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ON THE GENERALIZED SOLUTION OF THE
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BY THE USE OF THE RETARDED DOUBLE LAYER
POTENTIAL AND THE LAGUERRE TRANSFORM
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Ðåçþìå. Îïèñàíî i îáãðóíòîâàíî ïiäõiä äî ðîçâ'ÿçóâàííÿ ìiøàíî¨ çàäà÷i
Íåéìàíà äëÿ îäíîðiäíîãî õâèëüîâîãî ðiâíÿííÿ, ÿêèé áàçó¹òüñÿ íà iíòåã-
ðàëüíîìó ïåðåòâîðåííi Ëàãåðà çà ÷àñîâîþ çìiííîþ i ãðàíè÷íèõ iíòåãðàëü-
íèõ ðiâíÿííÿõ. Äëÿ ïîäàííÿ óçàãàëüíåíîãî ðîçâ'ÿçêó òàêî¨ çàäà÷i âèêî-
ðèñòàíî çàïiçíþþ÷èé ïîòåíöiàë ïîäâiéíîãî øàðó, ãóñòèíó ÿêîãî øóêàþòü
ó âèãëÿäi ðÿäó Ôóð'¹-Ëàãåðà. Äëÿ êîåôiöi¹íòiâ ðîçâèíåííÿ îòðèìàíî
àíàëiòè÷íi ôîðìóëè. Â ðåçóëüòàòi âèõiäíó íåñòàöiîíàðíó çàäà÷ó çâåäåíî
äî åêâiâàëåíòíî¨ ïîñëiäîâíîñòi ãðàíè÷íèõ iíòåãðàëüíèõ ðiâíÿíü.
Abstract. Approach for solving of the initial-boundary value problem for
the homogeneous wave equation with the Neumann condition is described
and proved. It is based on the Laguerre transform in the time domain and
the boundary integral equations. The retarded double layer potential is used
for representation of generalized solution of such problem in some weighted
Sobolev spaces. The density of retarded potential is expanded in Fourier-
Laguerre series, coe�cients of which have special convolution form. As a
result, the initial-boundary value problem is reduced to an equivalent sequence
of boundary integral equations.

1. Introduction
Retarded surface potentials are useful tools for the integral representation of

generalized solutions of initial-boundary value problems for the wave equation
with homogeneous initial conditions [1, 2, 6]. Their advantages in applications
are, �rst of all, caused by the generality of domain form. In addition, they allow
to reduce initial-boundary value problems to equivalent time-dependent bound-
ary integral equations (TDBIEs, also known as retarded potential boundary
integral equations), with unknown densities of potentials that are determined
at each moment of time only on the domain's boundary [7, 12, 17]. Further,
they implicitly impose radiation conditions at in�nity.

However, practical usage of retarded potentials has some computational com-
plexity, caused by the presence of dependency of potential density on the time
and the spatial coordinates (so-called delay, see for example [7]). To overcome

Key words. Boundary integral equation method; wave equation; Sobolev spaces; general-
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equations.
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such problems, the following approaches have been used: one of traditional
discretisations on spatial variables is applied to unknown values and auxiliary
problems are used for calculation of the time dependency. In particular, a con-
volution quadrature [17] method has been utilized in many applications. It
is based on the use of sustainable methods for ordinary di�erential equations.
Using this method in the time is more stable than using Galerkin or collocation
time approximations.

Another way to take account of dependence in the time domain is the Fourier-
Laplace integral transform over the time variable [1, 6, 7]. This method is well
suitable for theoretical investigations, however, it is complex (except for some
cases) to perform corresponding inverse transform in applications. In this re-
spect the Laguerre transform, for which the inverse transform is to �nd the
sum of corresponding Fourier-Laguerre series, proved to be more constructive.
In combination with the method of boundary integral equations (BIEs) such
transform was used in [3, 8, 10, 13, 15, 18, 21] for numerical solution of various
evolution problems.

In [16] we considered the generalized solution of the Dirichlet initial-boundary
value problem for the wave equation with homogeneous initial conditions. Its
representation was built by using the retarded single layer potential in some
weighted Sobolev spaces, in which the desired solution and the potential density
allow the Fourier-Laguerre expansion over the time. In this case the Fourier-
Laguerre coe�cients for the potential density are de�ned as solutions of the
BIEs. This work is concerned with applying the same method to the analogical
problem for the wave equation but with the Neumann boundary condition. In
this case we deal with the retarded double layer potential.

We begin in Section 2 with a brief description of the proposed method. Sec-
tion 3 contains the basic de�nitions of proper functional spaces, followed by a
formulation of the main theorem about conditions under which the generalized
solution of the problem belongs to the desired weighted Sobolev spaces and can
be obtained by the proposed method. In Section 4 we investigate the regularity
of the retarded double layer potential depending on the smoothness of its den-
sity. De�nitions of the Laguerre transform and a q-convolution of sequences are
introduced in Section 5, as well as the Fourier-Laguerre expansion is given for
the potential's density and the representation formula for the corresponding
Fourier-Laguerre coe�cients are obtained. In Section 6 we explain how this
approach leads to a sequence of BIE, solutions of which are Fourier-Laguerre
coe�cients of the unknown potential's density. At the end we prove a theorem
that has been referred to above.

2. Reduction of the Neumann problem to a sequence of BIE
Let Ω be a domain in R3 with Lipschitz boundary Γ, Ω+ := R3 \ Ω, R+ :=

(0,∞), Q := Ω× R+, Σ := Γ× R+, and ν(x) be a unit vector in the direction
of the outward normal to the surface Γ at a point x ∈ Γ.

Let us consider the initial-boundary value problem: �nd a function u(x, t),
(x, t) ∈ Q, that satis�es (in some sense) the homogeneous wave equation
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∂2u(x, t)
∂t2

−∆u(x, t) = 0, (x, t) ∈ Q, (1)
homogeneous initial conditions

u(x, 0) = 0,
∂u(x, 0)

∂t
= 0, x ∈ Ω, (2)

and the Neumann boundary condition
∂ν(x)u(x, t) = g(x, t), (x, t) ∈ Σ. (3)

Here ∆ =
3∑

i=1
∂2/∂x2

i is the Laplace operator and ∂ν denotes the normal deriv-
ative operator. Note that for a su�ciently smooth function u and the surface
Γ operator ∂ν can be expressed as

∂ν(x)u(x, ·) = ν(x) · ∇xu(x, ·),
where ∇x is the gradient operator.

