (rk+1,k, rk+1,k) ... (rnk, rnk)]

−1 .

Since lk (Aν , Bν) = δkνI, then the matrix polynomial

L1n (A,B) =
n∑

k=0

lk (A,B) F (Ak, Bk) , (6)

where the product of the matrices lk (A,B) and F (Ak, Bk) on the right side of
(6) may be usual or in the sense of Jordan, is also the interpolation polynomial
for the function F (A,B) with respect to the nodes (Ak, Bk) (k = 0, 1, ..., n).

We give a slightly modi�ed version of the interpolation formula of the form
(6). We introduce the notations

l̃k (A,B) =
n∏

ν=0,ν 6=k

l̃νk (A,B) , l̃νk (A,B) = (rν , rνk) ◦ (rνk, rνk)
−1 .

Since l̃νk (Ak, Bk) = I, l̃νk (Aν , Bν) = 0, then l̃k (Aν , Bν) = δkνI. Thus, the
formula

Ln (A,B) =
n∑

k=0

l̃k (A, B) F (Ak, Bk)

is the interpolation polynomial of the degree not higher than n, for which the
equalities Ln (Aν , Bν) = F (Aν , Bν) (ν = 0, 1, ..., n) are true.

Next, we consider formulas of the other form for the linear interpolation
of functions of two matrix variables on the set of constant matrix with the
multiplication by Jordan. Let F (A, B) be a function of matrix variables A and
B; (Ai, Bi) be interpolation nodes (i = 0, 1, 2).

We introduce the following notations:
l̃0 (A,B) = [(A−A1) ◦ (B1 −B2)− (A1 −A2) ◦ (B −B1)] ◦D−1,

l̃1 (A,B) = [(A−A0) ◦ (B2 −B0)− (A2 −A0) ◦ (B −B0)] ◦D−1,

l̃2 (A,B) = [(A−A0) ◦ (B0 −B1)− (A0 −A1) ◦ (B −B0)] ◦D−1,

where
D = (A0 −A1) ◦ (B1 −B2)− (A1 −A2) ◦ (B0 −B1) .
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Note that the relations l̃i (Aj , Bj) = δijI; l̃0 (A,B) + l̃1 (A,B) + l̃2 (A,B) = I
take place. It is not di�cult to verify that for matrix polynomial of the variables
A and B of the �rst degree of the form

L̃1 (A,B) = l̃0 (A,B)◦F (A0, B0)+ l̃1 (A,B)◦F (A1, B1)+ l̃2 (A,B)◦F (A2, B2)
(7)

the interpolation conditions L̃1 (Ai, Bi) = F (Ai, Bi) (i = 0, 1, 2) are carried
out.

3. Interpolation formulas with matrix multiplication
by Hadamard

Let A = [aij ] and B = [bij ] be some matrices of the same dimension. The
matrix C = A · B of the same size with elements cij = aijbij is called the
Hadamard product of the matrices A and B. It is commutative, associative
and distributive with respect to the addition of matrices. The role of the
identity matrix for such rule of multiplication carries the matrix J , all elements
of which are equal to one. By A

•−1=
[

1
aij

]
we denote the matrix that is inverse

in the sense of Hadamard for the matrix A = [aij ] with the elements aij 6= 0.
By the de�nition, the n-th degree of matrix A = [aij ] in the sense of

Hadamard, which is denoted as A
•
n, is the matrix A

•
n=

[
an

ij

]
, where A

•
n = J

for n = 0. The function f (z) =
∑∞

k=0 akz
k of the matrix A = [aij ], analytical

in a neighborhood of each element of this matrix, is de�ned on the set of ma-
trices with Hadamard multiplication by the formula f (A) =

∑∞
k=0 akA

•
k and,

accordingly, it is the matrix f (A) = [f (aij)].
Here are the special cases of interpolation formula [8] of the form

L0n (A) =
n∑

k=0

F (Ak) · l
•−1

nk (Ak) · lnk (A) =

=
n∑

k=0


fk

ij

(
aij − a0

ij

)
...

(
aij − ak−1

ij

)(
aij − ak+1

ij

)
...

(
aij − an

ij

)
(
ak

ij − a0
ij

)
...

(
ak

ij − ak−1
ij

)(
ak

ij − ak+1
ij

)
...

(
ak

ij − an
ij

)

 ,

(8)

where

lnk (A) = (A−A0) · ... · (A−Ak−1) · (A−Ak+1) · ... · (A−An) ,

matrices lnk (Ak) do not have zero elements, matrix A and nodes Ak of the
same dimension, fk

ij are elements of the matrix F (Ak) (k = 0, 1, ..., n). It is
obvious that the equalities L0n (Ai) = F (Ai) (i = 0, 1, ..., n) hold.

