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ON THE NON-LINEAR INTEGRAL EQUATION
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Ðåçþìå. Ðîçãëÿäà¹òüñÿ çàäà÷à ðåêîíñòðóêöi¨ âíóòðiøíüî¨ êðèâî¨ çà çà-
äàíèìè äàíèìè Êîøi ãàðìîíiéíî¨ ôóíêöi¨ íà çîâíiøíié êðèâié ïëîñêî¨
îáëàñòi. Çà äîïîìîãîþ ôóíêöi¨ Ãðiíà i òåîði¨ ïîòåíöiàëó íåëiíiéíà îáåð-
íåíà çàäà÷à ðåäóêîâàíà äî ñèñòåìè íåëiíiéíèõ ãðàíè÷íèõ iíòåãðàëüíèõ
ðiâíÿíü. Ðîçðîáëåíî òðè iòåðàöiéíi àëãîðèòìè äëÿ ¨¨ ÷èñåëüíîãî ðîçâ'ÿçó-
âàííÿ. Çíàéäåíî ïîõiäíi Ôðåøå âiäïîâiäíèõ îïåðàòîðiâ i ïîêàçàíî ¹äè-
íiñòü ðîçâ'ÿçêó ëiíåàðèçîâàíèõ ñèñòåì. Ïîâíà äèñêðåòèçàöiÿ çäiéñíåíà
ìåòîäîì òðèãîíîìåòðè÷íèõ êâàäðàòóð. ×åðåç íåêîðåêòíiñòü âèõiäíî¨ çà-
äà÷i äî îòðèìàíèõ ñèñòåì ëiíiéíèõ ðiâíÿíü çàñòîñîâàíî ðåãóëÿðèçàöiþ
Òiõîíîâà. ×èñåëüíi ðåçóëüòàòè ïîêàçóþòü, ùî ïðîïîíîâàíi ìåòîäè äàþòü
äîñòàòíüî äîáðó òî÷íiñòü ðåêîíñòðóêöi¨ ïðè åêîíîìíèõ îá÷èñëþâàëüíèõ
çàòðàòàõ.
Abstract. We consider the reconstruction of an interior curve from the given
Cauchy data of a harmonic function on the exterior boundary of the planar
domain. With the help of Green's function and potential theory the non-
linear boundary reconstruction problem is reduced to the system of non-linear
boundary integral equations. The three iterative algorithms are developed for
its numerical solution. We �nd the Fr�echet derivatives for the corresponding
operators and show unique solviability of the linearized systems. Full dis-
cretization of the systems is realized by a trigonometric quadrature method.
Due to the inherited ill-possedness in the obtained system of linear equations
we apply the Tikhonov regularization.

The numerical results show that the proposed methods give a good ac-
curacy of reconstructions with an economical computational cost.

1. Introduction
The mathematical modeling of electrostatic or thermal imaging methods in

nondestructive testing and evaluation leads to inverse boundary value problems
for the Laplace equation. In principle, in these applications an unknown inclu-
sion within a conducting host medium with a constant conductivity is resolved
from the overdetermined Cauchy data on the accessible part of the boundary
of the medium.

The idea to reduce the problem of the boundary reconstruction to the system
of non-linear equations and to employ a regularized iterative procedure was
�rstly suggested in [11]. This approach was successfully extended in [1,3,6,11,

Key words. Double connected domains; boundary reconstruction; Green's function; single
layer potential; boundary integral equations; trigonometric quadrature method; Tikhonov
regularization.
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12] for the case of the Laplace equation and in [4,5,7�9,13�15] for the Helmholtz
equation.

As an alternative to the reciprocity gap approach based on Green's integral
theorem we propose iterative solution methods based on the Green's function.
Although the proposed methods are restricted to the class of domains for which
the Green's function can be easily found the methods have several advantages
over the reciprocity gap approach. In particular, the corresponding single layer
potential is bounded at in�nity and hence its modi�cation is not needed. More-
over, for the complicated boundary conditions such as generalized impedance
the proposed methods will be easier to adopt.

We assume that D is a doubly connected bounded domain in IR2 with the
boundary ∂D consisting of two disjoint closed C2 curves Γ and Λ such that Γ
is contained in the interior of Λ.

