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ON THE NON-LINEAR INTEGRAL EQUATION
APPROACHES FOR THE BOUNDARY RECONSTRUCTION
IN DOUBLE-CONNECTED PLANAR DOMAINS

R.S. CHAPKO, O. M.IVANYSHYN YAMAN, T.S. KANAFOTSKYI

PE3IOME. Po3srnmamaeThed 3a1ad9a peKOHCTPYKIII BHYTPIIHBOI KPUBOI 3a 3a-
maanvu gaaumu Komri rapmomiiinol ¢yHKMI HAa 30BHIMHIN KPUBIA MI0CKOL
obmacti. 3a momomorooo dyskmii ['pina i Teopii moTenriagy HesiHifiHa 06ep-
HeHa 3a/I1a9a peayKOBAHA /10 CUCTEMM HEJIHIMHUX I'DAHUYHUX IHTErpajbHUX
piBusHb. Po3pobieno Tpu iTepariiiai asropurmu s i1 9ucessbHOTO po3B’A3y-
BaHHSA. 3HaMmeHo moxigai dperre BiAMOBIIHUX OMEPATOPIB i TMMOKA3AHO €M~
HICTH PO3B’A3Ky JiHeapu30BaHMX cucTteM. lloBHa muCKperm3amis 3miiicHeHA
METO/IOM TPUTOHOMETPUYHHUX KB3JPATyD. ‘lepe3 HEKOPEKTHICTh BUXITHOI 3a-
Jadqi 10 OTPUMAHWUX CUCTEM JIHIHHUX PIBHAHB 3aCTOCOBAHO PETYJIAPHUIAILIO
TixonoBa. YucenpHi pe3yabTaTy MOKA3yIOTh, M0 IIPOIIOHOBAHI METOIH JTAI0Th
JOCTATHBO 00Dy TOUHICTH PEKOHCTPYKINI IIPM €KOHOMHHX OOYHC/IIOBATIBHIX
3aTpaTax.
ABsTRACT. We counsider the reconstruction of an interior curve from the given
Cauchy data of a harmonic function on the exterior boundary of the planar
domain. With the help of Green’s function and potential theory the non-
linear boundary reconstruction problem is reduced to the system of non-linear
boundary integral equations. The three iterative algorithms are developed for
its numerical solution. We find the Fréchet derivatives for the corresponding
operators and show unique solviability of the linearized systems. Full dis-
cretization of the systems is realized by a trigonometric quadrature method.
Due to the inherited ill-possedness in the obtained system of linear equations
we apply the Tikhonov regularization.

The numerical results show that the proposed methods give a good ac-
curacy of reconstructions with an economical computational cost.

1. INTRODUCTION

The mathematical modeling of electrostatic or thermal imaging methods in
nondestructive testing and evaluation leads to inverse boundary value problems
for the Laplace equation. In principle, in these applications an unknown inclu-
sion within a conducting host medium with a constant conductivity is resolved
from the overdetermined Cauchy data on the accessible part of the boundary
of the medium.

The idea to reduce the problem of the boundary reconstruction to the system
of non-linear equations and to employ a regularized iterative procedure was
firstly suggested in [11]. This approach was successfully extended in [1,3,6,11,

Key words. Double connected domains; boundary reconstruction; Green’s function; single
layer potential; boundary integral equations; trigonometric quadrature method; Tikhonov
regularization.
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12] for the case of the Laplace equation and in [4,5,7-9,13-15] for the Helmholtz
equation.

As an alternative to the reciprocity gap approach based on Green’s integral
theorem we propose iterative solution methods based on the Green’s function.
Although the proposed methods are restricted to the class of domains for which
the Green’s function can be easily found the methods have several advantages
over the reciprocity gap approach. In particular, the corresponding single layer
potential is bounded at infinity and hence its modification is not needed. More-
over, for the complicated boundary conditions such as generalized impedance
the proposed methods will be easier to adopt.

We assume that D is a doubly connected bounded domain in IR? with the
boundary 0D consisting of two disjoint closed C? curves I' and A such that I’
is contained in the interior of A.

