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ANOTHER CASE OF INCIDENCE MATRIX
FOR BIVARIATE BIRKHOFF INTERPOLATION
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Ðåçþìå. Ó öié ñòàòòi ñïåðøó ïîäàíî ñïåöiàëüíèé âèïàäîê îäíîâèìiðíî¨
çàäà÷i iíòåðïîëÿöi¨ Áiðêãîôà i çà ¨¨ äîïîìîãîþ àïðîêñèìîâàíî ðîçâ'ÿçîê
ãðàíè÷íî¨ çàäà÷i äëÿ ðiâíÿííÿ Ëàïëàñà. Äàëi ðîçãëÿíóòî iíøèé òèï äâî-
âèìiðíî¨ çàäà÷i iíòåðïîëÿöi¨ Áiðêãîôà, â ÿêié óìîâè iíòåðïîëÿöi¨ çàäàíi â
òî÷êàõ ç êðàòíiñòþ. Ââåäåíî iíøå ïîçíà÷åííÿ äëÿ ìàòðèöi iíöèäåíòíîñòi.
Çðîáëåíî ïîðiâíÿííÿ àïðîêñèìàöié Áiðêãîôà i Õààðà i ïîêàçàíî ïåðåâàãó
iíòåðïîëÿöi¨ Áiðêãîôà.
Abstract. In this paper, �rst we present a special case of the univariate
Birkho� interpolation problem, and using that, we approximate the solution of
a Laplace boundary value problem. Then we present another type of bivariate
Birkho� interpolation problem in which interpolation conditions are on some
knots with multiplicity. We introduce another notation for incidence matrix.
Finally, we compare two approximations Birkho� and Haar then we show that
Birkho� interpolation is better than the other.

1. Introduction
In this paper we present some basic notations and useful properties in ana-

lyzing the interpolation polynomials. Let us denote Πn the space of one variable
interpolation polynomials of degree not exceeding n, and Π2

n the space of bi-
variate interpolation polynomials of degree not exceeding n.

The problem of interpolating a real function f by a univariate polynomial
from the values of f and some of its derivatives on a set of knots is one of the
main questions in numerical analysis and approximation theory.

In [1] and [10] the authors studied univariate Birkho� interpolation and its
properties. Let x = {x1, ..., xn} be a set of real numbers such that x1 < ... < xn,
let r be an integer and let I ⊂ {1, ..., n} × {0, .., r} be the set of pairs (i, j) in
which the value f (j)(xi) = fi,j is known where f is a real function. The problem
of determining the existence and uniqueness of a polynomial P in R1 satisfying
the conditions ∀(i, j) ∈ I, p(i)(xi) = fi,j is called the Birkho� interpolation
problem.

In recent years there has been renewed interest and progress on Hermite-
Birkho� interpolation. The original source for this activity is work by G.D.Bir-
kho� in 1906, with a notable contribution by G.Polya in 1931.

Key words. Bivariate Birkho� Interpolation Problem; Polya Condition; Incidence Matrix;
Interpolation Polynomial; Haar Approximation; Hermite-Birkho�; Operator Interpolation.
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The interpolation conditions can be described by using special type matrices.
Consider the matrix E = (ei,j) with n rows and r+1 columns, �lled with 0's
and 1's so that ei,j = 1 if and only if (i, j) ∈ I. The E is called incidence
matrix.

In 1966 Schoenberg (see [19]) posed the problem of determining all those
E for which the problem P (j)(xii) = ci,j is always (for all choice of xi, ci,j)
solvable. We call such matrices E regular and the remaining matrices singular.

Let E = (ei,j) be an m× (n + 1) incidence matrix. Then mj =
∑

i ei,j is the
number of 1's in column j, and Mr =

∑r
j=0 mj =

∑r
j=0

∑m
i=1 ei,j is the number

of 1's in columns of E numbered 0, 1, . . . , r. For the matrix E, the condition
Mr ≥ r + 1, r = 0.1, ..., n, is called the Polya condition.
De�nition 7. The incidence matrix E = (ei,j), 1 ≤ i ≤ m, 0 ≤ j ≤ n is called
poised with respect to {xi}m

i=1 if the unique solution of problem P (j)(xi) =
0, 1 ≤ i ≤ m, 0 ≤ j ≤ n is a trivial polynomial.

In [8], the following Polya's result is well-known.
Theorem 1 (Polya's Theorem). The incidence matrix E of 2×n dimension is
poised if and only if Polya condition is true.

In [20], the author posed, for a 2× n incidence matrix E = (ei,j), we de�ne
a 2× n matrix G = (gi,j) as follows:

gi,j = 1− ei,n−j−1, 1 ≤ i ≤ 2, 0 ≤ j ≤ n− 1.