Consider the linear case of the interpolation formula (8). Let the interpo-
lation nodes A0 =

[
a0

ij

]
, A1 =

[
a1

ij

]
be such that all elements of the matrix

A0 −A1 =
[
a0

ij − a1
ij

]
are di�erent from zero. Then for the formula

L01 (A) = F (A0) · (A0 −A1)
•−1 · (A−A1) + F (A1) · (A1 −A0)

•−1 · (A−A0)
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or, what is the same thing, for the formula

L01 (A) = F (A0) ·
[

aij − a1
ij

a0
ij − a1

ij

]
+ F (A1) ·

[
aij − a0

ij

a1
ij − a0

ij

]
,

where A = [aij ] is current matrix variable, the interpolation conditions
L01 (Ai) = F (Ai) (i = 0, 1) are ful�lled.

During the construction of interpolation formulas, based on the Hadamard
multiplication of square matrices, it is useful to introduce yet another analogue
of the inverse matrix. Let A = [aij ] be a square matrix and aii 6= 0. By A(−1)

we denote the matrix, for which A · A(−1) = A(−1) · A = I, where I is the
identity matrix in the ordinary sense of the same dimension as the matrix A.
This matrix will be A(−1) = diag

[
1

aii

]
.

We give formulas of the linear interpolation with the ordinary and the Hada-
mard multiplication. Let A = [aij ] be some square matrix that has nonzero
diagonal elements. Then for the linear interpolation formula

L01 (A) = F (A0)
{

(A0 −A1)
(−1) · (A−A1)

}
+

+ F (A1)
{

(A1 −A0)
(−1) · (A−A0)

}
,

or for the same formula in another form

L01 (A) = F (A0) diag
[
aii − a1

ii

a0
ii − a1

ii

]
+ F (A1) diag

[
aii − a0

ii

a1
ii − a0

ii

]
,

equalities L10 (A0) = F (A0), L10 (A1) = F (A1) hold.
We consider the case n = 2 of the interpolation formula (8). The quadratic

interpolation formula with respect to the nodes A0 =
[
a0

ij

]
, A1 =

[
a1

ij

]
and

A2 =
[
a2

ij

]
, such that all elements of the matrices

A0 −A1 =
[
a0

ij − a1
ij

]
, A0 −A2 =

[
a0

ij − a2
ij

]
, A1 −A2 =

[
a1

ij − a2
ij

]

are di�erent from zero, is a matrix polynomial of the form

L02 (A) = F (A0) ·



(
aij − a1

ij

) (
aij − a2

ij

)
(
a0

ij − a1
ij

) (
a0

ij − a2
ij

)

+

+F (A1) ·



(
aij − a0

ij

)(
aij − a2

ij

)
(
a1

ij − a0
ij

)(
a1

ij − a2
ij

)

 + F (A2) ·




(
aij − a0

ij

)(
aij − a1

ij

)
(
a2

ij − a0
ij

)(
a2

ij − a1
ij

)

 ,

for which the conditions L02 (Ai) = F (Ai) (i = 0, 1, 2) are ful�lled.
Next, we give formulas of the quadratic interpolation with the ordinary and

the Hadamard multiplication. Let A = [aij ] be some square matrix that has
di�erent from zero diagonal elements. For quadratic interpolation with the
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same restrictions on the nodes A0, A1 and A2, as in the previous case, we have
the formula

L02 (A) = F (A0) diag

[(
aii − a1

ii

) (
aii − a2

ii

)
(
a0

ii − a1
ii

) (
a0

ii − a2
ii

)
]

+

+F (A1) diag

[(
aii − a0

ii

) (
aii − a2

ii

)
(
a1

ii − a0
ii

) (
a1

ii − a2
ii

)
]

+ F (A2) diag

[(
aii − a0

ii

) (
aii − a1

ii

)
(
a2

ii − a0
ii

) (
a2

ii − a1
ii

)
]

,

which satis�es the conditions L02 (Ai) = F (Ai) (i = 0, 1, 2).
Example 3.1. On the set of matrices A =

[
a11 a12

a21 a22

]
with matrix mul-

tiplication only in the sense of Hadamard for the function F (A) = A2 with
respect to the nodes

A0 =
[

1 2
3 4

]
, A1 =

[
0 0
2 3

]
,

the interpolation polynomial

L01 (A) = F (A0) + [F (A1)− F (A0)] · (A1 −A0)
− •

1 · (A−A0)

takes the form

L01 (A) =
[

7 5
9 13

]
·A−

[
0 0
12 30

]
=

[
7a11 5a12

9a21 13a22

]
−

[
0 0
12 30

]
.