The corresponding direct problem is: Given a function f on A consider the
Dirichlet problem for u € C?(D) N C(D) satisfying the Laplace equation

Au=0 inD (1)
and the boundary conditions

u=0 onl, (2)

u=f onA. (3)

The inverse problem we are concerned with is: Given the Dirichlet data f on
A with f # 0 and the Neumann data

ou
9=, on A, (4)

determine the shape of the interior boundary I'. Here, and in the sequel, by
v we denote the outward unit normal to I' or to A. We tacitly assume that
f has enough smoothness, for example f € Ch*(A) for classical solutions or
f € HY2(A) for weak solutions, to ensure the existence of the normal derivative
on A. As opposed to the forward boundary value problem, the inverse problem
is nonlinear and ill-posed.

The issue of uniqueness, i.e., identifiability of the unknown curve I' from the
Cauchy data on A, is settled by the following theorem (see [10]).

Theorem 1. Let T and I' be two closed curves contained in the interior of A
and denote by w and w the solutions to the Dirichlet problem (1)—(3) for the

interior boundaries I' and f, respectively. Assume that f # 0 and

ou Ou

ov~ ov
on an open subset of A. Then I’ = r.

The plan of the paper is as follows. In Section 2 we reduce the inverse bound-
ary value problem (1)—(4) to two boundary integral equations using Green’s
function. Section 3 contains three iterative schemes for the numerical solution
of the non-linear integral equations. We show the injectivity of the correspond-
ing linearized operators. The practical realization of suggested algorithms is
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discussed in Section 4. Section 5 concludes the paper with some numerical
examples illustrating the feasibility of the non-linear integral equation method
for approximate solution of the inverse boundary value problem.

2. REDUCTION TO BOUNDARY INTEGRAL EQUATIONS
To this end, we denote the interior of A by B. Then, by G we denote the
Green’s function for B, that is, G is defined for all z # y in B and of the form

Glay) = 5-n

where, for a fixed y € B, the function G is harmonic in B with respect to x
such that G(-,y) = 0 on A. We note that for A a circle of radius R centered at
the origin G is explicitly given by
RY + |2|y|? — 2R%z - y
R? '
The solution w to the Dirichlet problem in B with boundary values w = f on
A can be represented in the form
0G(z,y)
= d , € B. )

w(z) o) fy)ds(y), = ()
In the case of A a circle the representation (5) reduces to the Poisson integral.
In a more abstract sense, we may interpret (5) as solution operator that maps
the boundary value f into the solution w of the Dirichlet problem in B. Seeking

~ 1
G(z,y) = Eln

the unique solution of (1)—(3) in the form
/G z,y)e(y)ds(y) +w(zx), xe€D, (6)
now leads to the integral equation of the first kind
[ Gnet) ist) = —u(@). weT. ©

for the unknown density ¢. We name the integral equation (7) as a field equa-
tion. The given flux g on A leads to the integral equation

[ o2 ist) = g(o) - G, w e, ©

which is named a data equation.
Let introduce the single-layer potential

- [ Gptdsty), zeT, (9)
and the operator
(o)) = [ Tt o dst), @ e A, (10)
I

for the normal derivative of the single-layer potential on A.
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Theorem 2. The inverse boundary value problem (1)—(4) is equivalent to the
system of integral equations

Sp=—-w on T, (11)
Ap=g— ?;5 on A. (12)
Proof. Analogously to [11]. O

Theorem 3. The operator S : H-Y2(I') — HY?(T') is bijective and has boun-
ded inverse. The operator A : L?(T') — L%(A) is injective and has dense range.