Then G is also an incidence matrix, because
∑2

i=1

∑n−1
j=0 ei,j = n. The matrix

G is called a dual incidence matrix corresponding to E. For example, for the
incidence matrix E =

∥∥∥∥
1 0 0
0 1 1

∥∥∥∥, its dual matrix becomes E′ =
∥∥∥∥
1 1 0
0 0 1

∥∥∥∥.
The following theorem give a relationship between a 2× n incidence matrix

E and its dual matrix G.
Theorem 2. A 2×n incidence matrix E is poised if and only if dual matrix G
is poised. In [20], the author shown that there exists a quadrature formula in the
form

∫ b
a P (x)dx =

∑
ei,j=1 wi,jP

(j)(xi) to be exact for any polynomial P with
degree at most n-1, where wi,j's are weight coe�cients independent of P. This
is called, the Hermite-Birkho� quadrature formula for the incidence matrix E.
Theorem 3. A 2× n incidence matrix E is poised if and only if there exists a
Hermite-Birkho� quadrature formula speci�ed by E.

In [16], author presented below property of incidence matrix E:
Let mj =

∑
i ei,j , j = 0, ..., n and Mr =

∑r
j=0 mj , r = 0, ..., n, then E satis�es

the strong Polya condition if Mr ≥ r + 2, r = 0, ..., n − 1. If E does not
satisfy strong Polya condition, then E may be decomposed in to matrices,
E = E1

⊕
E2

⊕ · · ·⊕EN where Ej 's satis�es strong Polya condition.
In [18], the author proved below theorem:

Theorem 4. Let En satisfy the Polya condition. Then En has a unique decom-
position En = En1

⊕
En2

⊕
...

⊕
Enq , n1+n2...+nq = n, where Enj , j = 1, ..., q
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satis�es the strong Polya condition. Moreover En is poised if and only if Enj 's
are poised.

The Birkho� interpolation problem is one of the most general problems in
multivariate interpolations. For clarity of the exposition, we will only restrict
ourselves to the bivariate case.

In [11, Def. 3.1.1, p. 9], the authors studied bivariate Birkho� interpolation
problem. The bivariate Birkho� interpolation problem depends on a �nite set
T = {zq}m

q=1 ⊂ R2 of knots and interpolation space Π2
n of polynomials and

an incidence matrix E = (eq,α). The bivariate Birkho� interpolation problem
is, for given real numbers cq,α, to �nd a polynomial p ∈ Π2

n satisfying the
interpolation conditions

∂α1+α2

∂yα2∂xα1
p(zq) = cq,α (1)

with eq,α = 1 where α = (α1, α2).
In this paper, we present a special case of univariate Birkho� interpolation

problem together with an example of boundary value problem introduce in [2],
and also a method for obtaining the interpolation polynomial in the case of
a set of types conditions, given on a set of knots in R2. This method is a
generalization of the tensorial product method introduced by F.J.Hack in [7].
In this way, we investigate bivariate Birkho� polynomial for the set of knots T
such that |T | < (

n+2
2

)
.

In [11] and [3], authors introduced Polya conditions for multivariate Birkho�
interpolation as follows:

De�nition 8. An incidence matrix E satis�es the (lower) Polya condition (with
respect to S) if |EA| ≤ |A| for any lower set A ⊆ S. E satis�es the upper Polya
condition if |EB| ≤ |B| for any upper set B ⊆ S. A set B is an upper set with
respect to S if α ∈ B, β ≥ α and β ∈ S imply that β ∈ B. B is an upper set of
S if and only if S \B is a lower set.

Similar to notations in [4], we apply the Haar function and interpolation
problem. In [4], the authors presented some theorems for uniqueness. Thus we
employ those theorems, for example, formula (8) and Theorem 3.1 and Example
3.2, p.107-109.

Problems of generalization in functions interpolation theory with functionals
and operators in abstract spaces are considered in numerous works.

De�nition 9. Let F : X −→ Y be an operator, where X is a Hilbert and Y
is a vector space; let Pn : X −→ Y be an operator polynomial of the form
Pn(x) = L0 + L1x + ... + Lnxn, where L0 ∈ Y ; and let Lp(t1, ..., tp) : Xp −→ Y
be a p-linear operator, p = 1, ..., n. Let {xi}m

i=1 be a system of elements from X.
A polynomial operator Pn is called an interpolating polynomial for F in nodes
{xi}m

i=1 ⊂ X if it satis�es the conditions Pn(xi) = F (xi), i = 1, ..., m.

