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ANOTHER CASE OF INCIDENCE MATRIX
FOR BIVARIATE BIRKHOFF INTERPOLATION

A.NAzZARZADEH, KH. RAHSEPAR FARD, A. MAHMOODI

PE3IOME. V miit ctaTTi criepnry mOJAHO CHEIiaJbHUN BUTAI0K OJHOBUMIPHOL
3ama4i inreprossnii Bipkroda i 3a i1 70MOMOron amrpoKCHUMOBAHO PO3B’ 30K
rpanu<HOl 3a4a4l g pisaguug Jlanmaca. lasi po3riigmyTo iHIMAHM THI IBO-
BUMIpHOI 33134l inTepnosisarmii Bipkroda, B aKiif yMOBU iHTEPIIOJIAIIT 3a/1aHi B
TOYKaX 3 KPATHICTIO. BBeIeHO iHIIIe o3HAYeHHS /I MATPUIl 1HIIAIEHTHOCTI.
3pobuieno nopisusuus anpokcumaniii Bipkroda i Xaapa i nokazano nepesary
iaTepmosarii Bipkroda.

ABsTRACT. In this paper, first we present a special case of the univariate
Birkhoff interpolation problem, and using that, we approximate the solution of
a Laplace boundary value problem. Then we present another type of bivariate
Birkhoff interpolation problem in which interpolation conditions are on some
knots with multiplicity. We introduce another notation for incidence matrix.
Finally, we compare two approximations Birkhoff and Haar then we show that
Birkhoff interpolation is better than the other.

1. INTRODUCTION

In this paper we present some basic notations and useful properties in ana-
lyzing the interpolation polynomials. Let us denote II,, the space of one variable
interpolation polynomials of degree not exceeding n, and II? the space of bi-
variate interpolation polynomials of degree not exceeding n.

The problem of interpolating a real function f by a univariate polynomial
from the values of f and some of its derivatives on a set of knots is one of the
main questions in numerical analysis and approximation theory.

In [1] and [10] the authors studied univariate Birkhoff interpolation and its
properties. Let x = {x1, ..., z, } be a set of real numbers such that 1 < ... < x,,
let r be an integer and let I C {1,...,n} x {0,..,7} be the set of pairs (¢,7) in
which the value fU) (x;) = fij is known where f is a real function. The problem
of determining the existence and uniqueness of a polynomial P in R! satisfying
the conditions V¥(i,7) € I,p(x;) = fi; is called the Birkhoff interpolation
problem.

In recent years there has been renewed interest and progress on Hermite-
Birkhoff interpolation. The original source for this activity is work by G. D. Bir-
khoff in 1906, with a notable contribution by G. Polya in 1931.

Key words. Bivariate Birkhoff Interpolation Problem; Polya Condition; Incidence Matrix;
Interpolation Polynomial; Haar Approximation; Hermite-Birkhoff; Operator Interpolation.
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The interpolation conditions can be described by using special type matrices.
Consider the matrix E = (e; ;) with n rows and r+1 columns, filled with 0’s
and 1’s so that e;; = 1 if and only if (¢,j) € I. The E is called incidence
matriz.

In 1966 Schoenberg (see [19]) posed the problem of determining all those
E for which the problem P(j)(xii) = ¢;; is always (for all choice of x;,¢; ;)
solvable. We call such matrices E regular and the remaining matrices singular.

Let E = (e;,;) be an m x (n+ 1) incidence matrix. Then m; = ), e; ; is the
number of 1’s in column j, and M, =377 _om; = >t 4> ", €;; is the number
of 1’s in columns of E numbered 0,1,...,7r. For the matrix E, the condition
M, >r+1,r=0.1,...,n, is called the Polya condition.

Definition 7. The incidence matrix F = (em-), 1<i<m,0< 5 <niscalled
poised with respect to {z;}™, if the unique solution of problem PU)(z;) =
0,1 <¢<m,0< 7 <nis a trivial polynomial.