The corresponding direct problem is: Given a function f on Λ consider the
Dirichlet problem for u ∈ C2(D) ∩ C(D̄) satisfying the Laplace equation

∆u = 0 in D (1)
and the boundary conditions

u = 0 on Γ, (2)
u = f on Λ. (3)

The inverse problem we are concerned with is: Given the Dirichlet data f on
Λ with f 6= 0 and the Neumann data

g :=
∂u

∂ν
on Λ, (4)

determine the shape of the interior boundary Γ. Here, and in the sequel, by
ν we denote the outward unit normal to Γ or to Λ. We tacitly assume that
f has enough smoothness, for example f ∈ C1,α(Λ) for classical solutions or
f ∈ H1/2(Λ) for weak solutions, to ensure the existence of the normal derivative
on Λ. As opposed to the forward boundary value problem, the inverse problem
is nonlinear and ill-posed.

The issue of uniqueness, i.e., identi�ability of the unknown curve Γ from the
Cauchy data on Λ, is settled by the following theorem (see [10]).

Theorem 1. Let Γ and Γ̃ be two closed curves contained in the interior of Λ
and denote by u and ũ the solutions to the Dirichlet problem (1)�(3) for the
interior boundaries Γ and Γ̃, respectively. Assume that f 6= 0 and

∂u

∂ν
=

∂ũ

∂ν

on an open subset of Λ. Then Γ = Γ̃.
The plan of the paper is as follows. In Section 2 we reduce the inverse bound-

ary value problem (1)�(4) to two boundary integral equations using Green's
function. Section 3 contains three iterative schemes for the numerical solution
of the non-linear integral equations. We show the injectivity of the correspond-
ing linearized operators. The practical realization of suggested algorithms is
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discussed in Section 4. Section 5 concludes the paper with some numerical
examples illustrating the feasibility of the non-linear integral equation method
for approximate solution of the inverse boundary value problem.

2. Reduction to boundary integral equations
To this end, we denote the interior of Λ by B. Then, by G we denote the

Green's function for B, that is, G is de�ned for all x 6= y in B and of the form

G(x, y) =
1
2π

ln
1

|x− y| + G̃(x, y),

where, for a �xed y ∈ B, the function G̃ is harmonic in B with respect to x
such that G(· , y) = 0 on Λ. We note that for Λ a circle of radius R centered at
the origin G̃ is explicitly given by

G̃(x, y) =
1
4π

ln
R4 + |x|2|y|2 − 2R2 x · y

R2
.

The solution w to the Dirichlet problem in B with boundary values w = f on
Λ can be represented in the form

w(x) = −
∫

Λ

∂G(x, y)
∂ν(y)

f(y) ds(y), x ∈ B. (5)

In the case of Λ a circle the representation (5) reduces to the Poisson integral.
In a more abstract sense, we may interpret (5) as solution operator that maps
the boundary value f into the solution w of the Dirichlet problem in B. Seeking
the unique solution of (1)�(3) in the form

u(x) =
∫

Γ
G(x, y)ϕ(y) ds(y) + w(x), x ∈ D, (6)

now leads to the integral equation of the �rst kind∫

Γ
G(x, y)ϕ(y) ds(y) = −w(x), x ∈ Γ, (7)

for the unknown density ϕ. We name the integral equation (7) as a �eld equa-
tion. The given �ux g on Λ leads to the integral equation

∫

Γ

ϕ(y)
∂G(x, y)
∂ν(x)

ds(y) = g(x)− ∂w

∂ν
(x), x ∈ Λ, (8)

which is named a data equation.
Let introduce the single-layer potential

(Sϕ)(x) :=
∫

Γ
G(x, y)ϕ(y) ds(y), x ∈ Γ, (9)

and the operator

(Aϕ)(x) :=
∫

Γ

∂G(x, y)
∂ν(x)

ϕ(y) ds(y), x ∈ Λ, (10)

for the normal derivative of the single-layer potential on Λ.
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Theorem 2. The inverse boundary value problem (1)�(4) is equivalent to the
system of integral equations

Sϕ = −w on Γ, (11)

Aϕ = g − ∂w

∂ν
on Λ. (12)

Proof. Analogously to [11]. 2

Theorem 3. The operator S : H−1/2(Γ) → H1/2(Γ) is bijective and has boun-
ded inverse. The operator A : L2(Γ) → L2(Λ) is injective and has dense range.
Proof. The bijectivity of S is the classical result and can be found in [10]. The
injectivity of A is proved in [2]. 2