We use the retarded double layer potential to solve the problem (1)-(3)

(Dλ)(x, t) :=
1
4π

∫

Γ

ν(y) · ∇y

(
λ(z, t− |x− y|)

|x− y|
)∣∣∣∣

z=y

dΓy, (x, t) ∈ Q, (4)

where λ : Γ × R → R is a density. It is known (see, e.g., [1], [21]) that if an
arbitrary function λ(y, τ), (y, τ) ∈ Γ × R, is smooth enough and λ(y, τ) = 0
when y ∈ Γ, τ ≤ 0, then function

u(x, t) := (Dλ)(x, t), (x, t) ∈ Q, (5)
satis�es (in classic sense) the wave equation and initial conditions. In order
for the function u to satisfy the boundary conditions (3) we will consider the
following limit

(Wλ)(x, t) :=
1
4π

ν(x) · lim
x′→x

∇x′

∫

Γ

ν(y) · ∇y

(
λ(z, t− |x′ − y|)

|x′ − y|
)∣∣∣∣

z=y

dΓy, (6)

where x′ := x − εν(x) ∈ Ω, ε > 0 notes a point close to the points x ∈ Γ,
understanding approach of x′ → x by ε → 0. The function u satis�es the
boundary condition (3), if the function λ is a solution of the TDBIE

(Wλ)(x, t) = g(x, t), (x, t) ∈ Σ. (7)
To �nd the solution of the equation (7) we use the Laguerre transform,

namely the expansion of function in the Fourier-Laguerre series by Laguerre
polynomials {Lj(σ·)}j∈N0 , where N0 := N ∪ {0}, N is a set of natural numbers
and σ > 0 is a parameter. It is known (see, e.g., [11]) that the system of
Laguerre polynomials forms an orthogonal basis in the space L2

σ(R+) v : R+ →
R of functions such that

∫
R+

|v(τ)|2e−στdτ < ∞, therefore, v(τ) =
∞∑

j=0
vj Lj(στ),

τ ∈ R+, where vj := σ
∫
R+

v(τ) Lj(στ) e−στdτ (j ∈ N0) are the Laguerre-Fourier

coe�cients of function v.
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Therefore, the solution of the TDBIE (7) can be expressed as:

λ(y, τ) =





∞∑
j=0

λj(y) Lj(στ), y ∈ Γ, τ ∈ R+,

0, y ∈ Γ, τ ∈ R \ R+,
(8)

where λj (j ∈ N0) are the corresponding Laguerre-Fourier coe�cients of the
unknown function λ. In the case of the retarded argument with arbitrary value
a > 0 we have an expansion

λ(y, t− a) =
∞∑

j=0

λ̃j(y, a) Lj(σt), (9)

where coe�cients λ̃j(y, a) have the representation formula, that was obtained
in [16]

λ̃j(y, a) = e−σa
j∑

i=0

ζj−i(σa) λi(y), j ∈ N0, (10)

and where
ζ0(s) := 1, ζk(s) := Lk(s)− Lk−1(s), s ∈ R+ = [0,∞), k ∈ N. (11)

Then, taking into account (9) and (10), we will have

λ(y, t− |x− y|) =e−σ|x−y|
∞∑

j=0

( j∑

i=0

ζj−i(σ|x− y|) λi(y)
)

Lj(σt),

x, y ∈ Γ, t ∈ R+,

(12)

and then introducing notation similar to (6)

(Wkξ)(x) :=
1
4π

ν(x) · lim
x′→x

∇x′

∫

Γ

ξ(y)ν(y) · ∇yek(x′ − y)dΓy, (13)

where
ek(z) := (4π|z|)−1ζk(σ|z|)e−σ|z| at z ∈ R3 \ {0}, k ∈ N0, (14)

for the normal derivative of the retarded double layer potential (6) we obtain
an expansion

(Wλ)(x, t) =
∞∑

j=0

( j∑

i=0

(Wj−iλi)(x)
)

Lj(σt), x, y ∈ Γ, t ∈ R+. (15)

Now lets write the Fourier-Laguerre expansion of the function g

g(x, t) =
∞∑

j=0

gj(x)Lj(σt), (x, t) ∈ Σ, (16)

where gj(x) = σ
∫
R+

g(x, τ) Lj(στ) e−στdτ, x ∈ Γ, j ∈ N0. Taking into account

(15) and (16) along with (7) and equating expressions near the Laguerre poly-
nomials with the same indexes, we get an in�nite triangular system of BIE for
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�nding the Laguerre-Fourier coe�cients λ0, λ1, ..., λj , ... of the density λ

j∑

i=0

(Wj−iλi)(x) = gj(x), x ∈ Γ, j ∈ N0. (17)

It is easy to see that system (17) can be rewritten as a recursive sequence of
equations 




(W0λ0)(x) = g0(x),
(W0λ1)(x) = g̃1(x),

. . . . . . . . .
(W0λj)(x) = g̃j(x), j ∈ N, x ∈ Γ,

. . . . . . . . .

(18)

where

g̃j(x) := gj(x)−
j−1∑

i=0

(Wj−iλi)(x), j ∈ N. (19)

For every j ∈ N0 the corresponding j-th equation (18) is hypersingular equation
that has the form

(W0ξ)(x) = h(x), x ∈ Γ. (20)
It is known [4,9] that the equation (20) has a unique solution ξ for an arbitrary
function h within a fairly broad class. To �nd the solution of this equation one
can use numerical methods (see for example [24] and references there).