In [8], the following Polya’s result is well-known.

Theorem 1 (Polya’s Theorem). The incidence matriz E of 2 x n dimension is
poised if and only iof Polya condition s true.

In [20], the author posed, for a 2 x n incidence matrix E = (e; ;), we define
a 2 x n matrix G = (g;;) as follows:

gij=1l—¢€pnj1,1<i<2,0<5<n—1.

Then G is also an incidence matrix, because 2?21 Z?:_ol e;; = n. The matrix
G is called a dual incidence matrix corresponding to E. For example, for the
1 00 110
‘O 11 0 0 1

The following theorem give a relationship between a 2 X n incidence matrix
E and its dual matrix G.

incidence matrix E = , its dual matrix becomes £’ =

Theorem 2. A 2 X n incidence matriz E is poised if and only if dual matriz G
is poised. In [20], the author shown that there exists a quadrature formula in the
form fab P(x)dx = Zei’jzl w; ;P9 (2;) to be exact for any polynomial P with
degree at most n-1, where w; ;’s are weight coefficients independent of P. This
1s called, the Hermite-Birkhoff quadrature formula for the incidence matriz E.

Theorem 3. A 2 x n incidence matriz E is poised if and only if there exists a
Hermite-Birkhoff quadrature formula specified by F.

In [16], author presented below property of incidence matrix E:

Letmj =3, €i;,j =0,..,nand M, = >7"_;mj,r = 0,...,n, then E satisfies
the strong Polya condition if M, > r 4+ 2,r = 0,....,n — 1. If E does not
satisfy strong Polya condition, then E may be decomposed in to matrices,
E=FE@QE P @ En where Ej’s satisfies strong Polya condition.

In [18], the author proved below theorem:

Theorem 4. Let E,, satisfy the Polya condition. Then E, has a unique decom-
position B, = En, @ Eny @ ... D En,,n1+na...4ng =n, where By, j =1,...,q
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satisfies the strong Polya condition. Moreover Ey, is poised if and only if Ey’s
are poised.

The Birkhoff interpolation problem is one of the most general problems in
multivariate interpolations. For clarity of the exposition, we will only restrict
ourselves to the bivariate case.

In [11, Def. 3.1.1, p. 9], the authors studied bivariate Birkhoff interpolation
problem. The bivariate Birkhoff interpolation problem depends on a finite set
T = {zg}it; C R? of knots and interpolation space IT; of polynomials and
an incidence matrix £ = (eq,). The bivariate Birkhofl interpolation problem
is, for given real numbers ¢, 4, to find a polynomial p € 112 satisfying the
interpolation conditions

3a1+a2
WP(Z‘I) = Cqa (1)

with eq o = 1 where o = (a1, az).

In this paper, we present a special case of univariate Birkhoff interpolation
problem together with an example of boundary value problem introduce in [2],
and also a method for obtaining the interpolation polynomial in the case of
a set of types conditions, given on a set of knots in R2. This method is a
generalization of the tensorial product method introduced by F.J.Hack in [7].
In this way, we investigate bivariate Birkhoff polynomial for the set of knots T
such that |T| < (";2)

In [11] and [3], authors introduced Polya conditions for multivariate Birkhoff
interpolation as follows:

Definition 8. An incidence matrix E satisfies the (lower) Polya condition (with
respect to S) if |E4| < |A| for any lower set A C S. E satisfies the upper Polya
condition if |Eg| < |B| for any upper set B C S. A set B is an upper set with
respect to Sif « € B, > a and § € S imply that 3 € B. B is an upper set of
S if and only if S\ B is a lower set.

Similar to notations in [4], we apply the Haar function and interpolation
problem. In [4], the authors presented some theorems for uniqueness. Thus we
employ those theorems, for example, formula (8) and Theorem 3.1 and Example
3.2, p.107-109.

Problems of generalization in functions interpolation theory with functionals
and operators in abstract spaces are considered in numerous works.