For the constructed polynomial the interpolation conditions

L01 (A0) = F (A0) =
[

7 10
15 22

]
, L01 (A1) = F (A1) =

[
0 0
6 9

]
.

are also true. In the case if the interpolation nodes Ak = αkJ , where αk

(k = 0, 1, ..., n) are di�erent in pairs numbers, then the formula (8) takes the
form
Ln (A) =

=
n∑

k=0

(A− α0J) · ... · (A− αk−1J) · (A− αk+1J) · ... · (A− αnJ)
(αk − α0) ... (αk − αk−1) (αk − αk+1) ... (αk − αn)

· F (αkJ) .

Next, we consider interpolation formulas for operators, de�ned on the set of
functional matrices. Let X = C (T ) be the set of continuous on T = [a, b] square
matrices; an operator F : X → X and A0 (t), A1 (t) be interpolation nodes from
X. Suppose also that A = A (t), interpolation nodes A0 (t), A1 (t) are matrices
of the same order, de�ned on the segment [a, b], and operator F (A) is de�ned at
the nodes A0 (t), A1 (t) and on the matrix curve A0 (t)+χ (τ, t) (A1 (t)−A0 (t)),
where the function

χ (τ, t) =
{

1, τ ≥ t;
0, τ < t,

χ (a, t) ≡ 0, χ (b, t) ≡ 1 (a ≤ τ, t ≤ b) .
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One of the linear interpolation formulas on the set of continuous on the
segment [a, b] matrices can be written using the Stieltjes integral in the form

L10 (A) = F (A0) +
∫ b

a
[A (τ)−A0 (τ)] · [A1 (τ)−A0 (τ)]

•−1 · dτ×
× F [A0 (t) + χ (τ, t) (A1 (t)−A0 (t))] ,

on condition that all elements of the matrix A1 (t)−A0 (t) are di�erent from zero
on [a, b] and in this formula integral exists. The equalities L10 (Ai) = F (Ai)
(i = 0, 1) are true.

In the space Cm [a, b] of rectangular matrices A(t) = [aij(t)] of the dimen-
sion p×q, for which the derivativeA(m)(t) =

[
a

(m)
ij (t)

]
of order m is continuous

on the [a, b] , we consider the matrix polynomial of the �rst degree

P1(A) = B +
n∑

j=0

A(tj) · Cj +
m∑

k=0

∫ b

a
Dk(t, s) ·A(k)(s)ds (9)

where B = B(t), Cj = Cj(t), Dk(t, s) ( j = 0, 1, ...n; k = 0, 1, ..., m) are �xed
(p× q)-matrices.

We denote by σ1i(t) and Hi(t) the matrices
σ1i(t) = A0(t) + A1(ti)−A0(ti), Hi(t) = A(t)−A0(t)−A(ti) + A0(ti),

where ti (i = 0, 1, ...n) are given points of the segment [a, b]; A0 (t) and A1 (t)
are interpolation nodes such that the matrices A1 (ti)−A0 (ti) are reversible in
the sense of Hadamard.

For the formula
L1(A) = F (A0)+

+
1

n + 1

n∑

i=0

[A(ti)−A0(ti)] · [A1(ti)−A0(ti)]
•−1 · [F (σ1i)− F (A0)]+

+
1

n + 1

n∑

i=0

∫ 1

0
δF [σ1i(·) + τ (A1(·)− σ1i(·)) ;Hi(·)]dτ

(10)

the conditions L1(Ai) = F (Ai) (i = 0, 1) hold, and it is exact for matrix
polynomials of the form (9).

Really, the equation L1 (A0) = F (A0) is satis�ed, since the second and third
terms in (10) become zero. Execution of interpolation condition at the second
node is also easy to verify, taking into account that in this case the integral in
(10) can be calculated exactly.

Let F (A,B) be also a function of two matrix variables A and B; (Ai, Bi) be
interpolation nodes (i = 0, 1, 2). We introduce the following notations:

l10 (A,B) = [(A−A1) · (B1 −B2)− (A1 −A2) · (B −B1)] ·D
•−1,

l11 (A,B) = [(A−A0) · (B2 −B0)− (A2 −A0) · (B −B0)] ·D
•−1,

l12 (A,B) = [(A−A0) · (B0 −B1)− (A0 −A1) · (B −B0)] ·D
•−1.
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Here the matrix D
•−1 is reversible in the sense of Hadamard for

D = (A0 −A1) · (B1 −B2)− (A1 −A2) · (B0 −B1) ;

A, B are independent variables, interpolation nodes (Ai, Bi) and values
F (Ai, Bi) (i = 0, 1, 2) are rectangular matrices of the same dimension.