After �nding the solution λ0, λ1, ... of the BIE system (17) (same as a solution
of the sequence (18)), the generalized solution of the problem (1)-(3) can be
presented using (4), (5) and (12) as a sum of the series

u(x, t) =
1
4π

∞∑

j=0

( j∑

i=0

∫

Γ

λi(y) ν(y) · ∇yej−i(x− y)dΓy

)
Lj(t), (x, t) ∈ Q.

(21)
If we introduce a notation

(Dkξ)(x) :=
1
4π

∫

Γ

ξ(y)ν(y) · ∇yek(x′ − y)dΓy, (22)

the formula (21) can be rewritten as:

u(x, t) =
∞∑

j=0

( j∑

i=0

Dj−iλi(x)
)

Lj(σt), (x, t) ∈ Q. (23)

If there exists a sum of the series (23) we can consider its partial sum as
an approximate solution for the problem (1)-(3). In this case one can choose
(by some criteria) value N and �nd from the system (18) the �rst components
λ0, λ1, ..., λN of its solution. Then the approximate solution of the problem
(1)-(3) is the partial sum

ũN (x, t) =
N∑

j=0

( j∑

i=0

Dj−iλi(x)
)

Lj(σt), (x, t) ∈ Q. (24)
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We can use the representation (24) for the numerical solution of the problem
(1)-(3).

3. Variational formulation of the problem (1)-(3)
First, we need to introduce some additional notations. Let L2(Ω) be the

Lebesgue space of square integrable functions v : Ω → R with inner product

(v, w)L2(Ω) :=
∫

Ω

vwdx, v, w ∈ L2(Ω),

and norm ‖v‖L2(Ω) :=
√

(v, v)L2(Ω), and H1(Ω) be the Sobolev space of func-
tions v ∈ L2(Ω), having generalized derivatives of vx1 , vx2 , vx3 in L2(Ω), with
inner product

(v, w)H1(Ω) :=
∫

Ω

(∇v∇w + vw) dx, v, w ∈ H1(Ω),

and norm ‖v‖H1(Ω) :=
√

(v, v)H1(Ω), v ∈ H1(Ω). Let us denote H1/2(Γ) a
space of traces of elements of H1(Ω) on the surface Γ, γ0 : H1(Ω) → H1/2(Γ)
a trace operator, H−1/2(Γ) :=

(
H1/2(Γ)

)′ a conjugate to H1/2(Γ) space, and
< ·, · >Γ a duality relation for H−1/2(Γ)×H1/2(Γ).

Also let H1
0 (Ω) be a closure of the space C∞

0 (Ω) with norm ‖·‖H1(Ω) and
H−1(Ω) := (H1

0 (Ω))′ be the conjugate to H1
0 (Ω) space. In the space H1(Ω)

we also consider a subspace H1(Ω, ∆) :=
{

v ∈ H1(Ω) |∆v ∈ L2(Ω)
}
with the

norm
‖v‖H1(Ω,∆) :=

(
‖v‖2

H1(Ω) + ‖∆v‖2
L2(Ω)

)1/2
.

Let X be a Hilbert space with inner product (·, ·)X and inducted norm ||·||X .
For some parameter σ > 0 we consider a weighted Lebesgue space L2

σ(R+; X) [5]
with weight ρσ(t) = e−σt, t ∈ R+, elements of which are measurable functions
v : R+ → X such that

∫
R+

||v(t)||2X e−σtdt < ∞. This space is equipped with

inner product

(v, w)L2
σ(R+;X) :=

∫

R+

(
v(t), w(t)

)
X

e−σtdt, v, w ∈ L2
σ(R+;X), (25)

and the norm

‖v‖L2
σ(R+;X) :=

√
(v, v)L2

σ(R+;X), v ∈ L2
σ(R+; X). (26)

Note that the space L2
σ(R+; X) is complete [22, section II.1]. We will assume

that the elements of space L2
σ(R+; X) are extended with zero for non-positive

arguments.
For any m ∈ N let us denote the weighted Sobolev space as

Hm
σ (R+; X) := { v ∈ L2

σ(R+; X) | v(k) ∈ L2
σ(R+; X), k = 1,m} (27)
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with norm

‖v‖Hm
σ (R+;X) :=

(
m∑

k=0

∥∥∥v(k)
∥∥∥

2

L2
σ(R+;X)

)1/2

. (28)

Here derivatives vk(k ∈ N) are understood in terms of the space D′(R+; X),
elements of which are distributions with values in the space X. Note that
H1

σ(R+;X) ⊂ C(R+; X) [5, theorem 7, section XVIII].
Let us also denote following spaces:
L2

loc(R+; X) := {v : R+ → X − measurable | ||v(·)||X ∈ L2(0, τ) ∀τ > 0},
H1

loc(R+; X) := {v ∈ L2
loc(R+; X)| v′ ∈ L2

loc(R+; X)}.
De�nition 1. Let g ∈ L2

loc(R+; H−1/2(Γ)). A generalized solution of the prob-
lem (1)-(3) is a function u ∈ H1

loc(R+; L2(Ω))∩L2
loc(R+;H1(Ω)), which satis�es

the �rst of the initial conditions (2) and the integral identity
∫∫

Q

(∇u∇v − u′v′
)
dxdt =

∫∫

Σ

gγ0vdΓdt (29)

for any v ∈ H1(R+; L2(Ω))∩L2(R+; H1(Ω)) such that supp v is a bounded set.

Note that there exists at most one generalized solution of the problem (1)-
(3) [19, Theorem 1, Ch. V, �2].

We introduce a couple more notations. As the sequence of elements of set
X we understand mapping V : N0 → X (denoted by bold letter) and write it
as a vector-column v := (v0, v1, ...)>. All possible sequences of elements of the
set X are denoted by X∞. It is clear that when X is a linear space, then X∞
is also a linear space. Recall that

l2 :=
{
v ∈ R∞ |

∞∑

j=0

|vj |2 < +∞}

with the inner product (v,w) =
∞∑

j=0
vjwj , v,w ∈ l2 and the norm || v||l2 :=

( ∞∑
j=0

|vj |2
)1/2

, v ∈ l2.