Definition 9. Let F': X — Y be an operator, where X is a Hilbert and Y
is a vector space; let P, : X — Y be an operator polynomial of the form
P,(x) = Lo+ Lix+...4+ Lyz™, where Lo € Y; and let Ly(t1,...,tp) : XP — Y
be a p-linear operator, p =1, ...,n. Let {x;}!" be a system of elements from X.
A polynomial operator P, is called an interpolating polynomial for F in nodes
{x;}, C X if it satisfies the conditions P, (z;) = F'(z;),7 = 1,...,m.

In the case X =Y = R! the requirement that the interpolation functionals
be the same algebraic polynomials.
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In [12] and [13], the authors investigated the operator interpolation theory
in Hilbert space and solvability Hermite interpolation problem with the op-
erator values at the nodes with Gateaux differentials defined on the auxiliary
nodes and some given directions. For example, let II,, be a set of the operator
polynomials P, : X — Y of degree not exceeding n and p € II,, satisfies the
conditions:

p(xi) = F(x),p'(wi)hi = F'(zi)hiyi = 1,...,m (2)

For investigate Hermite problem with interpolation conditions (2) we consider
the auxiliary nodes

T =T1,T2 = T1 + ah1,T3 = 22, T4 = T2 + aho, ..., Tom—1 = Ty,

Tom = Tm + @hm,a € R, a0 #0

of the matrix
T(0) = || S0 (@ 7))

i,j=1
and
1 0 0 00 0 0 0
=2 1 0 00 0 0 0
0 0 1 00 0 0 0
o o =t 1o 00 0
Cla) = .
00 0 00 01 0
0 0 0 00 o =t 1

and the vectors
F(a) = (F (1), F(Z2), ..., F(Tam)), P(a) = (p(Z1),p(T2), ..., p(Tam)), p € IL,.

In [13], p.97, Theorem 1.1 shown that a necessary and sufficient condition for
the solvability of the Hermite operator interpolation problem (2) in a Hilbert
space, that the condition ZFy = 0 and the formula p(z) = ¢(x) + (Fg —
qm, HY gg (), with q(x) varies over II,,, describes the whole set of the Hermite
operator polynomials of the n-th degree satisfies the interpolation conditions
(2). In [13], explained notations ZFy, Fi,qu, H gn.

When some of the conditions of the Hermite interpolation are absent then,
they are called to Hermite- Birkhoff conditions. For example, the conditions:

p(wi) = F(z:), 0" (@)h$ 0 = F'(@)h$hP i =1,...,m (3)

are Hermite-Birkhoff conditions. In [13], Theorem 2.1, p.110, itroduced a neces-
sary and sufficient condition for the solvability of the Hermite-Birkhoff operator
interpolation problem in a Hilbert space.

Now we introduce an important result as follows:

A sufficient condition for the invariant solvability of the Hermite operator
interpolation problem given as the following theorem. We shall denote by M a
number of the interpolation conditions in the Hermite operator interpolation.
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Theorem 5. The Hermite interpolation problem in a Hilbert space is invariant
solvability for anyn > M — 1.

For example every Hermite interpolation problem with conditions (2) by
Theorem 5 is invariant solvable.

By text in [13], p.112, if the Hermite-Birkhoff interpolation problem for a
function of one variable has the unique solution, then the appropriate Hermite-
Birkhoff operator interpolation problem is invariantly solvable. Now we ap-
ply Polya’s theorem in case m=2 for the invariant solvability of the Hermite-
Birkhoff operator problem with the interpolation conditions containing values
of operator polynomial p of the third degree and Gateaux differentials of the
second order

plan), o (@) SR, p(aa), " (22) R 1D (4)
In the corresponding Hermite-Birkhoff interpolation problem of one variable we

have
1 01

1 01
m0:2, m1:0, m2:2, M(]:Z, M1:2, M2:4
Since M; > j+1,j = 0,1,2 then by Polya’s Theorem, the classical Hermite-
Birkhoff problem
p(t) =0, p"(t1) =0, p(t2) =0, p'(t2) =0
on the set of the polynomial of the 3-d degree has the unique solution zero-

polynomial. But as we stated above, the corresponding Hermite-Birkhoff oper-
ator problem (4) is invariantly solvable.