Proof. The bijectivity of S is the classical result and can be found in [10]. The
injectivity of A is proved in |2]. O

To describe the algorithms conveniently a parametrization of boundary cur-
ves is required. Let

A(s) = {(z1(s),22(8)) : s € [0,27]}

is the parametrization for the exterior curve A. For simplicity we consider only
starlike interior curves, i.e., we choose a parametrization in polar coordinates
of the form

vr(s) = {r(s)e(s) : s € [0,27]}, (13)
where ¢(s) = (coss,sins) and 7 : IR — (0,00) is a 27 periodic function rep-
resenting the radial distance from the origin. However, we wish to emphasize
that the concepts described below, in principle, are not confined to starlike
boundaries only. We introduce the parametrized density as ¢(t) := ¢(7,(t)) or
o(t) == o(7r(t)|7.(t)|. We indicate the dependence on r by denoting the curve
with parametrization (13) by I';. The corresponding operators defined through
(9) and (10) for I = I, are given by

2
(5000 = 3= [ 6602
2
Gt = 3= | eIGOHB. (D,
2
(400 = 3= [ o) 55 MO (D)

and

(o)) = o [ o) 5o A0,
T 0x Jo P au(np) N I
3. ITERATIVE SCHEMES
Operators S, A, and A, have the following Freéchet derivatives with respect
to the radial function r

2m
STrola®) = 3= [ 6@LOLO ) +aOL . ldr
2
oot = 5- [ oD rar

10
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and
2
A gl ® =5 [ o@D @R
: (D) + () () 14)
T T (T T (2) - -
* o) e

Here we introduced the kernels
r(r) = r(t)cos(t —T) ~
Ls'l)(tv 7—) = |'7r(t) — ,W(T”Q + gra‘d’yr(T) G('Yr(t)’ ’77“(7—)) ’ C(T),
. r(t) —r(7)cos(t — T) ~
(7)== DT g, ) G097 -<l0)
OGOM 1)
v (A(t))

HM (t,7) = grad,, (7

and
H?(t,7) = 8GE9/\1/(8\7(Z)T)(T))
Note that
lig(q(T)Lgl)(t7r) gLt 7)) = r(t)Q(t)vjEt;‘gt)q ®,

+2q(t) grad,, ) G(7:(2), (1)) - c(t)-

These representation were obtained by standard differentiation procedure in
(9) and (10). Also we will need the Freéchet derivative for the function w

1 21

(w'rla)(t) = -5 ; f()a(T)We(t, 7)dr

v 9G (3 (1), (7))
Yr L), A\T
a4

The linear operators S’[r, ¢] and A’[r, ¢] have the following properties.

Wr(ta T) = ‘)‘/(7—)’ grad'yr(t)

Theorem 4. Let r be the radial function of the interior boundary Iy and let

¢ be a solution to the integral equation (11), i.e. S, = —w on T',. Assume
that ¢ € C?[0,27] and ¥ € L?[0,27] solve the homogeneous system

Srp+ S8'[r, ¢lg +w'lrlg = 0, (15)

A + A'lr, ¢lq = 0. (16)

Then ¢ =0 and ) = 0.

Proof. As it is shown in [6], for sufficiently small ¢, the perturbed interior curve
as given in polar coordinates by

Lryg ={(r(t) +q(t)c(t) : t € [0, 27]}
can be represented in the form

Tyiy = {r(t)e(t) + G)(t) : ¢ € [0,27]}

11
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in terms of the normal vector
v(t) = 7'(t)(—sint, cost) — r(t)(cost,sint)

to the unperturbed curve I'; and a function ¢. Now in the Fréchet derivatives
S’, A" and w’ we may replace the perturbation vector ((t) = q(t)c(t) by ¢ = qv.
We introduce the function

2m

Viz) = ; Y(1)G(x, v (T))dT—

2m -
— /0 grad, G(z,7-(7)) - ((T)é(1) dr, =€ R*\T,.