In the case X = Y = R1 the requirement that the interpolation functionals
be the same algebraic polynomials.
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In [12] and [13], the authors investigated the operator interpolation theory
in Hilbert space and solvability Hermite interpolation problem with the op-
erator values at the nodes with Gateaux di�erentials de�ned on the auxiliary
nodes and some given directions. For example, let Πn be a set of the operator
polynomials Pn : X −→ Y of degree not exceeding n and p ∈ Πn satis�es the
conditions:

p(xi) = F (xi), p′(xi)hi = F ′(xi)hi, i = 1, ...,m (2)
For investigate Hermite problem with interpolation conditions (2) we consider
the auxiliary nodes

x1 = x1, x2 = x1 + αh1, x3 = x2, x4 = x2 + αh2, ..., x2m−1 = xm,

x2m = xm + αhm, α ∈ R1, α 6= 0

of the matrix
Γ(α) =

∥∥∑n
p=0(xi, xj)p

∥∥2m

i,j=1

and

C(α) =

∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥

1 0 0 0 0 ... 0 0 0
−1
α

1
α 0 0 0 ... 0 0 0

0 0 1 0 0 ... 0 0 0
0 0 −1

α
1
α 0 ... 0 0 0

. . . . . ... . . .

. . . . . ... . . .

. . . . . ... . . .
0 0 0 0 0 ... 0 1 0
0 0 0 0 0 ... 0 −1

α
1
α

∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥
and the vectors
F (α) = (F (x1), F (x2), ..., F (x2m)), P (α) = (p(x1), p(x2), ..., p(x2m)), p ∈ Πn.

In [13], p.97, Theorem 1.1 shown that a necessary and su�cient condition for
the solvability of the Hermite operator interpolation problem (2) in a Hilbert
space, that the condition ZFH = 0 and the formula p(x) = q(x) + 〈FH −
qH ,H+gH(x)〉, with q(x) varies over Πn, describes the whole set of the Hermite
operator polynomials of the n-th degree satis�es the interpolation conditions
(2). In [13], explained notations ZFH , FH , qH ,H+gH .

When some of the conditions of the Hermite interpolation are absent then,
they are called to Hermite- Birkho� conditions. For example, the conditions:

p(xi) = F (xi), p′′(xi)h
(2)
2 h

(2)
1 = F ′′(xi)h

(2)
2 h

(2)
1 , i = 1, ..., m (3)

are Hermite-Birkho� conditions. In [13], Theorem 2.1, p.110, itroduced a neces-
sary and su�cient condition for the solvability of the Hermite-Birkho� operator
interpolation problem in a Hilbert space.

Now we introduce an important result as follows:
A su�cient condition for the invariant solvability of the Hermite operator

interpolation problem given as the following theorem. We shall denote by M a
number of the interpolation conditions in the Hermite operator interpolation.
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Theorem 5. The Hermite interpolation problem in a Hilbert space is invariant
solvability for any n ≥ M − 1.

For example every Hermite interpolation problem with conditions (2) by
Theorem 5 is invariant solvable.

By text in [13], p.112, if the Hermite-Birkho� interpolation problem for a
function of one variable has the unique solution, then the appropriate Hermite-
Birkho� operator interpolation problem is invariantly solvable. Now we ap-
ply Polya's theorem in case m=2 for the invariant solvability of the Hermite-
Birkho� operator problem with the interpolation conditions containing values
of operator polynomial p of the third degree and Gateaux di�erentials of the
second order

p(x1), p′′(x1)h
(1)
2 h

(1)
1 , p(x2), p′′(x2)h

(2)
2 h

(2)
1 (4)

In the corresponding Hermite-Birkho� interpolation problem of one variable we
have

M = 4, n = M − 1 = 3, E =
∥∥∥∥
1 0 1
1 0 1

∥∥∥∥ ,

m0 = 2, m1 = 0, m2 = 2, M0 = 2, M1 = 2, M2 = 4
Since Mj ≥ j + 1, j = 0, 1, 2 then by Polya's Theorem, the classical Hermite-
Birkho� problem

p(t1) = 0, p′′(t1) = 0, p(t2) = 0, p′′(t2) = 0

on the set of the polynomial of the 3-d degree has the unique solution zero-
polynomial. But as we stated above, the corresponding Hermite-Birkho� oper-
ator problem (4) is invariantly solvable.

2. Bivariate Birkhoff Interpolation
Following R.A. Lorentz in [11], an interpolation problem is regular if it is

uniquely solvable for all selections of distinct nodes and all data. In the uni-
variate case, Lagrange and Hermite interpolation are regular, but in the mul-
tivariate case, even Lagrange interpolation is not regular. Here, we study a
solvable interpolation problem in multivariate case.