9

M=4, n=M-1=3, E:H

2. BIVARIATE BIRKHOFF INTERPOLATION

Following R.A. Lorentz in [11], an interpolation problem is regular if it is
uniquely solvable for all selections of distinct nodes and all data. In the uni-
variate case, Lagrange and Hermite interpolation are regular, but in the mul-
tivariate case, even Lagrange interpolation is not regular. Here, we study a
solvable interpolation problem in multivariate case.

A uniqueness technique for bivariate Birkhoff interpolation problem is pre-
sented in |7]. The technique has been explained in |7, theorem 3.3, p.26]|, where
interpolation polynomial is tensor product of functionals. that is why, we intro-
duce incidence matrix. For exactly M+1 pairs (i, k) € {1,...,m} x {0,..., M},
we suppose that F;j = <€i§)1§j§ai.k 0<I<N;, Where a;x € N,N;; € Np and
for others (i,k)’s, E;r, = 0. Regularity condition is established, using bidi-
mensional incidence matrix corresponding to Birkhoff interpolation problem.
Hence, the bivariate Birkhoff interpolation problem is as follows:

P
CM(G), > T, @ Ty Dty 2 (k) € Z, (wi,yiny) €T (5)

s=1
This means that for all f € CM(G), G C R? there exists P € Y.7_, Ty, ® [y,

where I3, ® Iy, is tensor product of functionals and Dl;;{yi v P = D’;;{yi il

such that T is the set of distinct knots i.e. T' = {(z,¥ik,;)} s-t. 21 < ... < zp
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and also Yix1 < - < Yikas, (k) € Z,Z C {1,...,m} x {0,..., M} so that
Z={(i,k): Eij #0}.

In view of corollary 3.4 [7, p.27|, if matrices Ey’s for points z1,...,x,, are
regular and matrices F; ;s are regular for points v; 1 1, ..., Yi k,a;, then the inci-
dence matrix &, 1 is regular for {(x;,y;k ;)}. It means that the interpolation
problem is unique.

3. THE RESULT
3.1. Univariate Case. In [2]|, a Birkhoff interpolation problem was studied.
Now, we introduce another case of Birkhoff interpolation problem. In [17],
the author introduced Lagrange’s fundamental polynomials. For given points
X0, X1, .-, T, let us use the fundamental polynomials ly, l1, ..., l,, where [;(z) =

[T;4( ] ) such that

Ty — Xy
1 itk=i
L) =42 7' ki=0,1,..n
0 ifk#1d
We recall that the Green’s function was defined in [5], [6], [14].
Theorem 6. Let w; € R1,i =0,1,....n and —1 = 20 < 21 < ... < Tp_1 <

xn =1 and l;(x) be the fundamental polynomials of Lagrange calculated on the
n-1 points x;,i = 1,....,n — 1 and pp(x) = f_ll Gz, t);(t)dt,i = 1,..,n — 1,

where
1
G(x,t):{ t<z
0 <t

is a Green’s function, then the polynomial

Wn T =z,
P €Tr) = 6
) {“‘)0 + Z?:_f Pn,i(T)w; otherwise (6)

1§ the unique polynomial of degree < n — 1 which satisfies the Birkhoff interpo-
lation conditions

Py (z0) = wo, Po(z;) =wi,i=1,...,n—1, Py(zy) = wp (7)
Proof. We know that P, ;(z) is the solution of the boundary value problem

P (x)=1; ’
i () () , i=1,..,n—1, because P, (r)= / Li(t)dt.
Pn,i(_l) =0 | !