For the interpolation formula

L11 (A,B) = l10 (A,B) · F (A0, B0)+

+ l11 (A,B) · F (A1, B1) + l12 (A,B) · F (A2, B2)
(11)

the conditions L11 (Ai, Bi) = F (Ai, Bi) (i = 0, 1, 2) are satis�ed. The formula
(11) is invariant with respect to matrix polynomials of the form

P1 (A,B) = l10 (A,B) · C0 + l11 (A, B) · C1 + l12 (A,B) · C2. (12)

At that in the equation (12) arbitrary rectangular matrices Ci are of the same
dimension as the matrices F (Ai, Bi) (i = 0, 1, 2).
Example 3.2. Let A = [aij ], B = [bij ] (i, j = 1, 2) be square matrices of the

second order. The interpolation formula (11) for the function F (A,B) = (AB)2

with respect to the nodes

A0 =
[

1 1
1 1

]
, B0 =

[
0 2
0 1

]
; A1 =

[
1 2
0 −1

]
,

B1 =
[

1 1
1 2

]
; A2 =

[
0 1
1 2

]
, B2 =

[
0 1
2 1

]

takes the form

L11 [A,B] =
[

8− 8a11 + 4b11 1 + 4b12

−11 + 11a21 + 10b21 7 + 4a22 − 2b22

]
.

For L11 [A,B] the interpolation conditions

L11 [A0, B0] = F (A0, B0) =
[

0 9
0 9

]
,

L11 [A1, B1] = F (A1, B1) =
[

4 5
−1 −1

]
,

L11 [A2, B2] = F (A2, B2) =
[

8 5
20 13

]

are true.
Note that in [1, 46 ð.] the matrix Γ is constructed as a sum of the powers of

the Hadamard matrices, which plays an important role in the construction of
the set of interpolating polynomials in the Hilbert space and in the justi�cation
of a number of the results obtained on this set.
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4. Interpolation formulas with matrix multiplication by
Frobenius

Suppose that the matrices A = [aij ] and B = [bij ] have the same dimension.
Their product in the sense of Frobenius is de�ned as

A♦B =
∑

i,j

aijbij .

This operation is commutative, and its result is a scalar. Interpolation for-
mulas for functions of matrices may be also constructed on the basis of such
multiplication rule.

Let interpolation nodes Ak (k = 0, 1, ..., n) be di�erent stationary or func-
tional matrices, and F (Ak) be given �xed matrices, which dimension may di�er
from the dimension of Ak, or some other mathematical objects over the �eld of
real or complex numbers. Then in the case of rectangular matrices of the same
dimension (including square matrices) for the formula

Ln (F ; A) =
n∑

k=0

lnk (A)
lnk (Ak)

F (Ak) , (13)

where
lnk (A) = [(A−A0)♦ (Ak −A0)] ... [(A−Ak−1)♦ (Ak −Ak−1)]×

× [(A−Ak+1)♦ (Ak −Ak+1)] ... [(A−An)♦ (Ak −An)] ,

the equalities Ln (F ; Aν) = F (Aν) (ν = 0, 1, ..., n) take place.
If the interpolation nodes Ak such that tr (Ak −Aν) 6= 0 (k, ν = 0, 1, ..., n),

then on the set of square matrices for the similar formula

Ln (F ; A) =
n∑

k=0

l̃nk (A)
l̃nk (Ak)

F (Ak) ,

where
l̃nk (A) = tr (A−A0) tr (Ak −A0) · · · tr (A−Ak−1) tr (Ak −Ak−1)×

×tr (A−Ak+1) tr (Ak −Ak+1) · · · tr (A−An) tr (Ak −An) ,

the same interpolation conditions are ful�lled.
Obviously, the equation (13) remains an interpolation, if lnk (A) is replaced

by any number function φnk (A) of matrix function arguments such that
φnk (Ak) 6= 0 for k = 0, 1, ..., n.