A uniqueness technique for bivariate Birkho� interpolation problem is pre-
sented in [7]. The technique has been explained in [7, theorem 3.3, p.26], where
interpolation polynomial is tensor product of functionals. that is why, we intro-
duce incidence matrix. For exactly M+1 pairs (i, k) ∈ {1, ...,m} × {0, ...,M},
we suppose that Ei,k = (ek,l

i,j )1≤j≤ai,k ,0≤l≤Ni,k
where ai,k ∈ N,Ni,k ∈ N0 and

for others (i, k)′s,Ei,k = 0. Regularity condition is established, using bidi-
mensional incidence matrix corresponding to Birkho� interpolation problem.
Hence, the bivariate Birkho� interpolation problem is as follows:

CM (G),
p∑

s=1

ΠMs ⊗ΠNs ;D
k,l
xi,yi,k,j

: (i, k) ∈ Z, (xi, yi,k,j) ∈ T (5)

This means that for all f ∈ CM (G), G ⊂ R2 there exists P ∈ ∑p
s=1 ΠMs ⊗ΠNs

where ΠMs ⊗ ΠNs is tensor product of functionals and Dk,l
xi,yi,k,jP = Dk,l

xi,yi,k,jf
such that T is the set of distinct knots i.e. T = {(xi, yi,k,j)} s.t. x1 < ... < xm
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and also yi,k,1 < ... < yi,k,ai,k
, (i, k) ∈ Z, Z ⊂ {1, ..., m} × {0, ..., M} so that

Z = {(i, k) : Ei,k 6= 0}.
In view of corollary 3.4 [7, p.27], if matrices Es's for points x1, ..., xm are

regular and matrices Ei,k's are regular for points yi,k,1, ..., yi,k,ai,k
then the inci-

dence matrix εm,M is regular for {(xi, yi,k,j)}. It means that the interpolation
problem is unique.

3. The Result
3.1. Univariate Case. In [2], a Birkho� interpolation problem was studied.
Now, we introduce another case of Birkho� interpolation problem. In [17],
the author introduced Lagrange's fundamental polynomials. For given points
x0, x1, ..., xn, let us use the fundamental polynomials l0, l1, ..., ln, where li(x) =
∏

j 6=i(
x− xj

xi − xj
) such that

li(xk) =

{
1 ifk = i

0 ifk 6= i
, k, i = 0, 1, ..., n.

We recall that the Green's function was de�ned in [5], [6], [14].
Theorem 6. Let ωi ∈ R1, i = 0, 1, ..., n and −1 = x0 < x1 < ... < xn−1 <
xn = 1 and li(x) be the fundamental polynomials of Lagrange calculated on the
n-1 points xi, i = 1, ..., n − 1 and pn,i(x) =

∫ 1
−1 G(x, t)li(t)dt, i = 1, ..., n − 1,

where

G(x, t) =

{
1 t < x

0 x < t

is a Green's function, then the polynomial

Pn(x) =

{
ωn x = xn

ω0 +
∑n−1

i=1 pn,i(x)ωi otherwise
(6)

is the unique polynomial of degree ≤ n− 1 which satis�es the Birkho� interpo-
lation conditions

Pn(x0) = ω0, P ′
n(xi) = ωi, i = 1, ..., n− 1, Pn(xn) = ωn (7)

Proof. We know that Pn,i(x) is the solution of the boundary value problem
{

P ′
n,i(x) = li(x)

Pn,i(−1) = 0
, i = 1, ..., n− 1, because Pn,i(x) =

∫ x

−1
li(t)dt.

The polynomial (6) satis�es the interpolatory conditions (7). For the proof of
the uniqueness, since Pn,i(x) is a polynomial of degree not exceeding n-1, now
suppose that Pn is another polynomial of degree not exceeding n-1 where it is
true in (7) such that Pn(x) 6= Pn(x).

We set φn(x) := Pn(x)−Pn(x). The polynomial φn(x) has n-1 zeros, there-
fore it has n-2 optimum, namely, φ′n(xi) = P

′
n(xi)−P ′

n(xi) = 0. After repeated
this process and applying Rolle's theorem, we conclude that φn(x) ≡ 0. Thus
Pn(x) = Pn(x) that is contradiction. 2
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Remark 1. By Theorem 6, since the Hermite-Birkho� interpolation problem
with conditions (7) has unique solution then the corresponding Hermite-Birkho�
operator interpolation problem is invariant solvable.

In [9] and [15], the authors presented Haar approximation. Now, we intro-
duce Haar function and its apply for below example.
De�nition 10. The Haar function χn(x), x ∈ [0, 1], where χ1 ≡ 1, and for
2k < n ≤ 2k+1, k = 0, 1, · · · is de�ned as follows:

χn(x) =





2
k
2 x ∈ ∆+

n

−2
k
2 x ∈ ∆−

n

0 x /∈ ∆n

(8)

where ∆n is a binary interval of the form ( i−1
2k , i

2k ) where k = 0, 1, ... and i =
1, 2, ..., 2k. For n = 2k + i we write ∆n = ∆i

k = ( i−1
2k , i

2k ), ∆n = [ i−1
2k , i

2k ],∆1 :=
∆0

0 = (0, 1), ∆1 = [0, 1], ∆+
n = ( i−1

2k , 2i−1
2k+1 ), ∆−

n = (2i−1
2k+1 , i

2k ) The values of χn(x)
at points of discontinuity and at the endpoints of [0, 1] are speci�ed as follows:
χn(x) = 1

2 lima→0[χn(x + a) + χn(x− a)], x ∈ (0, 1), χn(0) = limt→0+χn(t),
χn(1) = limt→0+χn(1− t).