The polynomial (6) satisfies the interpolatory conditions (7). For the proof of
the uniqueness, since P, ;(x) is a polynomial of degree not exceeding n-1, now
suppose that P,, is another polynomial of degree not exceeding n-1 where it is
true in (7) such that Pp(x) # P,(x).

We set ¢y, (z) := Py (z) — Py(z). The polynomial ¢, () has n-1 zeros, there-
fore it has n-2 optimum, namely, ¢/, (z;) = P, (z;) — P,(x;) = 0. After repeated
this process and applying Rolle’s theorem, we conclude that ¢,(x) = 0. Thus
P,(x) = P,(z) that is contradiction. O
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Remark 1. By Theorem 6, since the Hermite-Birkhoff interpolation problem
with conditions (7) has unique solution then the corresponding Hermite-Birkhoff
operator interpolation problem is invariant solvable.

In [9] and [15], the authors presented Haar approximation. Now, we intro-
duce Haar function and its apply for below example.

Definition 10. The Haar function x,(z),x € [0,1], where x1 = 1, and for
2k < p <281 k£ =0,1,--- is defined as follows:

25 xe¢ A
Xn(2) =4 —2% x €A (8)
0 x ¢ A,
where A, is a binary interval of the form (22_—,}, Qik) where k= 0,1,... and i =
1,2,..., 2% For n = 2F 44 we write A, = Al = (;,} ) A =[5, & A=
A= (0,1), A1 = [0, 1], AF = (G, 3i57), A = (3551, 5%) The values of xn(x)

] re specified as follows:

(
at pomts of discontinuity and at the endpoints f a
n(0) = limy_o+ Xn(t),

Xn (@) = glima—o[xn(2 + a) + xa(z — @),z € (0,
Xn(1) = lithO‘FXn(l —1).

XH

For clarity of the Theorem 6, we present an example:

Example 1. The solution of Laplace boundary value problem

gi2+ay =0 , O<zx<l,0<y<l1
u(x,()):()
u(z,1) =

2nm—2nem(—1)"

is u(x,y) =Y oo by sinh (n7y) sin (nwx) where by, = G nZaDysimnh(nm) "

Using theorem 6, we compute Birkhoff interpolation polynomial for f(x) = e*
in these knots: zg = 0,717 = %,1'2 = %,173 = %,:1:4 = 1. Let wyp = f(0) =
Lw = f/(3) = ef,wy = f'(3) = ef,wy = f(3) = el,wy = f(1) = e then,
I1(t) = 8t2 — 10t + 3, 12(t) = —16t% + 16t 3 13( ) = 8t% — 6t + La are Lagrange
polynomials on x1, z2, x3 and Py 1(z) = — 52243z, Py 2(z) = m3+8:ﬂ +
3z, Pys(x) = %x3 — 322 4+ 2 thus Py(x ) = (ge}l — 13662 + 64)$ +( bei +
8ez — 36%)1‘2 + (36i — 3e2 + e%)a: + 1 and also ps(1) =e.

Now, we employ approximation Haar-Fourier Py (z) = Y oo Co(f)xn ()
for the function f(x) = e* and its compare to Ps(x). First, we compute Haar-
Fourier coefficients Cy,( fo x)dz as follows: C1(f) =e—1,Ca(f) =
261/2—6—1,Cg(f) = 2\[61/4 fel/Q f,C4( f)= 2V/2e3/4 — \/2e/2 — \/2e,
thus the Haar polynomial is: Py (x) = e — 14 (2eY/%2 —e—1)xa(z) + (2v/2e'/* —
V2el/2 — V2)x3(z) + (2ﬂe3/4 —/2el/2 = v2e)x4(x) Using the following ten

points, we compare f(x), Py(x), Py (x)
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TaBL. 1. Comparison of f(x), pa(z), pg(z) in [0,1]

x| fz) pa() pu ()