To describe the algorithms conveniently a parametrization of boundary cur-
ves is required. Let

λ(s) = {(x1(s), x2(s)) : s ∈ [0, 2π]}
is the parametrization for the exterior curve Λ. For simplicity we consider only
starlike interior curves, i.e., we choose a parametrization in polar coordinates
of the form

γr(s) = {r(s)c(s) : s ∈ [0, 2π]}, (13)
where c(s) = (cos s, sin s) and r : IR → (0,∞) is a 2π periodic function rep-
resenting the radial distance from the origin. However, we wish to emphasize
that the concepts described below, in principle, are not con�ned to starlike
boundaries only. We introduce the parametrized density as ϕ(t) := ϕ(γr(t)) or
φ(t) := ϕ(γr(t))|γ′r(t)|. We indicate the dependence on r by denoting the curve
with parametrization (13) by Γr. The corresponding operators de�ned through
(9) and (10) for Γ = Γr are given by

(Srφ)(t) =
1
2π

∫ 2π

0
φ(τ)G(γr(t), γr(τ))dτ,

(S̃rϕ)(t) =
1
2π

∫ 2π

0
ϕ(τ)G(γr(t), γr(τ))|γ′r(τ)|dτ,

(Arφ)(t) =
1
2π

∫ 2π

0
φ(τ)

∂G

∂ν(λ(t))
(λ(t), γr(τ))dτ

and
(Ãrϕ)(t) =

1
2π

∫ 2π

0
ϕ(τ)

∂G

∂ν(λ(t))
(λ(t), γr(τ))|γ′r(τ)|dτ.

3. Iterative schemes
Operators Sr, Ar and Ãr have the following Fre�echet derivatives with respect

to the radial function r

(S′[r, φ]q)(t) =
1
2π

∫ 2π

0
φ(τ)[q(τ)L(1)

r (t, τ) + q(t)L(2)
r (t, τ)]dτ,

(A′[r, φ]q)(t) =
1
2π

∫ 2π

0
φ(τ)q(τ)H(1)

r (t, τ)dτ.
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and

(Ã′[r, ϕ]q)(t) =
1
2π

∫ 2π

0
ϕ(τ)

[
q(τ)H(1)

r (t, τ)|γ′r(τ)|+

+
r(τ)q(τ) + r′(τ)q′(τ)

|γ′r(t)|
H(2)

r (t, τ)
]
dτ.

(14)

Here we introduced the kernels

L(1)
r (t, τ) := −r(τ)− r(t) cos(t− τ)

|γr(t)− γr(τ)|2 + gradγr(τ) G̃(γr(t), γr(τ)) · c(τ),

L(2)
r (t, τ) := −r(t)− r(τ) cos(t− τ)

|γr(t)− γr(τ)|2 + gradγr(t) G̃(γr(t), γr(τ)) · c(t),

H(1)
r (t, τ) := gradγr(τ)

∂G(λ(t), γr(τ))
∂ν(λ(t))

· c(τ)

and
H(2)

r (t, τ) :=
∂G(λ(t), γr(τ))

∂ν(λ(t))
.

Note that

lim
τ→t

(q(τ)L(1)
r (t, τ) + q(t)L(2)

r (t, τ)) =
r(t)q(t) + r′(t)q′(t)

|γ′r(t)|2
+

+ 2q(t) gradγr(t) G̃(γr(t), γr(t)) · c(t).
These representation were obtained by standard di�erentiation procedure in
(9) and (10). Also we will need the Fre�echet derivative for the function w

(w′[r]q)(t) = − 1
2π

∫ 2π

0
f(τ)q(τ)Wr(t, τ)dτ

with
Wr(t, τ) := |λ′(τ)| gradγr(t)

∂G(γr(t), λ(τ))
∂ν(λ(τ))

· c(t).
The linear operators S′[r, ϕ] and A′[r, ϕ] have the following properties.
Theorem 4. Let r be the radial function of the interior boundary Γr and let
φ be a solution to the integral equation (11), i.e. Srφ = −w on Γr. Assume
that q ∈ C2[0, 2π] and ψ ∈ L2[0, 2π] solve the homogeneous system

Srψ + S′[r, φ]q + w′[r]q = 0, (15)
Arψ + A′[r, φ]q = 0. (16)

Then q = 0 and ψ = 0.
Proof. As it is shown in [6], for su�ciently small q, the perturbed interior curve
as given in polar coordinates by