For clarity of the Theorem 6, we present an example:
Example 1. The solution of Laplace boundary value problem




∂2u
∂x2 + ∂2u

∂y2 = 0 , 0 < x < 1 , 0 < y < 1

u(0, y) = u(1, y) = 0

u(x, 0) = 0

u(x, 1) = ex

is u (x, y) =
∑∞

n=1 bn sinh (nπy) sin (nπx) where bn = 2nπ−2neπ(−1)n

(1+n2π2)sinh(nπ)
.

Using theorem 6, we compute Birkho� interpolation polynomial for f(x) = ex

in these knots: x0 = 0, x1 = 1
4 , x2 = 1

2 , x3 = 3
4 , x4 = 1. Let ω0 = f(0) =

1, ω1 = f ′(1
4) = e

1
4 , ω2 = f ′(1

2) = e
1
2 , ω3 = f ′(3

4) = e
3
4 , ω4 = f(1) = e then,

l1(t) = 8t2 − 10t + 3, l2(t) = −16t2 + 16t− 3, l3(t) = 8t2 − 6t + 1 are Lagrange
polynomials on x1, x2, x3 and P4,1(x) = 8

3x3−5x2+3x, P4,2(x) = −16
3 x3+8x2+

3x, P4,3(x) = 8
3x3 − 3x2 + x thus P4(x) = (8

3e
1
4 − 16

3 e
1
2 + 8

3e
3
4 )x3 + (−5e

1
4 +

8e
1
2 − 3e

3
4 )x2 + (3e

1
4 − 3e

1
2 + e

3
4 )x + 1 and also p4(1) = e.

Now, we employ approximation Haar-Fourier PH(x) =
∑∞

n=1 Cn(f)χn(x)
for the function f(x) = ex and its compare to P4(x). First, we compute Haar-
Fourier coe�cients Cn(f) =

∫ 1
0 f(x)χn(x)dx as follows: C1(f) = e−1, C2(f) =

2e1/2−e−1, C3(f) = 2
√

2e1/4−√2e1/2−√2, C4(f) = 2
√

2e3/4−√2e1/2−√2e,

thus the Haar polynomial is: PH(x) = e−1+(2e1/2−e−1)χ2(x)+(2
√

2e1/4−√
2e1/2 −√2)χ3(x) + (2

√
2e3/4 −√2e1/2 −√2e)χ4(x) Using the following ten

points, we compare f(x), P4(x), PH(x)
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Tabl. 1. Comparison of f(x), p4(x), pH(x) in [0, 1]

x f(x) p4(x) pH(x)
0 1 1 1.136101666
0.1 1.105170918 1.106753896 1.136101666
0.25 1.284025417 1.286209257 1.297442541
0.3 1.349858808 1.352009578 1.458783416
0.5 1.648721271 1.650644616 1.665949200
0.7 2.013752707 2.020817622 1.873114984
0.75 2.117000017 2.119201800 2.139121116
0.9 2.459603111 2.461087206 2.405127248
0.99 2.691234472 2.691012369 2.405127248
1 2.718281828 2.717776531 2.405127248

Consequently one might favor Birkho� interpolation in some cases.
Now, we set p4(x) instead of f(x) = ex in Laplace boundary value problem and
obtain the approximation solution u(x, y) = Σ∞n=1an sinh(nπy) sin(nπx) where
an = 2

sinh(nπ)

∫ 1
0 p4(x) sin(nπx)dx.

Using Maple program, graphs are as follows:

1

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

0 0.2 0.4 0.6 0.8 1
x

Fig. 1. Comparison of f(x) with p4(x) in [0,1]

3.2. Bivariate Case. In this paper, uniqueness is investigated in another way.
In [7, Corollary 3.4, p.27], if the incidence matrix is characterized, then the
interpolation polynomial can be obtained.

Now, suppose that the interpolation conditions are given. Then, we compute
a corresponding matrix as follows:
Theorem 7. Suppose that the bivariate Birkho� interpolation problem (5) is
given. Then, the incidence matrix is characterized.
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1

1.02

1.04

1.06

1.08

1.1

0 0.02 0.04 0.06 0.08 0.1
x

Fig. 2. Comparison of f(x) with p4(x) in [0,0.01]

Fig. 3. Graph u (x, y) =
∑1000

n=1 bn sinh (nπy) sin (nπx)

Proof. First, we arrange the knots as follows x1 < ... < xm, where for each the
second component of these points, namely, yi,k,1, ..., yi.k.j , 1 ≤ j ≤ ai,k, where
ai,k ∈ N.

Note that k is the order of partial derivative of the �rst variable for P(x,y),
and we denote the order of partial derivative of second variable for P(x,y) by
l, where 0 ≤ l ≤ Ni,k , Ni,k ∈ N0.