0 1 1 1.136101666
0.1 | 1.105170918 | 1.106753896 | 1.136101666
0.25 | 1.284025417 | 1.286209257 | 1.297442541
0.3 | 1.349858808 | 1.352009578 | 1.458783416
0.5 | 1.648721271 | 1.650644616 | 1.665949200
0.7 |2.013752707 | 2.020817622 | 1.873114984
0.75 ] 2.117000017 | 2.119201800 | 2.139121116
0.9 | 2.459603111 | 2.461087206 | 2.405127248
0.99 | 2.691234472 | 2.691012369 | 2.405127248
1 2.718281828 | 2.717776531 | 2.405127248

Consequently one might favor Birkhoff interpolation in some cases.
Now, we set ps(x) instead of f(z) = e” in Laplace boundary value problem and
obtain the approximation solution u(z,y) = 32, ay, sinh(nmy) sin(nrz) where

1 .
an = 7Sinh2(m) Jo pa(z) sin(nmwzx)da.
Using Maple program, graphs are as follows:

0.2

0.2 0.6

0’8 1

Fia. 1. Comparison of f(z) with ps(x) in [0,1]

3.2. Bivariate Case. In this paper, uniqueness is investigated in another way.
In [7, Corollary 3.4, p.27], if the incidence matrix is characterized, then the
interpolation polynomial can be obtained.

Now, suppose that the interpolation conditions are given. Then, we compute
a corresponding matrix as follows:

Theorem 7. Suppose that the bivariate Birkhoff interpolation problem (5) is
given. Then, the incidence matriz is characterized.
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Fia. 2. Comparison of f(z) with ps(x) in [0,0.01]

F1G. 3. Graph u (z,y) = 1% b, sinh (n7y) sin (n7z)

n=1

Proof. First, we arrange the knots as follows 1 < ... < x,,, where for each the
second component of these points, namely, y; k.1, ..., ¥ik.j, 1 < j < a; %, where
ajk € N.

Note that k is the order of partial derivative of the first variable for P(x,y),
and we denote the order of partial derivative of second variable for P(x,y) by
1, where 0 <1 < N; ., N; . € No.

Let Z be a set of pairwise (i,k)’s in (5). For indices i,j,k,1 in (5), we define
evi=1,(i,k) € Z.

Using eﬁ’; we construct a matrix where j,1 are the number of rows and
columns, respectively.
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Fic. 4. Graph u(z,y) = Z};f? ap, sinh (n7y) sin (nmx)

ik Nik /. .
Let B = (ei’;)?;’ﬁ,lg(’f ,(i,k) € Z. Regarding E;j, the number of rows
and columns are equal a; ) and N;j + 1 respectively. It means that for every
(i,k) € Z the value of ef’} is equal 1 otherwise is equal 0. But for the other

points (i,k) € {1,...,m} X {0,..., M} every array of E; equals zero where

M=|z] -1 (9)
Thus, for the bivariate Birkhoff interpolation problem (5), the corresponding
matrix is e, = (Ei k)" 1AL, that is an incidence matrix. O

Now, we present two examples as follows and apply Theorem 7 to obtain
interpolation polynomial. In the first example, we use incidence matrix and
obtain interpolation polynomial. In the second example, we use interpolation
conditions and obtain interpolation polynomial.

Example 2. Consider bivariate incidence matrix

0010
0 1010 0 00
0100

10100

01100 0 0 0 0

01000

Faa= 1000 (10)

010 ol [[1 0

0 0010H10H00
000 1

10

H10 0 0 00

In view of Theorem 7, we have

Z = {(1,1),(2,0),(3,1),(3,2),(4,0)}, m=M =4,
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0 010

El,l =11 0 1 0|l = ayl = 3, N1,1 = 3,
01 0O
1 01 0 O

E270 =)0 1 1 0 0f = az0 = 3, N270 = 4,
01 0 00
1 0 0 O
01 00

E31 = 00 1 ol=as1= 4, Nz =3,
0 0 01
1 0

B2 = |y OH = agz2 =2, Nzo2=1,
1 0

Ero= |y 1|| = ®0=2, Nap=14

Using (3.6) in |7], we have
Ni=Nyg=4,M =0
N2:N171:N371=3,M2:2
N3:N372:N470:1,M3:4

Consider the following points in [0, 1]?