Let X be a Hilbert space with inner product (·, ·)X and inducted norm ||·||X .
We consider the Hilbert space

l2(X) :=
{
v ∈ X∞ |

∞∑

j=0

‖vj‖2
X < +∞}

with the inner product (v,w) =
∞∑

j=0
(vj , wj)X , v,w ∈ l2(X) and the norm

||v||l2(X) :=
( ∞∑

j=0
‖vj‖2

X

)1/2

, v ∈ l2(X). It is obvious that l2 = l2(R).
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De�nition 2 ( [14]). Let X, Y , Z be arbitrary sets and q : X × Y → Z be
some mapping. By a q-convolution of sequences u ∈ X∞ and v ∈ Y ∞ we
understand the sequence w := (w0, w1, ..., wj , ...)> ∈ Z∞, whose elements are
obtained by the rule

wj :=
j∑

i=0

q (uj−i, vi) ≡
j∑

i=0

q (ui, vj−i) , j ∈ N0; (30)

the q-convolution of u and v is shortly written in the form w = u ◦
q
v.

Let X = R and Y = Z be linear spaces and q(u, v) := uv, u ∈ R, v ∈ Y .
Then the components of q-convolution of arbitrary u ∈ R∞ and v ∈ Y ∞ will
be denoted as

wj =
j∑

i=0

uj−ivi, j ∈ N0, (31)

and the q-convolution would be denoted as w := u ◦
R×Y

v.
If X = H−1/2(Γ), Y = H1/2(Γ), Z = R and q(u, v) :=< u, v >Γ, u ∈

H−1/2(Γ), v ∈ H1/2(Γ), for components of the q-convolution of arbitrary se-
quences u ∈ (

H−1/2(Γ)
)∞ and v ∈ (

H1/2(Γ)
)∞ we will have

wj =
j∑

i=0

< uj−i, vi >Γ, j ∈ N0, (32)

and will write w := u ◦
Γ
v.

Another example concerns the q-convolutions of linear operators when X =
L(Y, Z) is the space of linear operators acting from the space Y into the space
Z and q(A, v) := Av, A ∈ L(Y, Z), v ∈ Y , for components of the q-convolution
of arbitrary sequences A ∈ (L(Y, Z)

)∞ and v ∈ Y ∞ we will have the following
formula

wj =
j∑

i=0

Aj−ivi, j ∈ N0, (33)

and will write w := A ◦
Z
v.

Based on the above, we de�ne the sequence
u(x) =

(
D ◦

H1(Ω)
λ

)
(x), x ∈ Ω, (34)

which is the q-convolution of the sequence D composed of operators Dk :
H1/2(Γ) → H1(Ω)), k ∈ N0, given by the formula (22), and the sequence λ
of Fourier-Laguerre coe�cients of the function λ. Similarly, BIE system (17)
can be rewritten as

W ◦
H−1/2(Γ)

λ = g in l2(H−1/2(Γ)), (35)

where W : l2(H1/2(Γ)) → l2(H−1/2(Γ)) is a boundary operator whose compo-
nents act in accordance with (13), and g is the sequence of Fourier-Laguerre
coe�cients of the function g.
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Now we can formulate the main result of this paper as the following state-
ment.

Theorem 1. Let g ∈ Hm+4
σ0

(R+; H−1/2(Γ)) for some σ0 > 0 and m ∈ N0. Then
there exists a unique generalized solution of the problem (1)-(3), it belongs to
the space Hm+1

σ0
(R+; H1(Ω)) and for any σ ≥ σ0 such an inequality holds
||u||Hm+1

σ (R+;H1(Ω)) ≤ C||g||Hm+4
σ (R+;H−1/2(Γ)), (36)

where C > 0 is a constant that is not dependent on g.
In addition, the generalized solution of the problem (1)-(3) can be represented

as the sum of a serie (23), that is convergent in the space L2
σ0

(R+; H1(Ω, ∆)),
where uj ∈ H1(Ω,∆) (j ∈ N0) are the corresponding components of the q-
convolution (34), and elements of the sequence λ ∈ l2(H1/2(Γ)) are solutions of
BIE system (35), in which g ∈ l2(H−1/2(Γ)) is the sequence of Laguerre-Fourier
coe�cients for the function g.

Proof of Theorem 1 will be presented further on.

4. Some properties of the retarded double layer potential
For examination of the generalized solution of the problem (1)-(3) we need

some results of the work [1].

Proposition 1 ( [1], Theorem 1). Let g ∈ H1
σ0

(R+; H−1/2(Γ)) for some σ0 > 0.
Then unique generalized solution of the problem space (1)-(3) exists, it belongs
to space

H1
σ0

(R+; L2(Ω)) ∩ L2
σ0

(R+; H1(Ω))

and the following inequality holds:
||u||L2

σ(R+;H1(Ω)) + ||u′||L2
σ(R+;L2(Ω)) ≤ C1||g||H1

σ(R+;H−1/2(Γ)) ∀σ ≥ σ0, (37)
where C1 > 0 is a constant.

In addition, the generalized solution of the problem (1)-(3) can be represented
as a retarded double layer potential Dλ with density λ ∈ L2

σ(R+; H1/2(Γ)),
||λ||L2

σ(R+;H1/2(Γ)) ≤ C2||g||H1
σ(R+;H−1/2(Γ)) ∀σ ≥ σ0, (38)

where C2 > 0 is a constant.

Let us outline the proof of the statement 1, received results will be exploited
further for the proof of 1.