Γr+q = {(r(t) + q(t))c(t) : t ∈ [0, 2π]}
can be represented in the form

Γr+q = {r(t)c(t) + q̃(t)ν(t) : t ∈ [0, 2π]}

11
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in terms of the normal vector
ν(t) = r′(t)(− sin t, cos t)− r(t)(cos t, sin t)

to the unperturbed curve Γr and a function q̃. Now in the Fr�echet derivatives
S′, A′ and w′ we may replace the perturbation vector ζ(t) = q(t)c(t) by ζ̃ = q̃ ν.
We introduce the function

V (x) :=
∫ 2π

0
ψ(τ)G(x, γr(τ))dτ−

−
∫ 2π

0
gradx G(x, γr(τ)) · ζ̃(τ)φ(τ) dτ, x ∈ IR2 \ Γr.

Then (16) implies that ∂V
∂ν = 0 on Λ. The function V satis�es the Laplace

equation in the exterior of Λ, it decays at in�nity, therefore by the uniqueness
for the exterior Neumann problem we conclude that V ≡ 0 in the exterior of
Λ. By analyticity we obtain V ≡ 0 in the exterior of Γr. Approaching Γr from
the exterior by the jump relations we obtain

0 =
∫ 2π

0
ψ(τ)G(γr(t), γr(τ)dτ

−
∫ 2π

0
gradγr(t) G(γr(t), γr(τ)) · ζ̃(τ)φ(τ) dτ +

1
2
q̃(t)φ(t), t ∈ [0, 2π].

Employing the above equality and recalling the de�nition (6) of u we can rewrite
(15) as follows

ζ̃ · gradu ◦ γr = 0.

Due to the de�nition of u and the condition on ϕ we have u = 0 on Γr, which
is equivalent to

ζ̃ · ν ◦ γr

(
∂u

∂ν

)
◦ γr = 0.

Since by Holmgren's theorem ∂u
∂ν cannot vanish on open subsets of Γr we obtain

ζ̃ ·ν ◦γr = q̃ = 0 and hence q = 0. Analogously to [11] by continuity of a single-
layer potential and the uniqueness of the interior Dirichlet problem we obtain
V = 0 in IR2 and therefore the density ψ = 0. 2

Theorem 5. Let r be the radial function of the interior boundary Γr and let φ
be a solution to the integral equation (12), i.e. Arφ = g− ∂w

∂ν on Λ. Assume
that q ∈ C2[0, 2π] solves the homogeneous equation

S′[r, φ]q + w′[r]q = 0. (17)
Then q = 0.
Proof. Since φ is a solution to Arφ = g − ∂w

∂ν on Λ it also satis�es Srφ =
−w on Γr. We represent the perturbed interior curve again as

Γr+q = {r(t)c(t) + q̃(t)ν(t) : t ∈ [0, 2π]}
and introduce the function

V (x) :=
∫ 2π

0
φ(τ)G(x, γr(τ))dτ−

∫

Λ

∂G(x, y)
∂ν(y)

f(y) ds(y), x ∈ IR2 \ Γr.
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The function V is a solution to the interior Dirichlet boundary value problem
with the homogeneous condition. In view of the unique solution we obtain
V ≡ 0 in the interior of Γr and therefore ∂V

∂ν

∣∣∣∣
Γr

= 0, i.e.

0 = q̃(t)ν(t) · gradγr(t)

∫ 2π

0
G(γr(t), γr(τ))φ(τ) dτ +

1
2
q̃(t)φ(t)

−q̃(t)ν(t) · gradγr(t)

∫

Λ

∂G(γr(t), y)
∂ν(y)

f(y) ds(y), t ∈ [0, 2π].

From (17) we �nd

0 = −1
2
q̃(t)φ(t)−

∫ 2π

0
gradγr(t) G(γr(t), γr(τ)) · ζ̃(τ)φ(τ) dτ, t ∈ [0, 2π].

(18)
We de�ne a double layer potential

W (x) := −
∫ 2π

0
gradx G(x, γr(τ)) · ν(τ)q̃(τ)φ(τ) dτ, x ∈ IR2 \ Γr.