Let Z be a set of pairwise (i,k)'s in (5). For indices i,j,k,l in (5), we de�ne
ek,l
i,j = 1, (i, k) ∈ Z.
Using ek,l

i,j , we construct a matrix where j,l are the number of rows and
columns, respectively.
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Fig. 4. Graph u (x, y) =
∑1000

n=1 an sinh (nπy) sin (nπx)

Let Ei,k = (ek,l
i,j )

ai,k

j=1,
Ni,k

l=0 , (i, k) ∈ Z. Regarding Ei,k, the number of rows
and columns are equal ai,k and Ni,k + 1 respectively. It means that for every
(i, k) ∈ Z the value of ek,l

i,j is equal 1 otherwise is equal 0. But for the other
points (i, k) ∈ {1, ..., m} × {0, ...,M} every array of Ei,k equals zero where

M = |Z| − 1 (9)
Thus, for the bivariate Birkho� interpolation problem (5), the corresponding
matrix is εm,M = (Ei,k)m

i=1,
M
k=0 that is an incidence matrix. 2

Now, we present two examples as follows and apply Theorem 7 to obtain
interpolation polynomial. In the �rst example, we use incidence matrix and
obtain interpolation polynomial. In the second example, we use interpolation
conditions and obtain interpolation polynomial.
Example 2. Consider bivariate incidence matrix

ε4,4 =

∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥

0

∥∥∥∥∥∥

0 0 1 0
1 0 1 0
0 1 0 0

∥∥∥∥∥∥
0 0 0

∥∥∥∥∥∥

1 0 1 0 0
0 1 1 0 0
0 1 0 0 0

∥∥∥∥∥∥
0 0 0 0

0

∥∥∥∥∥∥∥∥

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

∥∥∥∥∥∥∥∥

∥∥∥∥
1 0
1 0

∥∥∥∥ 0 0

∥∥∥∥
1 0
1 0

∥∥∥∥ 0 0 0 0

∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥

(10)

In view of Theorem 7, we have
Z = {(1, 1), (2, 0), (3, 1), (3, 2), (4, 0)}, m = M = 4,
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E1,1 =

∥∥∥∥∥∥

0 0 1 0
1 0 1 0
0 1 0 0

∥∥∥∥∥∥
⇒ a1,1 = 3, N1,1 = 3,

E2,0 =

∥∥∥∥∥∥

1 0 1 0 0
0 1 1 0 0
0 1 0 0 0

∥∥∥∥∥∥
⇒ a2,0 = 3, N2,0 = 4,

E3,1 =

∥∥∥∥∥∥∥∥

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

∥∥∥∥∥∥∥∥
⇒ a3,1 = 4, N3,1 = 3,

E3,2 =
∥∥∥∥
1 0
1 0

∥∥∥∥ ⇒ a3,2 = 2, N3,2 = 1,

E4,0 =
∥∥∥∥
1 0
0 1

∥∥∥∥ ⇒ a4,0 = 2, N4,0 = 14

Using (3.6) in [7], we have
N1 = N2,0 = 4 , M1 = 0
N2 = N1,1 = N3,1 = 3 , M2 = 2
N3 = N3,2 = N4,0 = 1 , M3 = 4

Consider the following points in [0, 1]2



x1 = 0, x2 = 0.1, x3 = 0.9, x4 = 1
y1,1,1 = 0, y1,1,2 = 0.1, y1,1,3 = 0.2
y2,0,1 = 0, y2,0,2 = 0.2, y2,0,3 = 0.5
y3,1,1 = 0, y3,1,2 = 0.3, y3,1,3 = 0.6, y3,1,4 = 0.9
y3,2,1 = 0.8, y3,2,2 = 1
y4,0,1 = 0, y4,0,2 = 1

(11)

Since the incidence matrices Ei,k's are regular and

E1 =

∥∥∥∥∥∥∥∥

0
1
0
0

∥∥∥∥∥∥∥∥
, E2 =

∥∥∥∥∥∥∥∥

0 1 0
1 0 0
0 1 0
0 0 0

∥∥∥∥∥∥∥∥
, E3 =

∥∥∥∥∥∥∥∥

0 1 0 0 0
1 0 0 0 0
0 1 1 0 0
1 0 0 0 0

∥∥∥∥∥∥∥∥
are also regular, then by [7, Corollary 3.4,p.27], the incidence matrix ε4,4 is
regular. So, bivariate Birkho� interpolation problem
(Cq([0, 1]2), Π0⊗Π4 + Π2⊗Π3 + Π4⊗Π1; Dk,l

xi,yi,k,j
: (i, k) ∈ Z, (xi, yi,k,j) ∈ T ),

where
q = max{Ms + Ns}3

s=1 = 5, and x1 < ... < x4, yi,k,1 < ... < yi,k,ai,k

is uniquely solvable.
That is for all f ∈ C5([0, 1]2) for example f(x, y) = yex there exists