(21 =0,290=0.1,23 =0.9,24 = 1

Y111 =0,9112=0.1,9113=0.2

y2,01 = 0,%202 = 0.2,y203 = 0.5

Y311 =0,9312=0.3,9y313=0.6,y314=10.9

Y321 =08,y322=1

Y401 = 0,y402 =1

(11)

Since the incidence matrices F; ;s are regular and

0 010 0100 0
1 100 10000
Er=lloll- E2=1lo 1 o =10 1 1 0 o0
0 000 10000

are also regular, then by |7, Corollary 3.4,p.27|, the incidence matrix €44 is
regular. So, bivariate Birkhoff interpolation problem

(Cq([o’ 1]2)’1_[0®H4+H2®H3+H4®H1;Dk’l : (luk) € Za (xiayi,k?,j) € T)7

TiyYik,j
where
q=max{Ms+ Ns}3_, =5, and 21 < ... < T4, Yi o1 < ... < Yik,ai
is uniquely solvable.
That is for all f € C3([0,1]?) for example f(x,7y) = ye® there exists

3
Ped My, @Iy,

s=1
1.e.
P(z,y) = aop + a1,0z + ap1y + az,07” + a1 12y+
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+a0,2y2 + 613,0373 + a2,1w2y + a1,296y2 + a0,3y3 + a47oa:4+
3 2.9 3 4 4 2.3
+a312°Y + a222°Y” + a132Y° + ap 4y + a417°Y + a2 3T°Y

and

’ P(0.1,0) = £(0.1,0)

93 )

o0 aay?a’”(o N 22(0.1,0) = 24(0.1,0)
%253001)_35(001) 6P(01 0.2) = %(01 0.2)
dpor (- 0-1) = 2 283”(0 0-1) ‘921’(0 1,0.2) = 0y £(0.1,0.2)
o°P (0,0.2) = 24.(0,0.2) ay°

Oyoe o f’P L(0.1,0.5) = 8—/‘(0 1,0.5)
'5";’(09 0) = af(o9 0)

55:(0.9,0.3) = <0 9,0.3) 2°2(0.9,0.8) = 2£(0.9,0.8)
5755 (09,0.6) = o an (0.9,0.6) " | %£(09,0.1) = 5£(0.9,0.1)
4
035-(0.9,0.9) = 52:1-(0.9,0.9)
Gr ) =gt

By the conditions above, the algebraic system of coefficients of p(x,y) is as
follows:

2&172 =0
a1+ 0.1&171 + 0.010,1’2 + 0.001a173 =0.1

1+ap1+az1+3a03+az1+4aps+as1=e
Therefore, the solution of system is
aip =ap2 =a12 = ap3 = az2 = a3 = ag4 = az3 = 0,a11 = 1,
oo =346 x 1077, agy = 0.999928024, a4 = 6.678685615,
agy = 0.13497021, az1 = 0.510326531, azo = —1.314 x 1075,
asgp = —1.5909 x 1075, a3 = 2.8702 x 107°
Thus, the Birkhoff polynomial P is
Pg(z,y) = 0.0000003459603111 + 0.999928024y — 0.0000131422+
+xy + 0.00002870223 + 0.51032653 122y —
—0.0000159092* + 0.1349702123y + 6.678685615xy.

In the following example, the knots and Birkhoff conditions are given then, we
obtain Birkhoff polynomial.