Since the function W is harmonic in the interior of Γr and satis�es the homo-
geneous Dirichlet boundary condition, (18), it implies W ≡ 0 in the interior of
Γr. One can show, similarly to [10, Theorem 6.21], that the operator −I + K
is injective, where

(Kψ)(t) =
∫ 2π

0
gradγr(t) G(γr(t), γr(τ)) · ν(τ)ψ(τ) dτ, t ∈ [0, 2π]

Hence from (18) we obtain
q̃(t)φ(t) = 0, t ∈ [0, 2π]

By the jump relations for the function V we have
1
|γ′r|

φ =
∂V −

∂ν

∣∣∣∣
Γr

− ∂V +

∂ν

∣∣∣∣
Γr

= − ∂V +

∂ν

∣∣∣∣
Γr

.

Since by Holmgren's theorem ∂V +

∂ν cannot vanish on open subsets of Γr and
|γr| 6= 0 we obtain q̃ = 0 and hence q = 0. 2

Remark (about the Algorithm 2).
If the interior boundary is a circle, then exists a nontrivial solution q = const
to the homogeneous equation A′[r, ϕ]q = 0. Indeed, introducing the function

V (x) = −q gradx

∫ 2π

0
G(x, γr(τ)) · ν(τ)ϕ(τ)dτ, x ∈ IR2 \ Γr

we obtain that V is a unique solution to the Neumann boundary value problem
with the homogeneous condition in the exterior of Λ, and hence V +|Γr = 0.
Since the null-space of the operator of the integral equation

1
2
ϕ(t)− gradx

∫ 2π

0
G(t, γr(τ)) · ν(τ)ϕ(τ)dτ = 0, t ∈ [0, 2π]

is not empty, one can �nd q 6= 0 which solves A′[r, ϕ]q = 0.
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In view of this remark we introduced the modi�ed version Ã′[r, ϕ], (14),
instead of the operator A′[r, ϕ].

Now we describe three iterative algorithms for the numerical solution of (11)-
(12).
Algorithm 1.

1. Choose some starting value r. Solve the well-posed integral equation

Srφ = −wr. (19)

2. For the given r and ϕ solve the system of linearized ill-posed integral
equations

Srψ + S′[r, φ]q + w′[r]q = −Srφ− wr, (20)

Arψ + A′[r, φ]q = g − ∂w

∂ν
−Arφ (21)

with respect to functions ψ and q.
3. Calculate new approximations for the radial function r = r + q and for

the density φ = φ + ψ.
4. Repeat steps 2-3 until some stopping criterion is satis�ed.

Algorithm 2.
1. Choose some starting value r.
2. Solve the well-posed integral equation

S̃rϕ = −wr. (22)

3. For the given r and ϕ solve the linearized ill-posed integral equation

Ã′[r, ϕ]q = g − ∂w

∂ν
− Ãrϕ (23)

with respect to function q.
4. Calculate new approximations for the radial function r = r + q.
5. Repeat steps 2-4 until some stopping criterion is satis�ed.

Algorithm 3.
1. Choose some starting value r.
2. Solve the ill-posed integral equation

Arφ = g − ∂w

∂ν
. (24)

3. For given r and ϕ solve the linearized ill-posed integral equation

S′[r, φ]q + w′[r]q = −Srφ− wr, (25)

with respect to function q.
4. Calculate new approximations for the radial function r = r + q.
5. Repeat steps 2-4 until some stopping criteria is satis�ed. Note here that

we need to use some regularization method in the case of ill-posed integral
equations. According to properties of the corresponding integral operators an
application of the Tikhonov regularization is justi�ed for the algorithms 1, 3.

14
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4. Implementation
Algorithm 1.

Step1. On the �rst step of this algorithm we need to solve the well posed
integral equation of the �rst kind (19) with a logarithmic singularity for a
current approximation of r. Since all functions in this equation are 2π periodic
we implement the trigonometric quadrature method. To do this we rewrite the
equation (19) in the following equivalent form

1
2π

∫ 2π

0
φ(τ)

[
−1

2
ln

4
e

sin2 t− τ

2
+ Kr(t, τ)

]
dτ = −wr(t), t ∈ [0, 2π],

where

Kr(t, τ) :=
1
2

ln
4
e sin2 t−τ

2

|γr(t)− γr(τ)|2 + G̃(γr(t), γr(τ)), t 6= τ

with the diagonal term

Kr(t, t) =
1
2

ln
1

e|γ′r(t)|2
+ G̃(γr(t), γr(t)).