In particular, if n = 2 and n = 1, then the formula (13) takes the form

L2 (F ; A) =
[(A−A1)♦ (A0 −A1)] [(A−A2)♦ (A0 −A2)]

[(A0 −A1)♦ (A0 −A1)] [(A0 −A2)♦ (A0 −A2)]
F (A0)+

+
[(A−A0)♦ (A1 −A0)]
[(A1 −A0)♦ (A1 −A0)]

[(A−A2)♦ (A1 −A2)]
[(A1 −A2)♦ (A1 −A2)]

F (A1)+

+
[(A−A0)♦ (A2 −A0)] [(A−A1)♦ (A2 −A1)]

[(A2 −A0)♦ (A2 −A0)] [(A2 −A1)♦ (A2 −A1)]
F (A2)
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and
L1 (F ; A) =

(A−A1)♦ (A0 −A1)
(A0 −A1)♦ (A0 −A1)

F (A0) +

+
(A−A0)♦ (A1 −A0)
(A1 −A0)♦ (A1 −A0)

F (A1) ,

(14)

respectively.
Example 4.1. The interpolation formula (14), based on the nodes

A0 =
[

1 2
3 4

]
, A1 =

[
0 2
3 3

]

for the function F (A) = A2, has the form

L1 (F ; A) =
1
2
trA

[
1 4
6 7

]
+

1
2

[
9 0
0 9

]
.

Example 4.2. Let A =
[

x11 x12 x13

x21 x22 x23

]
be a functional matrix and

A0 =
[

1 0 2
3 5 0

]
, A1 =

[
1 0 1
2 5 0

]

be the interpolation nodes. Then
(A0 −A1)♦ (A0 −A1) = (A1 −A0)♦ (A1 −A0) = 2,

and the interpolation formula (14) takes the form

L1 (F ;A) =
1
2

(x13 + x21 − 3)F (A0)− 1
2

(x13 + x21 − 5)F (A1) ,

and, therefore, we get that L1 (F ; A0) = F (A0), L1 (F ; A1) = F (A1).
Next, we consider a formula of the linear interpolation, similar to (7) and

(11), with the multiplication in the case of Frobenius. We introduce the follow-
ing notation:

l̃00 (A,B) =
1
D

[(A−A1)♦ (B1 −B2)− (A1 −A2)♦ (B −B1)] ,

l̃11 (A,B) =
1
D

[(A−A0)♦ (B2 −B0)− (A2 −A0)♦ (B −B0)] ,

l̃22 (A,B) =
1
D

[(A−A0)♦ (B0 −B1)− (A0 −A1)♦ (B −B0)] ,

where D is the numeric value, which is calculated by the formula
D = (A0 −A1)♦ (B1 −B2)− (A1 −A2)♦♦ (B0 −B1) .

The interpolation formula
L̃11 (A,B) = l̃00 (A,B) F (A0, B0)+

+ l̃11 (A,B) F (A1, B1) + l̃22 (A,B) F (A2, B2)
(15)

satis�es the interpolation conditions L̃11 (Ai, Bi) = F (Ai, Bi) (i = 0, 1, 2).
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Example 4.3. Let A = [aij ] and B = [bij ] be square matrices of the second
order. We construct interpolation formulas of the form (7), (11) and (15) for
the function F (A,B) = (AB)2 on the nodes

A0 =
[

1 1
1 1

]
, B0 =

[
0 2
0 1

]
;

A1 =
[

1 2
0 −1

]
, B1 =

[
1 1
1 2

]
; A2 =

[
0 1
1 2

]
, B2 =

[
0 1
2 1

]
.

In the case of the formula (7) we have

L11 [A,B] =
1
26
×

×
[ −38 + 91a11 − 156a12 + 22a21 + 123a22 + 122b11 − 144b12 + 16b21 + 246b22

1440 + 32a11 − 388a12 + 206a21 − 192a22 + 58b11 − 328b12 + 176b21 − 378b22

−102 + 94a11 − 16a12 − 52a21 + 126a22 + 16b11 + 8b12 − 64b21 + 168b22

128 + 211a11 − 364a12 + 138a21 + 131a22 + 82b11 − 136b12 + 24b21 + 262b22

]
.

Using the rule (11), we get that

L11 [A,B] =
[

8− 8a11 + 4b11 1 + 4b12

−11 + 11a21 + 10b21 7 + 4a22 − 2b22

]
.

Finally, for the formula (15) the value D = −3, and the required polynomial
has the form

L11 [A,B] =

=
1
3

[
4 (−4 + 2a11 − a12 + 2a22 − b11 − 2b12 + 2b21 + 5b22)

−40 + 20a11 − 21a12 + 22a21 + 20a22 + b11 − 20b12 + 20b21 + 39b22

35− 4a11 + 4a21 − 4a22 + 4b11 + 4b12 − 4b21 − 12b22

19 + 4a11 − 14a12 + 24a21 + 4a22 + 10b11 − 4b12 + 4b21 − 2b22

]
.