P ∈
3∑

s=1

ΠMs ⊗ΠNs

i.e.
P (x, y) = a0,0 + a1,0x + a0,1y + a2,0x

2 + a1,1xy+
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+a0,2y
2 + a3,0x

3 + a2,1x
2y + a1,2xy2 + a0,3y

3 + a4,0x
4+

+a3,1x
3y + a2,2x

2y2 + a1,3xy3 + a0,4y
4 + a4,1x

4y + a2,3x
2y3

and




∂3P
∂y2∂x

(0, 0) = ∂3f
∂y2∂x

(0, 0)
∂P
∂x (0, 0.1) = ∂f

∂x (0, 0.1)
∂3P

∂y2∂x
(0, 0.1) = ∂3f

∂y2∂x
(0, 0.1)

∂2P
∂y∂x(0, 0.2) = ∂2f

∂y∂x(0, 0.2)

,





P (0.1, 0) = f(0.1, 0)
∂2P
∂y2 (0.1, 0) = ∂2f

∂y2 (0.1, 0)
∂P
∂y (0.1, 0.2) = ∂f

∂y (0.1, 0.2)
∂2P
∂y2 (0.1, 0.2) = ∂2f

∂y2 (0.1, 0.2)
∂P
∂y (0.1, 0.5) = ∂f

∂y (0.1, 0.5)



∂P
∂x (0.9, 0) = ∂f

∂x (0.9, 0)
∂2P
∂y∂x(0.9, 0.3) = ∂2f

∂y∂x(0.9, 0.3)
∂3P

∂y2∂x
(0.9, 0.6) = ∂3f

∂y2∂x
(0.9, 0.6)

∂4P
∂y3∂x

(0.9, 0.9) = ∂4f
∂y3∂x

(0.9, 0.9)

,
{

∂2P
∂x2 (0.9, 0.8) = ∂2f

∂x2 (0.9, 0.8)
∂2P
∂x2 (0.9, 0.1) = ∂2f

∂x2 (0.9, 0.1)
,

{
P (1, 0) = f(1, 0)
∂P
∂y (1, 1) = ∂f

∂y (1, 1)
By the conditions above, the algebraic system of coe�cients of p(x,y) is as
follows: 




2a1,2 = 0
a1,0 + 0.1a1,1 + 0.01a1,2 + 0.001a1,3 = 0.1
............

............

............

1 + a0,1 + a2,1 + 3a0,3 + a3,1 + 4a0,4 + a4,1 = e

Therefore, the solution of system is
a1,0 = a0,2 = a1,2 = a0,3 = a2,2 = a1,3 = a0,4 = a2,3 = 0, a1,1 = 1,
a0,0 = 3.46× 10−7, a0,1 = 0.999928024, a4,1 = 6.678685615,
a3,1 = 0.13497021, a2,1 = 0.510326531, a2,0 = −1.314× 10−5,
a4,0 = −1.5909× 10−5, a3,0 = 2.8702× 10−5

Thus, the Birkho� polynomial P is
PB(x, y) = 0.0000003459603111 + 0.999928024y − 0.00001314x2+
+xy + 0.000028702x3 + 0.510326531x2y−
−0.000015909x4 + 0.13497021x3y + 6.678685615x4y.

In the following example, the knots and Birkho� conditions are given then, we
obtain Birkho� polynomial.
Example 3. By the following knots in [0, 1]2 and Birkho� conditions and in
view of Theorem 7 and the indices i,j,k,l, we have





∂3P
∂y2∂x

(x1, y1) = ∂3f
∂y2∂x

(x1, y1)
∂P
∂x (x1, y2) = ∂f

∂x (x1, y2)
∂3P

∂y2∂x
(x1, y2) = ∂3f

∂y2∂x
(x1, y2)

∂2P
∂y∂x(x1, y3) = ∂2f

∂y∂x(x1, y3)

,





P (x2, y1) = f(x2, y1)
∂2P
∂y2 (x2, y1) = ∂2f

∂y2 (x2, y1)
∂P
∂y (x2, y2) = ∂f

∂y (x2, y2)
∂2P
∂y2 (x2, y2) = ∂2f

∂y2 (x2, y2)
∂P
∂y (x2, y3) = ∂f

∂y (x2, y3)
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



∂P
∂x (x3, y1) = ∂f

∂x (x3, y1)
∂2P
∂y∂x(x3, y2) = ∂2f

∂y∂x(x3, y2)
∂3P

∂y2∂x
(x3, y3) = ∂3f

∂y2∂x
(x3, y3)

∂4P
∂y3∂x

(x3, y4) = ∂4f
∂y3∂x

(x3, y4)

,
{

∂2P
∂x2 (x3, y1) = ∂2f

∂x2 (x3, y1)
∂2P
∂x2 (x3, y2) = ∂2f

∂x2 (x3, y2)
,

{
P (x4, y1) = f(x4, y1)
∂P
∂y (x4, y2) = ∂f

∂y (x4, y2)
Now, we consider the points (11) in [0, 1]2, then

Z = {(1, 1), (2, 0), (3, 1), (3, 2), (4, 0)}.