The following trigonometric quadratures with equidistant points tj = jπ
n , j =

0, . . . , 2n− 1 are used

1
2π

∫ 2π

0
f(τ) ln

(
4
e

sin2 t− τ

2

)
dτ ≈

2n−1∑

k=0

Rk(t) f(tk) (26)

and
1
2π

∫ 2π

0
f(τ) dτ ≈ 1

2n

2n−1∑

k=0

f(tk) (27)

with explicit expressions for the weight functions given in [10]. It leads to the
following system of linear equations with respect to φni ≈ φ(ti)

2n−1∑

i=0

φni[−1
2
Ri(tk) +

1
2n

K(tk, ti)] = −w̃r(tk), k = 0, . . . , 2n− 1

with

w̃r(t) = − 1
2n

2n−1∑

i=0

f(ti)H(t, ti),

where
H(t, τ) :=

∂G(γr(t), λ(τ))
∂ν(λ(τ))

|λ′(t)|.

The convergence and error analysis for this method can be found in [10].
Step2. We search the unknown corrections in the system (20)-(21) as

ψn =
2n−1∑

i=0

ψnil
1
i , qm =

2m∑

i=0

qmil
2
i ,

15



R. S.CHAPKO, O.M. IVANYSHYN YAMAN, T. S.KANAFOTSKYI

where l1i , i = 0, . . . , 2n− 1 are basic Lagrangian trigonometric polynomials and
l2i , i = 0, . . . , 2m are known basic functions. The quadrature method applied
to (20)-(21) give us the linear system

2n−1∑

i=0

ψniA(11)
ki +

2m∑

i=0

qmiA(12)
ki = b

(1)
k , k = 0, . . . , 2n− 1,

2n−1∑

i=0

ψniA(21)
ki +

2m∑

i=0

qmiA(22)
ki = b

(2)
k , k = 0, . . . , 2n− 1

with matrix coe�cients

A(11)
ki = −1

2
Ri(tk) +

1
2n

Kr(tk, ti), A(21)
ki =

1
2n

H(2)
r (tk, ti),

A(12)
ki =

1
2n

2n−1∑

j=0

{φnj [l2i (tj)L
(1)
r (tk, tj)+l2i (tk)L

(2)
r (tk, tj)]+l2i (tj)f(ti)Wr(tk, tj)},

A(22)
ki =

1
2n

2n−1∑

j=0

φnjl
2
i (tj)H

(1)
r (tk, tj)

and right hand side

b
(1)
k =

2n−1∑

i=0

φni[−1
2
Ri(tk)− 1

2n
Kr(tk, ti)]− w̃r(tk),

b
(2)
k = g(tk)− ∂w̃r

∂ν
(tk)− 1

2n

2n−1∑

i=0

φniH
(2)
r (tk, ti).

Here 2n ≥ 2m + 1.
Thus the received ill-posed linear system is overdetermined and therefore we
reduce it to the least-squares problem. The following cost functional needs to
be minimized

F (ψn0, . . . , ψn,2n−1, qm0, . . . , qm,2m) =

=
2n−1∑

i=0

∣∣∣∣∣∣

2n−1∑

j=0

ψnjA(11)
ij +

2m∑

j=0

qmjA(12)
ij − b

(1)
i

∣∣∣∣∣∣

2

+

2n−1∑

i=0

∣∣∣∣∣∣

2n−1∑

j=0

ψnjA(21)
ij +

2m∑

j=0

qmjA(22)
ij − b

(2)
i

∣∣∣∣∣∣

2

+

α
2n−1∑

j=0

ω1jψ
2
nj + β

2m∑

j=0

ω2jq
2
mj

16
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with the regularization parameters α > 0 and β > 0 and weight coe�cients ω1j

and ω2j . Clearly, the �nal linear system has the form

αω1iψni +
2n−1∑

j=0

ψnja
(11)
ij +

2m∑

j=0

qmja
(12)
ij = b(1)

i , i = 0, . . . , 2n− 1,

βω2iqmi +
2n−1∑

j=0

ψnja
(21)
ij +

2m∑

j=0

qmja
(22)
ij = b(2)

i , i = 0, . . . , 2m,

where

a(`p)
ij =

2n−1∑

k=0

A(`1)
ki A(p1)

kj +
2m∑

k=0

A(`2)
ki A(p2)

kj

and

b(`)
i =

2n−1∑

k=0

A(`1)
ki b

(1)
k +

2m∑

k=0

A(`2)
ki b

(2)
k .