Then (16) implies that %—‘; = 0 on A. The function V satisfies the Laplace
equation in the exterior of A, it decays at infinity, therefore by the uniqueness
for the exterior Neumann problem we conclude that V' = 0 in the exterior of
A. By analyticity we obtain V = 0 in the exterior of I'.. Approaching I, from
the exterior by the jump relations we obtain

2

02/0 ()G (t), e (T)dr

2
= [ o, ) GOn ). 31(7) - EoAr) dr + 5000, 1€ (0,211

Employing the above equality and recalling the definition (6) of u we can rewrite
(15) as follows

¢ -graduo~, =0.
Due to the definition of u and the condition on ¢ we have v = 0 on I';, which

is equivalent to
~ ou
C-vony <> oy =0.
ov

Since by Holmgren’s theorem % cannot vanish on open subsets of ', we obtain

Z -vo~y, =¢q =0 and hence ¢ = 0. Analogously to [11]| by continuity of a single-
layer potential and the uniqueness of the interior Dirichlet problem we obtain
V =0 in IR? and therefore the density ¢ = 0. O

Theorem 5. Let r be the radial function of the interior boundary Iy and let ¢

be a solution to the integral equation (12), i.e. Ay = g— ‘?d—zl‘j on A. Assume

that q¢ € C?[0, 27 solves the homogeneous equation
S'r, ¢lg +w'lrlg = 0. (17)
Then q = 0.

Proof. Since ¢ is a solution to A,¢ = g — %—f on A it also satisfies S,¢ =
—w on I'y. We represent the perturbed interior curve again as

Lryq = {r(t)c(t) + qt)v(t) : t € [0, 2]}
and introduce the function

2m T
Vi = [ oG- [ S8 f)ds), 2 e BT

12
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The function V is a solution to the interior Dirichlet boundary value problem
with the homogeneous condition. In view of the unique solution we obtain

V = 0 in the interior of T', and therefore 8—‘/

By . =0, ie.
2
0= q(t)v(t) grad, o) | Glw(t), 7 (7))o(T )dT+%5(t)¢>(t)
—G(t)v(t) - grad,, t)/ 9G( 7"(; Y ) dsty), ¢ e [0, 2],
From (17) we find
1 2 ~
0= —55@)(?@) - /0 gra’d'yr(t) G(%“(t)? /71”(7—)) ’ C(T) ¢(T) dr, te€ [07 27‘-]‘

(18)
We define a double layer potential

2
W(x):= —/0 grad, G(x,v. (1)) - v(7)q(T)p(T)dT, =€ R? \ T

Since the function W is harmonic in the interior of I', and satisfies the homo-
geneous Dirichlet boundary condition, (18), it implies W = 0 in the interior of
I';. One can show, similarly to [10, Theorem 6.21], that the operator —I + K
is injective, where

2
(K0)(0) = [ rad, ) GOn(t). (7)) - VP dr, 1€ [0.27)
Hence from (18) we obtain
qt)p(t) =0, tel0,2n]
By the jump relations for the function V' we have
ov-| oVt
v %

ov—™
ov

d)_

le

Since by Holmgren’s theorem 2 W cannot vanish on open subsets of I', and
|7+ # 0 we obtain ¢ = 0 and hence ¢ = 0. O
Remark (about the Algorithm 2).

If the interior boundary is a circle, then exists a nontrivial solution ¢ = const
to the homogeneous equation A’[r, p]¢g = 0. Indeed, introducing the function

27
V(z) = —qgrad, i G(z, 7, (7)) - v(T)p(r)dr, xe€R*\T,

we obtain that V' is a unique solution to the Neumann boundary value problem
with the homogeneous condition in the exterior of A, and hence V|, = 0.
Since the null-space of the operator of the integral equation

2T
%gp(t) — grad, ; G(t,y (7)) - v(T)p(r)dr =0, t€]0,2n]

is not empty, one can find ¢ # 0 which solves A’[r, ¢]qg = 0.

13
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In view of this remark we introduced the modified version A'[r,¢], (14),
instead of the operator A'[r, ¢].

Now we describe three iterative algorithms for the numerical solution of (11)-
(12).
Algorithm 1.

1. Choose some starting value 7. Solve the well-posed integral equation

Spp = —w,. (19)

2. For the given r and ¢ solve the system of linearized ill-posed integral
equations

Spp + S'[r, plg + w'[rlg = —Srd — wy, (20)
ow

A+ Allr glg =g — =
with respect to functions ¥ and q.