Regularity of Ei,k's is obvious here:

E1,1 =

∥∥∥∥∥∥

0 0 1 0
1 0 1 0
0 1 0 0

∥∥∥∥∥∥
, E2,0 =

∥∥∥∥∥∥

1 0 1 0 0
0 1 1 0 0
0 1 0 0 0

∥∥∥∥∥∥
, E3,1 =

∥∥∥∥∥∥∥∥

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

∥∥∥∥∥∥∥∥
,

E3,2 =
∥∥∥∥
1 0
1 0

∥∥∥∥ , E4,0 =
∥∥∥∥
1 0
0 1

∥∥∥∥
Therefore,

a1,1 = 3, N1,1 = 3, a2,0 = 3, N2,0 = 4

a3,1 = 4, N3,1 = 3, a3,2 = 2, N3,2 = 1

a4,0 = 2, N4,0 = 1

and also
N1 = N2,0 = 4, M1 = 0,

N2 = N1,1 = N3,1 = 3, M2 = 2

N3 = N3,2 = N4,0 = 1, M3 = 4.

Using (9), we can write incidence matrix ε4,4 in (10).
Thus, matrices

E1 =

∥∥∥∥∥∥∥∥

0
1
0
0

∥∥∥∥∥∥∥∥
, E2 =

∥∥∥∥∥∥∥∥

0 1 0
1 0 0
0 1 0
0 0 0

∥∥∥∥∥∥∥∥
, E3 =

∥∥∥∥∥∥∥∥

0 1 0 0 0
1 0 0 0 0
0 1 1 0 0
1 0 0 0 0

∥∥∥∥∥∥∥∥

for knots x1, x2, x3, x4 and also the incidence matrices E1,1, E2,0, E3,1, E3,2, E4,0

for knots yi,k,j 's are regular. Thus by corollary 3.4 of [7, P.27], ε4,4 is regu-
lar. For every f ∈ C5([0, 1]2) there exists P ∈ ∑3

s=1 ΠMs ⊗ ΠNs so that it
satis�es interpolation conditions. Finally, with knots (xi, yi,k,j) in (11), we can
establish P .
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3.3. Bivariate Haar Approximation. In [9] and [15], the authors presented
univariate Haar series. Now, we investigate a new case of bivariate Haar ap-
proximation in the following example.

Example 4. Using the approximation presented in [4], we compute Haar �
Fourier coe�cients

am,n(f) =
∫ 1

0

∫ 1

0
f(x, y)χm,n(x, y)dxdy

for bivariate function f(x, y) = yex then, by (20) in [4], we have

a1,1(f) =
e− 1

2
, a2,2(f) =

2e1/2 − e− 1
2

,

a3,3(f) =
2e1/4 − e1/2 − 1

4
, a3,4(f) =

6e1/4 − 3e1/2 − 3
4

,

a4,3(f) =
2e3/4 − e1/2 − e

4
, a4,4(f) =

6e3/4 − 3e1/2 − 3e

4
.

We recall that the Haar function is given

χm,n(x, y) =





2k x ∈ ∆+
m, y ∈ ∆n

−2k x ∈ ∆−
m, y ∈ ∆n

0 (x, y) /∈ ∆n,m

where χ1,1 ≡ 1 and the binary interval ∆n and other signs in De�nition 10 are
satis�ed. Then the Haar polynomial is:

PH(x, y) = 2.218281828− 0.210419644χ2,2(x, y) + 1.919329563χ3,3(x, y)+

+0.486540953χ3,4(x, y)− 0.033250766χ4,3(x, y)− 0.099752299χ4,4(x, y).

4. Comparison of function f(x, y) = yex with PB(x, y) and PH(x, y)
Using the following eight points, we compare f(x, y), PB(x, y), PH(x, y)

Tabl. 2. comparison of f(x, y), PB(x, y), PH(x, y)

(x, y) f(x, y) pB(x, y) pH(x, y)
(0,0) 0 0.0000003 5.846521
(0,0.1) 0.1 0.099993 5.846521
(0.1,0) 0 0.0000002 5.846521
(0.1,0.1) 0.110517 0.110583 5.846521
(0.2,0.5) 0.610701 0.616053 4.413732
(0.9,0.1) 0.245960 0.679357 2.495203
(0.2,0.9) 1.099262 1.108896 2.980944
(0.9,0.9) 2.213642 6.114214 2.628206
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Now, we compare f(x, y), PB(x, y) by using their graphs.

Fig. 5. The graph of f(x, y) on [0, 1]2

Fig. 6. The graph of PB(x, y) on [0, 1]2
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