First, consider some auxiliary spaces. Let X be arbitrary Banach space
with a norm || · ||X . By D′(R;X) we denote the space of distributions with
values in the space X and by D′+(R; X) we denote the space of so-called causal
distributions, consisting of distributions v ∈ D′(R; X), for which the condition
〈v, φ〉 = 0 holds for all test functions φ ∈ D(R) with suppφ ⊂ (−∞, 0). For
any σ0 > 0 let us de�ne a space

L′+,σ0(R; X) := { f ∈ D′+(R; X) | e−σ0·f(·) ∈ S ′+(R;X) },
where S ′+(R; X) denotes the space of slow casual distributions.
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Note that for slow casual distributions one can de�ne the Fourier transform
over the time variable (See, e.g., [5, section XVI, �2, de�nition 7])

F : S ′+(R; X) → S ′+(R; X). (39)
It is an isomorphic mapping from S ′+(R; X) onto S ′+(R;X) and enables us
to de�ne the Fourier-Laplace transform for any element f ∈ L′+,σ0(R;X) [5,
section XVI, �2, de�nition 8]:

F̂ (ω) := F(e−σ·f(·))(η), ω = η + iσ ∈ R× (σ0, +∞). (40)
In case of f ∈ L′+,σ0(R; X)∩L1

loc(R+; X) this transform has an integral repre-
sentation

f̂(ω) :=
∫

R
eiηte−σtf(t)dt =

∫

R
eiωtf(t)dt, ω = η + iσ ∈ R× (σ0, +∞). (41)

As we can see the Fourier-Laplace transform is applicable to the elements of
functional spaces that appear in the de�nition of the generalized solution u of
the problem (1)-(3). So with its help the initial-boundary value problem (1)-
(3) can be reduced to following boundary value problem regarding a function
û(·, ω) ∈ H1(Ω, ∆):

∆û + ω2û = 0 in Ω, (42)
γ1û = ĝ on Γ, (43)

where ĝ(·, ω) ∈ H−1/2(Γ) is a known function and ω ∈ R × (σ0,+∞) is a
parameter.

Solution of the problem (42), (43) can be represented as a double layer po-
tential

û(x, ω) =
(
D̂ωλ̂

)
(x) :=

1
4π

∫

Γ

λ̂(y, ω) ν(y) · ∇y
eiω|x−y|

|x− y| dΓy, x ∈ Ω, (44)

whose density λ̂(·, ω) ∈ H1/2(Γ) is a solution of BIE
Ŵωλ̂ = ĝ in H−1/2(Γ), (45)

where Ŵω := γ1 ◦ D̂ω. A boundary operator Ŵω is H1/2-elliptical on Γ, that
implies the existence and uniqueness of the solution for BIE(45).

The integral (44) exists because of λ̂(·, ω) ∈ H1/2(Γ) ⊂ L2(Γ) and eiω|x−y|
|x−y| is

an in�nitely di�erentiable function for an arbitrary �xed point x ∈ Ω. In addi-
tion, according to the [4, Theorem 1], the double layer potential and its normal
derivative are bounded operators, respectively, D̂ω : H1/2(Γ) → H1(Ω, ∆) and
Ŵω : H1/2(Γ) → H−1/2(Γ).

As we see, the boundary value problem (42), (43) and BIE (45) depend on
parameter ω, consequently, their solutions, accordingly, û(·, ω) and λ̂(·, ω), and
the double layer potential D̂ω and the boundary operator Ŵω can be consid-
ered as functions of parameter ω. They are proved to be holomorphic in half-
space R×(σ0, +∞) and satisfy following estimates [1, inequality (2.6),(2.7) and
(2.11)], [23, inequality (3.17) and (3.18)]:

||û(·, ω)||H1(Ω) ≤ C̃1|ω|||ĝ(·, ω)||H−1/2(Γ), (46)
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||λ̂(·, ω)||H1/2(Γ) ≤ C̃2|ω|||ĝ(·, ω)||H−1/2(Γ), (47)
||Ŵωλ̂||H−1/2(Γ) ≤ C̃3|ω|2 ||λ̂(·, ω)||H1/2(Γ), (48)
||D̂ωλ̂||H1(Ω) ≤ C̃4|ω|3/2 ||λ̂(·, ω)||H1/2(Γ), (49)
||D̂ωλ̂||H1(Ω,∆) ≤ C̃5|ω|5/2 ||λ̂(·, ω)||H1/2(Γ), (50)

where C̃i > 0 are some constants.
Proposition 2 ( [5], section XVI, �2, Theorem 1). Let X be a Banach space
over the �eld C of complex numbers with norm || · ||X , and ω 7→ f̂(ω) be a
function de�ned in C with values in the space X. For the function f̂(ω) to
be the Fourier-Laplace transform of the distribution f ∈ D′(R; X) with support
supp f ⊂ [α, +∞) it is necessary and su�cient that f̂(ω) is holomorphic in the
half-space R× (σ0, +∞) with values in X and satis�es inequality

||f̂(ω)||X ≤ e−σαPol(|ω|), ω = η + iσ ∈ R× (σ0,+∞), (51)
where Pol(|ω|) is a polynom of the variable |ω|.

By the statement 2 one can prove from inequalities (46)-(50) the existence
of distributions that match the generalized solution of the problem (1)-(3),
retarded double layer potential and its density. They are elements of spaces
L′+,σ0(R; X) with values in the appropriate space X (see e.g. [1, Theorem 1],
and [6, section 2]) such that

D̂λ = D̂ωλ̂ and Ŵλ = Ŵωλ̂.

Using inequalities (46)-(50) we can easily get estimates of the generalized
solution of the problem (1)-(3), and the retarded double layer potential. To
do this, let us consider in the set L′+,σ0(R;X) for arbitrary values σ ≥ σ0 and
p ∈ R a space

Hp
σ(R+; X) := { f ∈ L′+,σ0(R;X) |

∫

R+iσ

|ω|2p ||f̂(ω)||2Xdω < +∞} (52)

with the norm

||f ||Hp
σ(R+;X) :=

(
1
2π

∫

R+iσ

|ω|2p ||f̂(ω)||2Xdω

)1/2

. (53)

Proposition 3 ( [2], section 3.1). Let σ > 0, m ∈ N0. A function v belongs to
the space Hm

σ (R+; X) if and only if it belongs to the space Hm
σ/2(R+;X).