3. Calculate new approximations for the radial function » = r + ¢ and for
the density ¢ = ¢ + 1.

4. Repeat steps 2-3 until some stopping criterion is satisfied.
Algorithm 2.

1. Choose some starting value r.

2. Solve the well-posed integral equation

A (21)

STSO = —Wyp. (22)
3. For the given r and ¢ solve the linearized ill-posed integral equation
_ ow -~
A =g— — — A,
[rela=9— 4" @ (23)

with respect to function q.
4. Calculate new approximations for the radial function r = r + q.
5. Repeat steps 2-4 until some stopping criterion is satisfied.
Algorithm 3.
1. Choose some starting value r.
2. Solve the ill-posed integral equation

ow
Ar¢ =g — E (24)

3. For given r and ¢ solve the linearized ill-posed integral equation
S/[T’, ¢}Q+w/[r]q = =50 — wy, (25)

with respect to function q.

4. Calculate new approximations for the radial function r = r + q.

5. Repeat steps 2-4 until some stopping criteria is satisfied. Note here that
we need to use some regularization method in the case of ill-posed integral
equations. According to properties of the corresponding integral operators an
application of the Tikhonov regularization is justified for the algorithms 1, 3.

14
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4. IMPLEMENTATION
Algorithm 1.
Stepl. On the first step of this algorithm we need to solve the well posed
integral equation of the first kind (19) with a logarithmic singularity for a
current approximation of r. Since all functions in this equation are 27 periodic
we implement the trigonometric quadrature method. To do this we rewrite the
equation (19) in the following equivalent form

1 2
o

1. 4 ,t—
o(7) {—zlnesinz Ly Ko (t,7)| dr = —w,(t), te 0,2,

where
1
K, (t,7) = -In
2
with the diagonal term

R
eI%( )|?

The following trigonometric quadratures with equidistant points t; = %, j=
0,...,2n — 1 are used

Kp(t,t) = + G (1), 7 (2)).

1 4 2n—1
o f( ) In (e sin? > dr ~ Z Ry (t (26)
and
1 2n—1
o ), T fydr e - Z (b (27)

with explicit expressions for the weight functions given in [10]. It leads to the
following system of linear equations with respect to ¢n; =~ ¢(t;)

2n—1 1
Zqﬁm SRite) + 5Ktk ti)] = —p(tr), k=0,....2n—1
with
2n—1
Z F(t)H(t,t;),
where

_ 906G (@), A7), \/
H(t,7) = = g SN )]

The convergence and error analysis for this method can be found in [10].
Step2. We search the unknown corrections in the system (20)-(21) as

2n—1

wn—z¢mm Qm—Zszza

15
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where I}, i = 0,...,2n — 1 are basic Lagrangian trigonometric polynomials and
I2,i=0,...,2m are known basic functions. The quadrature method applied
o (20)-(21) give us the linear system

2n—1

Zwm ”)+Z gmi AL = p =0, on—1,
=0

2n—1

anl +Z mzAQQ)— k:O,,Qn—l
with matrix coefﬁ(nents

1 1 1
A(”’——5Ri(tk>+f&(tk,ti), AR — o HP (b 1),

2n

ALY = Z{qsm 2 ()LD (g, £5) +2(t) LE) (b, 1))+ (1) £ (8 Wi (s £5) },

2n—1
1
A = 5 3 onl () D (1. 1)
7=0

and right hand side

2n—1

b = qum “Ri(ty) _—K (te, ta)] — Wy (tn),

2n—1

ow r 1
b = g(ti) — (;U (tk) — 5= Z i I (g, 1)

Here 2n > 2m + 1.