Step 3. Now we can evaluate the new values for the radial function rm = rm+qm

and for the density φn = φn + ψn.
The following stopping criterion can be used

‖qm‖L2[0,2π]‖
‖rm‖L2[0,2π]

< ε

with su�ciently small ε > 0, or a discrepancy principle, as well.
Algorithm 2.
Step2. It is analogous to the Step 1 from the Algorithm 1.
Step3. To �nd the correction q from (23) we make the discretization by
the quadrature method and due to its ill-posednes we minimize the following
Tikhonov functional

F (qm0, . . . , qm,2m) =
2n−1∑

i=0

∣∣∣∣∣∣

2m∑

j=0

qmjA(22)
ij − b

(2)
i

∣∣∣∣∣∣

2

+ β
2m∑

j=0

ω2jq
2
mj , 2n ≥ 2m + 1.

The corresponding linear system has the form

βω2iqmi +
2m∑

j=0

qmjaij = bi, i = 0, . . . , 2m

with

aij =
2n−1∑

k=0

A(22)
ki A(22)

kj , bi =
2n−1∑

k=0

A(22)
ki b

(2)
k .

Algorithm 3.
Step2. The discretization in (24) and ill-posednes of the received linear system
lead to the minimization of the following Tikhonov functional

F (ψn0, . . . , ψn,2n−1) =
2n−1∑

i=0

∣∣∣∣∣∣

2n−1∑

j=0

ψnjA(21)
ij − b̃

(2)
i

∣∣∣∣∣∣

2

+ α
2n−1∑

j=0

ω1jψ
2
nj

17
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with
b̃
(2)
i = g(tk)− ∂w̃r

∂ν
(tk).

which is equivalent to solving the linear system

αω1iψni +
2n−1∑

j=0

ψnja
(1)
ij = b(1)

i , i = 0, . . . , 2n− 1,

where

a(1)
ij =

2n−1∑

k=0

A(21)
ki A(21)

kj , b(1)
i =

2n−1∑

k=0

A(21)
ki b̃

(2)
k .

Step3. To �nd the correction q from (25) we make the discretization by quad-
rature method and due to its ill-posednes we minimize the following Tikhonov
functional

F (qm0, . . . , qm,2m) =
2n−1∑

i=0

∣∣∣∣∣∣

2m∑

j=0

qmjA(12)
ij − b

(1)
i

∣∣∣∣∣∣

2

+ β
2m∑

j=0

ω2jq
2
mj , 2n ≥ 2m + 1.

Thus the corresponding linear system has the form

βω2iqmi +
2m∑

j=0

qmja
(2)
ij = b(2)

i , i = 0, . . . , 2m,

where

a(2)
ij =

2n−1∑

k=0

A(12)
ki A(12)

kj , b(2)
i =

2n−1∑

k=0

A(12)
ki b

(1)
k .

5. Numerical examples
We demonstrate the feasibility of the proposed methods for the inverse prob-

lem (1)-(4) with the following boundaries λ(t) = {Rc(t), t ∈ [0, 2π]} with R = 2,
and

γr(t) =
{√

cos2 t + 0.25 sin2 t c(t), t ∈ [0, 2π]
}

.

The Cauchy data on Λ were generated by solving the direct problem (1)-(3) for
f = 1 on Λ and calculating g as the normal derivative on Λ. The noisy data
were formed as

gδ = g + δ(2η − 1)‖g‖L2(Λ)

with the noise level δ and the random value η ∈ (0, 1). The results of the
numerical experiments for exact and noisy data with δ = 5% are re�ected on
Fig. 1. Here we used the following discretization parameters n = 16, m = 4
and ε = 0.0001. The values of regularization parameters, numbers of iterations
and L2-errors are given in Tabl. 1.
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δ It. E α β

Algorithm 1 0% 7 0.00561 10−13 10−5

5% 8 0.07367 10−10 10−3

Algorithm 2 0% 21 0.00614 10−2

5% 17 0.03843 10−1

Algorithm 3 0% 21 0.00322 10−14 10−7

5% 15 0.04714 10−5 10−1

Tabl. 1. Errors and regularization parameters

a). Reconstruction for the exact data b). Reconstruction for 5% noise in the data

Fig. 1. Reconstruction of the boundary Γ
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