Note that statement 3 is the consequence of Parseval-Plancherel identity:∫

R

e−2σt
(
f(t), g(t)

)
X

dt =
1
2π

∫

R+iσ

(
f̂(ω), ĝ(ω)

)
X

dω. (54)

Lemma 1. Let σ > 0, m ∈ N0. If an arbitrary function λ is an element of
the space Hm+2

σ (R+; H1/2(Γ)), then Dλ ∈ Hm
σ (R+; H1(Ω)). If λ ∈ Hm+3

σ (R+;
H1/2(Γ)), then Dλ ∈ Hm

σ (R+; H1(Ω, ∆)) and Wλ ∈ Hm
σ (R+; H−1/2(Γ)).
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Proof. Let us show that for any �xed values of p ∈ R and α > 0 the operator
D : Hp+3/2

α (R+; H1/2(Γ)) → Hp
α(R+;H1(Ω)) (55)

is bounded. To achieve this, for an arbitrary function λ ∈ Hp+3/2
α (R+; H1/2(Γ)),

α ≥ α0, taking into account norm de�nition (53) and inequality (49), following
estimate can be performed:

||Dλ||2Hp
α(R+;H1(Ω)) =

1
2π

∫

R+iα

|ω|2p||D̂λ||2H1(Ω)dω =

=
1
2π

∫

R+iα

|ω|2p||D̂(·, ω)λ̂(·, ω)||2H1(Ω)dω ≤

≤ C̃2
4

2π

∫

R+iα

|ω|2p+3||λ̂(·, ω)||2
H1/2(Γ)

dω =

= C̃2
4 ||λ||2Hp+3/2

α (R+;H1/2(Γ))
≤ C̃2

4 ||λ||2Hp+2
α (R+;H1/2(Γ))

.

(56)

Hence, the operator (55) is bounded, and, in particular, for the values p = m
and α = σ/2 the following operator is also bounded

D : Hm+2
σ (R+;H1/2(Γ)) → Hm

σ (R+;H1(Ω)). (57)
Similarly to the previous case, but using inequality (50), for arbitrary p ∈ R

and α > 0 it can be shown that the operator
D : Hp+5/2

α (R+; H1/2(Γ)) → Hp
α(R+; H1(Ω,∆)) (58)

is also bounded, and when p = m and α = σ/2 the same will apply to the
operator

D : Hm+3
σ (R+; H1/2(Γ)) → Hm

σ (R+; H1(Ω,∆)), m ∈ N0, (59)
which means Dλ ∈ Hm

σ (R+; H1(Ω, ∆)). It is known [4, theorem Lemma 3.2, 1]
that for elements of space H1(Ω,∆) we can de�ne linear continuous operator
of normal derivative γ1 : H1(Ω,∆) → H−1/2(Γ). Therefore, in this case it is
legitimate to de�ne the composition of operators γ1 ◦D =: W, for which for
any p ∈ R and α > 0 using inequality (48) following estimate can be applied:

||Wλ||2Hp
α(R+;H−1/2(Γ))

=
1
2π

∫

R+iα

|ω|2p||Ŵ (·, ω)λ̂(·, ω)||2
H−1/2(Γ)

dω ≤

≤ C̃2
3

2π

∫

R+iα

|ω|2p|ω|4||λ̂(·, ω)||2
H1/2(Γ)

dω = C̃2
3 ||λ||2Hp+2

α (R+;H1/2(Γ))
.

(60)

This means that the operator
W : Hp+2

α (R+;H1/2(Γ)) → Hp
α(R+; H−1/2(Γ)) (61)

is bounded, and when p = m and α = σ/2 following operator is also bounded:
W : Hm+2

σ (R+;H1/2(Γ)) → Hm
σ (R+;H−1/2(Γ)). (62)

2
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5. Application of the Laguerre transform
to retarded potentials

Now let us give the de�nition of the Laguerre transform and outline some
of its properties which we have obtained in [16]. Consider a mapping L :
L2

σ(R+; X) → X∞, where X is Hilbert space with inner product (·, ·)X and
inducted norm || · ||X , which operates according to the rule

fk := σ

∫

R+

f(t) Lk(σt) e−σtdt, k ∈ N0, (63)

where {Lk(σ·)}k∈N0 are Laguerre polynomials, which form orthogonal basis in
the space L2

σ(R+). We will also use the notation
Lkf ≡ (Lf)(k) := fk ∀k ∈ N0.

Note that since the function t 7→ ||f(t)||X |Lk(σt)|e−σt ∈ L1(R+), the Bochner
integral in formula (63) is convergent and its value is an element of space X.

Also consider the mapping L−1 : l2(X) → L2
σ(R+; X), which maps an arbi-

trary sequence h = (h0, h1, ..., hk, ... )> to a function

h(t) := (L−1h)(t) =
∞∑

k=0

hk Lk(σt), t ∈ R+. (64)

Proposition 4 ( [16], Theorem 2). The mapping L : L2
σ(R+; X) → X∞ that

maps the arbitrary function f to the sequence f = (f0, f1, ..., fk, ... )> according
to the formula (63), is injective and its image is the space l2(X), and

‖f‖2
L2

σ(R+;X) =
1
σ

∞∑

k=0

||fk||2X . (65)

In addition, for the arbitrary function f ∈ L2
σ(R+; X) we have an equality

L−1Lf = f, (66)
where the mapping L−1 : l2(X) → L2

σ(R+; X) is the inverse to L and maps the
arbitrary sequence h = (h0, h1, ..., hk, ... )> to the function h according to the
formula (64).
De�nition 3. Let σ > 0 and X be a Hilbert space. Mappings

L : L2
σ(R+;X) → l2(X) and L−1 : l2(X) → L2

σ(R+; X),

mentioned in theorem 4, are called, respectively, direct and inverse Laguerre
transforms, and the formula (65) is an analog of the Parseval equality.
Proposition 5 ( [16], Lemma 1). Let σ > 0, a > 0 and X be a Hilbert space
with inner product (·, ·)X and the norm || · ||X . Then for an arbitrary function
f ∈ L2

σ(R+;X) function f(· − a) belongs to space L2
σ(R+; X) too and the

following equalities hold:
||f(· − a)||L2

σ(R+;X) = e−
σa
2 ||f(·)||L2

σ(R+;X), (67)

f̃a = e−σaζ(σa) ◦
R×X

f , (68)
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f
( · −a

)
= e−σa

∞∑

j=0

( j∑

i=0

ζj−i(σa)fi

)
Lj(σ·) in L2

σ(R+;X), (69)

where f = Lf(·) and f̃a := Lf(· − a).
Using statements 4 and 5 we can outline conditions for the density λ of the

retarded double layer potential Dλ, which guarantees that the Fourier-Laguerre
expansions for this potential