We note that all formulas, obtained in this example, have a di�erent form,
but for them the same interpolation conditions

L11 [A0, B0] = F (A0, B0) =
[

0 9
0 9

]
,

L11 [A1, B1] = F (A1, B1) =
[

4 5
−1 −1

]
,

L11 [A2, B2] = F (A2, B2) =
[

8 5
20 13

]

are ful�lled.
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5. Kronecker matrix multiplication and corresponding
matrix polynomials

If A = [aij ] and B = [bij ] are some matrices of the dimensions m × n and
p × q, respectively, then the Kronecker product of these matrices A ⊗ B is a
matrix of dimension mp× nq, which is de�ned by the formula

A⊗B =




a11B a12B ... a1nB
a21B a22B ... a2nB
... ... ... ...

am1B am2B ... amnB


 .

In general, the Kronecker product of matrices, in contrast to the Jordan mul-
tiplication, non-commutative, but has the property of associativity. The Kro-
necker multiplication is distributive with respect to the addition of matrices.

Let X be a set of square matrices, an operator F : X → Y , where Y is also
a set of square matrices of the �xed dimension, interpolation nodes Ak ∈ X
(k = 0, 1, ..., n) and there are inverse matrices (Ai −Aj)

−1 (i 6= j). In addition,
the dimension of matrices of the set Y coincides with the dimension of square
matrices of the form (A−Aν)⊗ I.

We introduce the notation
lk (A) = [(A−A0)⊗ I] ... [(A−Ak−1)⊗ I] [(A−Ak+1)⊗ I] ... [(A−An)⊗ I] .

Then for the polynomials

L0n (A) =
n∑

k=0

F (Ak) l−1
k (Ak) lk (A) , (16)

Ln0 (A) =
n∑

k=0

lk (A) l−1
k (Ak) F (Ak) (17)

the equalities L0n (Ak) = Ln0 (Ak) = F (Ak) are true, because
l−1
k (Ak) lk (Aν) = lk (Aν) l−1

k (Ak) = δkνI.

Here and further the orders of matrices F (Ak) are consistent with the order of
the interpolation fundamental square matrices lk (A). If we select the expression
lk (A) = [I ⊗ (A−A0)] ... [I ⊗ (A−Ak−1)] [I ⊗ (A−Ak+1)] ... [I ⊗ (A−An)]

for the function lk (A) in (16) and (17), we come to some other kind of these
formulas.

The formulas L0n (A) and Ln0 (A) are exact for the matrix polynomials

P0n (A) =
n∑

k=0

Bkl
−1
k (Ak) lk (A) , Pn0 (A) =

n∑

k=0

lk (A) l−1
k (Ak) Bk,

where Bν (ν = 0, 1, ..., n) are arbitrary matrices from the set Y , respectively.
We consider formulas of the linear interpolation

L01 (A) = F (A0) + [F (A1)− F (A0)]
[
I ⊗ (A1 −A0)

−1
]
[I ⊗ (A−A0)] ,

L10 (A) = F (A0) + [(A−A0)⊗ I]
[
(A1 −A0)

−1 ⊗ I
]
[F (A1)− F (A0)] .
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The formula L10 (A) is exact for matrix polynomials of the form P10 (A) =
A⊗B + D. Really,

L10 [P10;A] = A0⊗B+D+[(A−A0)⊗ I]
[
(A1 −A0)

−1 ⊗ I
]
[(A1 −A0)⊗B] =

= A0 ⊗B + D + (A−A0) (A1 −A0)
−1 (A1 −A0)⊗B =

= A0 ⊗B + D + (A−A0)⊗B = P10 (A) .

Similarly, the formula L01 (A) is exact for matrix polynomials of the form
P01 (A) = B ⊗A + D.

We consider the application of the Lagrange�Sylvester formula to construct
the corresponding interpolation formulas, using several properties of the Kro-
necker multiplication for this. One of the important properties of this multipli-
cation for the given problem is that the spectrum of the Cartesian product of
matrices is clearly expressed through the spectrum of its factors.

Suppose that the matrix C has the form C = A ⊗ B, and square matrices
A and B of the orders p and q have the eigenvalues λi (i = 1, 2, ..., p) and µj

(j = 1, 2, ..., q), respectively. Then [9] the matrix C has pq eigenvalues λiµj

(i = 1, 2, ..., p; j = 1, 2, ..., q).
If the eigenvalues λiµj are di�erent, then for the matrix C the Lagrange�

Sylvester formula takes the form

F (C) =
p∑

k=1

q∑

ν=1

lkν (C)
lkν (λkµν)

F (λkµν) ,

where

lkν (C) =
p∏

i=1,i6=k

q∏

j=1,j 6=ν

(C − λiµjIpq) ,

lkν (λkµν) =
p∏

i=1,i6=k

q∏

j=1,j 6=ν

(λkµν − λiµj) ,

Ipq is the identity matrix of the pq-dimension.
We give the trigonometric variant of the Lagrange-Sylvester formula for the