Thus the received ill-posed linear system is overdetermined and therefore we
reduce it to the least-squares problem. The following cost functional needs to
be minimized

F(wno’ ceey ¢n,2n—1’ dm0, - - - 7Qm,2m) =

2

2n—1|2n—1

Z Z wng 11) —|—Z mJ.A(m _ b(l) n
i=0 | j=0
2n—1 |2n—1 9
2 Zw’”AmJFZ amsAy” = b7 |+
=0 | j=0

2n—1

« Z lewn] + ﬁZW%Qm]

16
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with the regularization parameters o > 0 and 8 > 0 and weight coefficients wy
and wy;. Clearly, the final linear system has the form

2n—1
11 (1 .
awhwm—i—zwma )—i—quJa = i), 1=0,...,2n—1,
7=0
2n—1

Bw2igmi + Z @Z}nja + Z mja b(2) 1=0,...,2m,

where
2n—1

Z "Ak(;l A(pl Z A(m ]

and
2n—1

2m
923 A 13 AP
k=0 k=0

Step 3. Now we can evaluate the new values for the radial function r,, = r,+qm
and for the density ¢, = ¢n + ¥n.
The following stopping criterion can be used

gl z2(0,2)
HrmHLQ[O,Qw}
with sufficiently small € > 0, or a discrepancy principle, as well.
Algorithm 2.
Step2. 1t is analogous to the Step I from the Algorithm 1.
Step3. To find the correction ¢ from (23) we make the discretization by
the quadrature method and due to its ill-posednes we minimize the following

Tikhonov functional
2

2n—112m 2m
22 2
F(Qm07 B Qm,Qm) = Z qujAz(’j ) - b§ ) + ﬂZWquTQHJ’ 2n > 2m + 1.
=0 |[7=0 j=0
The corresponding linear system has the form
2m
Bw2iGmi + Z gmjai; = bi, 1=0,...,2m
§=0
with
2n—1 2n—1

= S APAD. b= AT

Algorithm 3.
Step2. The discretization in (24) and ill-posednes of the received linear system
lead to the minimization of the following Tikhonov functional

2
2n—1|2n—1 2n—1
F<wn07 s 77>bn 2n— 1 Z Z wn]Agl) - bgg) + Z wljwr%j
1=0 | j=0 7=0

17
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with
(9 oW
b = g(ty) — T(tk)
which is equivalent to solving the linear system
2n—1
.
awlzwnz"‘ Z wnja” = 5 ), 1= 0,...,2’/L— 1,
7=0
where
2n—1 2n—1

ZA(m k] ’ ( ZA(zl)b

Step3. To find the correction ¢ from (25) we make the discretization by quad-
rature method and due to its ill-posednes we minimize the following Tikhonov
functional

2
2n—11|2m 2m

F(gmos - Gmam) = O | > amp ALY =00 + 83 wajd?;, 20> 2m+ 1,
i=0 |j=0 pur

Thus the corresponding linear system has the form

2 2 .
ﬁWQszz‘i'ZQm]a() E)a 2207-'-72ma
7=0

where
2n—1 2n—1

ZA(lQ k;] ’ ( ZA(lQ)b

5. NUMERICAL EXAMPLES

We demonstrate the feasibility of the proposed methods for the inverse prob-
lem (1)-(4) with the following boundaries A(t) = { Rc(t),t € [0, 27|} with R = 2,
and

() = {\/cos% 1 0.25sin%te(t),t € [0, 27r]} .

The Cauchy data on A were generated by solving the direct problem (1)-(3) for
f =1on A and calculating g as the normal derivative on A. The noisy data
were formed as

¢ =g+62n—1)9gllLoa)

with the noise level ¢ and the random value n € (0,1). The results of the
numerical experiments for exact and noisy data with § = 5% are reflected on
Fig.1. Here we used the following discretization parameters n = 16, m = 4
and e = 0.0001. The values of regularization parameters, numbers of iterations
and Le-errors are given in Tabl. 1.

18
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6 | It. E « Jé]

Algorithm 1 | 0% | 7 | 0.00561 | 10713 | 10=5
5% | 8 |0.07367 | 10719 | 1073
Algorithm 2 | 0% | 21 | 0.00614 102
5% | 17 | 0.03843 1071
Algorithm 3 | 0% | 21 | 0.00322 | 10714 | 107
5% | 15 | 0.04714 | 1075 | 107!

TaBL. 1. Errors and regularization parameters

a). Reconstruction for the exact data b). Reconstruction for 5% noise in the data

FiG. 1. Reconstruction of the boundary T’
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