(Dλ)(t) =
∞∑

j=0

uj Lj(σt), x ∈ Ω, t ∈ R+, (70)

and its normal derivative

(Wλ)(x, t) =
∞∑

j=0

ũj(x) Lj(σt), x ∈ Γ, t ∈ R+, (71)

where uj := (LjDλ) and ũj := (LjWλ), are convergent in the corresponding
Sobolev spaces.
Lemma 2. Let σ > 0 be an arbitrary constant.
(i) If an arbitrary function λ belongs to space H2

σ(R+; H1/2(Γ)), then expan-
sion (70) is convergent in the space L2

σ(R+; H1(Ω)). If λ ∈ H3
σ(R+; H1/2(Γ)),

then expansions (70) and (71) are convergent in spaces L2
σ(R+; H1(Ω, ∆)) and

L2
σ(R+; H−1/2(Γ)), correspondingly.

(ii) Coe�cients uj , ũj , j ∈ N0, are components of q-convolutions (34) and
ũ(x) = W ◦

H−1/2(Γ)
λ, x ∈ Γ, (72)

correspondingly, where λ = Lλ ∈ l2(H1/2(Γ)).
Proof. The �rst statement of this lemma follows from the fact that by

Lemma 1 the retarded double layer potential with a density that is an ele-
ment of the space H2

σ(R+;H1/2(Γ)), belongs to space L2
σ(R+;H1(Ω)). If λ ∈

H3
σ(R+;H1/2(Γ)), thenDλ ∈ L2

σ(R+; H1(Ω,∆)), andWλ ∈ L2
σ(R+; H−1/2(Γ)).

Then by Theorem 4 the Laguerre transform can be applied to both the poten-
tial and its normal derivative, and expansions (70) and (71) with obtained
coe�cients are convergent in the appropriate spaces.

Let us consider the retarded potential (4) with density λ ∈ H2
σ(R+;H1/2(Γ))

at an arbitrary point x ∈ Ω, and apply formula (63) to it as to an element of
the space L2

σ(R+; H1(Ω)):
uj(x) :=Lj Dλ(x) =

=
σ

4π

∫

R+

e−σtLj(σt)
∫

Γ

ν(y) · ∇y

(
λ(z, t− |x− y|)

|x− y|
)∣∣∣∣

z=y

dΓydt,

j ∈ N0.

(73)

As points x and y do not coincide (i.e. partial derivatives in inner integral are
bounded) and ||uj ||H1(Ω) < +∞, then we can change the order of integration
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according to the Fubini theorem

uj(x) =
1
4π

∫

Γ

∂~ν(y)

(
σ

|x− y|
∫

R+

λ(z, t− |x− y|)e−σtLj(σt)dt

)∣∣∣∣
z=y

dΓy,

x ∈ Ω.

(74)

Note that in the obtained expression, the inner integral is expressing the j-th
Fourier-Laguerre coe�cient of "retarded" function λ. Therefore, according to
Lemma 5 and formulas (68),(14) we can write the following:

uj(x) =
1
4π

∫

Γ

∂~ν(y)

(
e−σ|x−y|

|x− y|
j∑

i=0

ζj−i(x− y)λi(z)
)∣∣∣∣

z=y

dΓy =

=
j∑

i=0

∫

Γ

λi(y)∂~ν(y)ej−i(x− y) dΓy, j ∈ N0, x ∈ Ω,

(75)

where λj := Ljλ, j ∈ N0.
For an arbitrary �xed point x ∈ Ω all components of sequence e(x − ·) are

continuously di�erentiable functions on Γ. Since λj ∈ H1/2(Γ), j ∈ N0, then
for the Lipschitz surface Γ integrals in (75) can be interpreted as the inner
product of elements in L2(Γ) and can be extended to the duality relation on
H−1/2(Γ)×H1/2(Γ):

uj(x) =
j∑

i=0

〈
∂~ν(·)ej−i(x− ·), λi(·)

〉
Γ
, x ∈ Ω, j ∈ N0. (76)

So we received coe�cients of the q-convolution ( 34).
If λ ∈ H3

σ(R+; H1/2(Γ)) we have ||uj ||H1(Ω,∆) < +∞ and, obviously, for
any point x ∈ Ω previous considerations regarding functions in integrals in
formulas (73)-(76) hold. Therefore the form of coe�cients uj , j ∈ N0, is the
same. Besides, for these coe�cients as elements of the space H1(Ω, ∆), we can
de�ne linear continuous operator of normal derivative [4, Lemma 3.2, Theorem
1]. Let us show that ũj = γ1uj , j ∈ N0.

Consider an arbitrary point x ∈ Γ and apply the Laguerre transform toWλ:

ũj(x) := Lj Wλ(x) =
σ

4π

∫

R+

e−σtLj(σt)×

ν(x) · lim
x′→x

∇x′

∫

Γ

ν(y) · ∇y

(
λ(z, t− |x′ − y|)

|x′ − y|
)∣∣∣∣

z=y

dΓydt < +∞.

(77)

If we move di�erentiation by normal at the point x out of the integral over the
time variable, we receive ũj(x) = γ1uj(x). 2

Note that we do not move outer di�erentiation inside the integral over the
boundary Γ in order to avoid a high order of the singularity in a kernel. The
de�nition of normal derivative operator γ1 in case if u ∈ (H1(Ω, ∆))∞ was pre-
sented in [20]. In applications when calculating the respective singular integrals
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it is possible to replace normal derivatives with corresponding derivatives in the
tangent plane (See, e.g. [1, formula (2.16)]).