Kronecker product of matrices C = A⊗B:

F (C) =
p∑

k=1

q∑

ν=1

l̃kν (C)
l̃kν (λkµν)

×

×
(

F (λkµν) + F (−λkµν)
2

Ipq +
F (λkµν)− F (−λkµν)

2 sin (λkµν)
sinC

)
,

where

l̃kν (C) =
p∏

i=1,i6=k

q∏

j=1,j 6=ν

(cosC − cos (λiµj) Ipq) ,

l̃kν (λkµν) =
p∏

i=1,i6=k

q∏

j=1,j 6=ν

(cos (λkµν)− cos (λiµj)) ,

and Ipq is the identity matrix of the pq-dimension as before.
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6. Infinite matrix and some interpolation formulas
Operators of the discrete convolution, as well as continuous, are widely used

in the solution of many mathematical and applied problems [10�12]. Discrete
convolutions can be applied to the interpolation problem of functions with many
variables and in�nite matrix variables.

Matrix A = [aij ] with real or complex elements aij is called in�nite, if i, j =
1, 2, ... or at least one of the indices i or j has in�nite number of the values.
Addition and multiplication of the in�nite matrices A = [aij ] and B = [bij ]
is de�ned the same way as in the �nite-dimensional case. In contrast to the
�nite matrices, the product AB = [cij ] may not exist, since the series cij =∑∞

k=1 aikbkj (i, j = 1, 2, ...) may be divergent or nonsummable for all or only
for the several i and j values. Moreover, if there is the existing product BA, the
product AB may not exist. In general, the multiplication of in�nite matrices
is not associative: (AB) C 6= A (BC).

On the set of in�nite matrix A, on condition that the matrices Ak (k ≥ 2)
exist, for entire functions f (z) (z ∈ C) the matrices f (A) may be determined
by the usual rules.

The theory of in�nite matrices, as one of the sections of mathematical analy-
sis, and its applications are interconnected with the theory of separable Hilbert
spaces, including the coordinate Hilbert space l2.

We consider some formulas for the interpolation of functions, given on the
set of in�nite sequences, which we denote by l. Each element x (in�nite-
dimensional vector) from l is de�ned by its coordinates: x = {xk}∞k=0 =
{x0, x1, x2, ...}, where xk (k = 0, 1, ...) are complex numbers or complex ran-
dom values with given distribution laws. Here the addition of elements of the
set and its multiplication by a number are determined by the usual rules, and
the product x ∗ y is given by the discrete convolution of the Laplace according
to the rule

x ∗ y =

{
k∑

ν=0

xk−νyν

}∞

k=0

;

the product x ∗ y also belongs to l. For this multiplication rule the sequence
I = {1, 0, 0, ...} is the unit, and in this case the set l is a commutative algebra.

Let F be operator, mapping the set l into l, and the elements x0 = α0I,
x1 = α1I and x2 = α2I, where I is the unit element in l, αi ∈ C, αj 6= αi for
j 6= i (i, j = 0, 1, 2), are taken as the interpolation nodes. Then simplest on l
formulas are formulas of the linear and quadratic interpolation

L1 (F ; x) = F (x0) +
1

α1 − α0
[F (x1)− F (x0)] ∗ (x− x0) ,

L2 (F ;x) =
1

(α0 − α1) (α0 − α2)
F (x0) ∗ (x− x1) ∗ (x− x2)+

+
1

(α1 − α0) (α1 − α2)
F (x1) (x− x0) ∗ (x− x2)+

+
1

(α2 − α0) (α2 − α1)
F (x2) ∗ (x− x0) ∗ (x− x1) ,
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respectively, for which L1 (F ;x0) = F (x0), L1 (F ; x1) = F (x1) and
L2 (F ;xi) = F (xi) (i = 0, 1, 2).

For the same system of interpolation nodes xi = αiI on condition that αj 6=
αi, j 6= i (i, j = 0, 1, 2, ..., n), the Lagrange formula of the n-th order is written
in the analogous form

Ln (F ; x) =
n∑

k=0

ωnk (x) ∗ F (αkI) , (18)

where

ωnk (x) =
(x− α0I) (x− α1I) · · · (x− αk−1I) (x− αk+1I) · · · (x− αnI)
(αk − α0) (αk − α1) · · · (αk − αk−1) (αk − αk+1) · · · (αk − αn)

,

I is the unit element of the algebra l. It's obvious that Ln (F ;xk) = F (xk)
(k = 0, 1, ..., n).