6. Finding a generalized solution of the problem (1)-(3)
Consider operator

G : H1
α(R+; H−1/2(Γ)) → H0

α(R+; H1(Ω)), α = σ0/2, (78)

which maps the boundary value g to the generalized solution u = Gg of the
problem (1)-(3) according to the proposition 1. Taking into account the obvious
inclusion

H1
σ(R+; H1(Ω)) ⊂ (

H1
σ(R+;L2(Ω)) ∩ L2

σ(R+; H1(Ω))
)
,

let us de�ne a restriction of the operator G on elements from weighted Sobolev
spaces.

Lemma 3. Let g ∈ Hm+2
σ0

(R+;H−1/2(Γ)) with some σ0 > 0 and m ∈ N0.
Then for arbitrary values σ ≥ σ0 operator

G : Hm+2
σ (R+;H−1/2(Γ)) → Hm

σ (R+; H1(Ω)) (79)

is bounded.

Proof. Let g be an arbitrary function from the space Hm+2
σ0

(R+; H−1/2(Γ)).
Considering it as an element of the space Hm+2

α (R+; H−1/2(Γ)) with α = σ0/2,
we will have the solution u = Gg. Let us estimate it using the inequality (46):

||u||2Hm
α (R+;H1(Ω)) =

1
2π

∫

R+iα

|ω|2m||û(·, ω)||2H1(Ω)dω ≤

≤ C̃2
1

2π

∫

R+iα

|ω|2m|ω|2||ĝ(·, ω)||2
H−1/2(Γ)

dω =

= C̃2
1 ||g||2Hm+2

α (R+;H−1/2(Γ))
< ∞.

(80)

Since u ∈ Hm
α (R+; H1(Ω)), we get u ∈ Hm

σ (R+; H1(Ω)). 2

Similarly, it is possible to examine the dependence of TDBIE solution on the
smoothness (7) of the function g.

Lemma 4. Let g ∈ Hm+1
σ0

(R+; H−1/2(Γ)) with some σ0 > 0 and m ∈ N0. Then
there exists a unique solution of TDBIE (7) in the space Hm

σ (R+; H1/2(Γ)), and
it satis�es the following condition with an arbitrary σ ≥ σ0:

||λ||Hm
σ (R+;H1/2(Γ)) ≤ C||g||Hm+1

σ (R+;H−1/2(Γ)), (81)

where C > 0 is a constant.

Proof. According to the proposition 1 consider operator

V−1 : H1
α(R+;H1/2(Γ)) → H0

α(R+; H−1/2(Γ))
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with the value α = σ0/2, that maps arbitrary function g to a unique solution
of TDBIE λ = V−1g. With respect to the inequality (47), we get the following
estimate for density λ:

||λ||2Hm
α (R+;H1/2(Γ))

=
1
2π

∫

R+iα

|ω|2m||λ̂(·, ω)||2
H1/2(Γ)

dω ≤

≤ C̃2
2

2π

∫

R+iα

|ω|2m|ω|2||ĝ(·, ω)||2
H−1/2(Γ)

dω =

= C̃2
2 ||g||2Hm+1

α (R+;H−1/2(Γ))
< ∞,

(82)

and inequality (81) implies here. 2

Thus, Lemmas 3 and 4 specify the conditions regarding the function g, that
cause the required smoothness of both the retarded potential density and the
generalized solution of the problem (1)-(3) in weighted Sobolev spaces.

Proof of Theorem 1. Let boundary data in the boundary condition (3) be
de�ned with function g ∈ Hm+3

σ0
(R+; H−1/2(Γ)) for some σ0 > 0 and m ∈ N0.

Then, based on proposition 1, there exists a unique generalized solution of
the problem (1)-(3) as element of the space H1

σ0
(R+; L2(Ω))∩L2

σ0
(R+; H1(Ω)).

In addition, we can conclude according with Lemma 3 that with boundary
data speci�ed below this solution belongs to the space Hm+2

σ0
(R+; H1(Ω)) ⊂

Hm+1
σ0

(R+; H1(Ω)) , and for arbitrary σ ≥ σ0 following inequality holds:

||u||Hm+2
σ (R+;H1(Ω)) ≤ C||g||Hm+3

σ (R+;H−1/2(Γ)), (83)

where C > 0 is a constant that does not depend on g. Obviously, in that case
estimate (36) is correct.

Consider now the TDBIE (7), having g ∈ Hm+3
σ0

(R+; H−1/2(Γ)). Then by
Lemma 4 its solution λ belongs to space Hm+2

σ (R+; H−1/2(Γ)). Based on this,
the Laguerre transform is applicable to density λ (by Theorem 4) and λ :=
Lλ ∈ l2(H1/2(Γ)). Furthermore, with such density the potential Dλ belongs to
the space of solutions of the problem (1)-(3), because Dλ ∈ Hm+1

σ (R+; H1(Ω))
by Lemma 1.

If g ∈ Hm+4
σ0

(R+; H−1/2(Γ)), then, according to Lemma 4 the density λ has to
be element of the space Hm+3

σ (R+;H−1/2(Γ)) and, by Lemma 1, we have Dλ ∈
Hm

σ (R+;H1(Ω, ∆)) and Wλ ∈ Hm
σ (R+; H−1/2(Γ)). This means (by Lemma

4) that beginning from m = 0 the expansions (70) and (71) are convergent
in spaces L2

σ(R+; H1(Ω, ∆)) and L2
σ(R+; H−1/2(Γ)), correspondingly, and the

coe�cients of these expansions have form of (34) and (72), correspondingly.
Let us build a sequence g := Lg ∈ l2(H−1/2(Γ)) and substitute the Fourier-

Laguerre expansion of the boundary function g in the right hand side of TDBIE
(7). If we substitute the expansion (71) in its left hand side, we can equated
the expressions beside Laguerre polynomials with the same index. As a result,
we get an in�nite triangular system of BIEs (35). It is known [20], that this
system has a unique solution λ. 2
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Consequently, the proposed method enables us to �nd the generalized solu-
tion of the Neumann problem for the homogeneous wave equation with homo-
geneous initial conditions using the Fourier-Laguerre expansion of the retarded
double layer potential. Note that this approach can be adapted for �nding
the Cauchy datum of generalized solution using a Kirchho� formula instead of
retarded potential.
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