Let us consider a slightly di�erent variant of (18). By lm×m we denote the
set of m × m-matrices of the form X = [xij ], where xij are elements from l,
i.e. xij =

{
xij

k

}∞
k=0

(i, j = 1, 2, ..., m). Here the operations of addition and
multiplication of matrices by a number are ordinary, and the multiplication of
matrices X = [xij ] and Y = [yij ] from lm×m is carried out according to the
rule:

C = X ∗ Y =
[
cij

]
,

where cij =
∑m

ν=1 xiν ∗ yνj , i.e. xiν ∗ yνj means the product of sequences xiν

and yνj also in the sense of the Laplace convolution given above. This set of
matrices with indicated rules of multiplication also form an algebra.

We consider the formula of the form (18), in which the interpolation nodes
xν are m×m-matrices

xν =




x11
ν x12

ν · · · x1m
ν

x21
ν x22

ν · · · x2m
ν

· · · · · · · · · · · ·
xm1

ν xm2
ν · · · xmm

ν


 (ν = 0, 1, ..., n)

with the elements xij
ν from l. It is required of nodes xν that the matrices xν−xk

are reversible in the ordinary sense.
Let the interpolation nodes be matrices of the form

x̃ν = xνI =
[
xij

ν , 0, 0, ...
]

(i, j = 1, 2, ..., m; ν = 0, 1, ..., n) .

Then for an operator F : lm×m → lm×m and the formula

L̃n (F ; x) =
n∑

k=0

ω̃nk (x) ∗ F (x̃k) ,

where
ω̃nk (x) = lk,0 (x) ∗ lk,1 (x) ∗ · · · ∗ lk,k−1 (x) ∗ lk,k+1 (x) ∗ · · · ∗ lk,n (x) ,

lk,ν (x) = (x− x̃ν) ∗ (x̃k − x̃ν)
−1 ≡ (x− x̃ν) ∗ (xk − xν)

−1 I (k, ν = 0, 1, ..., n)
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the interpolation conditions L̃n (F ; x̃k) = F (x̃k) (k = 0, 1, ..., n) are ful�lled.
These conditions take place by virtue of the equalities ω̃nk (x̃ν) = δkνI, where,
as before, δkν is the Kronecker symbol.
Example 6.1. Let A and B be in�nite rectangular matrices of the dimen-

sions 2×∞ and ∞× 2, respectively:

A =
[

a11 a12 · · · a1n · · ·
a21 a22 · · · a2n · · ·

]
, B =




b11 b12

b21 b22
... ...

bn1 bn2
... ...




.

Their product is a (2 × 2)-matrix AB =
[

S11 S12

S21 S22

]
, where the elements

Sij (1 ≤ i, j ≤ 2) are given by series

S11 =
∞∑

i=1

a1ibi1, S12 =
∞∑

i=1

a1ibi2, S21 =
∞∑

i=1

a2ibi1, S22 =
∞∑

i=1

a2ibi2.

For the existence of the product AB it is required that these series are con-
verging in some sense. For example, if the elements of matrix A and B are
random values or processes, then one of the variants of the convergence may be
the convergence of mathematical expectations of the summands of these series.
We consider an example with this type of convergence.

Suppose that

a1i =
1

(2i− 1)!
W 4i−2 (t) , a2i =

1
(2i− 2)!

W 4i+2 (t) ;

bi1 =
(−1)1+i

[(4i− 3)!!]2
ξ4i−2 (t) , bi2 =

(−1)1−i

[(4i + 1)!!]2
ξ4i+2 (t) ,

where W (t) is standard Wiener process, ξ (t) is a random Gaussian process with
zero mean value and variance σ = σ (t). We assume that these processes are
stochastically independent. We remind that the k-th moments of the processes
W (t) and ξ (t) are given [13] by the equalities

E
{

W k (t)
}

=
{

(2ν − 1)!!tν , k = 2ν;
0, k = 2ν + 1,

E
{

ξk (t)
}

=
{

(2ν − 1)!!σν , k = 2ν;
0, k = 2ν + 1

(ν = 0, 1, ...). In this case, the series E {Sjν} (j = 1, 2; ν = 1, 2) converge.
Since

E {S11} =
∞∑

i=1

E {a1ibi1} = sin (tσ (t)) , E {S22} =
∞∑

i=1

E {a2ibi2} = tσ (t) cos (tσ (t)) ,

then the mathematical expectation of the trace of matrix AB has the simple
form

E {tr (AB)} = sin (tσ (t)) + t3σ3 (t) cos (tσ (t)) .
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Construction and research of interpolation operator polynomials in the Hil-
bert spaces, which theory in some cases is interconnected with the in�nite
matrix theory, are considered in the articles [14�15].
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