Example 3. By the following knots in [0, 1]? and Birkhoff conditions and in
view of Theorem 7 and the indices i,j,k,l, we have

P(x2,91) = f(x2,y1)
3P 83 f ) )
ayzam (r1,y1) = 979% (z1,91) 92p P (59, 11) = 2f($ )
ar (ZC ) f(l‘ ) ay 25, Y1 oy? 2, Y91
Oz 1,92 oz 1,92 oP (x )_8f(x )
93P ( ) 83f ({L‘ ) 8y 2, Y2 3y 2, Y2
8y2ax xT1,Y2 2oz \ 1y Y2 92p (.7) ) f (l‘ )
82P( )= 9 f( ) ‘ay2 \ T2, Y2 ay? \X2, Y2
Oyoz 1Y) = Byde P U8 OP (19, y3) = gf(@ Y3)

M y b
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o
O (w3,51) = 55(53,y1)
9P _ 90 2 a2
gz (X3, 92) = ﬁ(m,yz) PP (w3, y1) = L (23,11)
83 0 2 2 y
(’)3;278];(1'37:%3) = Wéx(%-&yf}) 87123(553,?42) = %(x?”yQ)

4 84
381137312(553,94) = W&@&Z/Q
{P(ﬂ%yl) = f(l‘4,yl)

9
82 (24, y2) = G (2, 10)

Now, we consider the points (11) in [0, 1]2, then

Z ={(1,1),(2,0),(3,1),(3,2),(4,0)}.

Regularity of E;’s is obvious here:

0 010 1 01 0O é (1) 8 8
Eig=|1 0 1 0, Eyo=[0 110 0, Ei=|l; o, ol
01 00 01 0 00 00 0 1
1 0 1 0
Therefore,
ajnp =3, Ni1=3, a0=3, Nypg=4
azgnp =4, N31=3, az2=2, N3p=1
asgp =2, Nypo=1
and also
Ny =Ngg=4, M =0,
No=Ni1=N31=3, My=2
N3 =N3o=N4p=1, M3z=4.
Using (9), we can write incidence matrix €44 in (10).
Thus, matrices
0 01 0 01 0 00
1 1 0 0 1 0 0 0 O
Ex=1lgll E2=1o 1 o0 B =10 1 1 0 0
0 0 0 O 1 0 0 0 O

for knots 1, w2, r3, x4 and also the incidence matrices F1 1, Ea0, 31, 32, F40
for knots y; 1 ;s are regular. Thus by corollary 3.4 of [7, P.27], €44 is regu-
lar. For every f € C°([0,1]?) there exists P € Y.°_ T, ® Iy, so that it
satisfies interpolation conditions. Finally, with knots (z;,y;x, ;) in (11), we can
establish P.

67



A. Nazarzadeh, KH. Rahsepar Fard, A. Mahmoodi

3.3. Bivariate Haar Approximation. In [9] and [15], the authors presented
univariate Haar series. Now, we investigate a new case of bivariate Haar ap-
proximation in the following example.

Example 4. Using the approximation presented in [4], we compute Haar —
Fourier coefficients

1 1
tmn(f) = /0 /0 £, 4) X (2, ) dedy

for bivariate function f(z,y) = ye® then, by (20) in [4], we have

e—1 2012 _ ¢ -1
al,l(f) - 2 ) a2,2(f) - fv
2el/4 _el/2 _q 6el/d — 3el/2 — 3
a3,3(f) = 4 ; a3,4(f) = 4 )
2e3/4 _el/2 _¢ 6e3/4 — 3el/2 — 3¢
as3(f) = 1 ;o aaa(f) = 1 .

We recall that the Haar function is given
28 xeAf yeA,
Xm,n(2,Y) = L = AL ye A,
0 (z,9) ¢ Bnm

where x1,1 = 1 and the binary interval A,, and other signs in Definition 10 are
satisfied. Then the Haar polynomial is:

Py (x,y) = 2.218281828 — 0.210419644 X2 5(, y) + 1.919329563 3 3(z, y)+
+0.486540953 3 4(2, y) — 0.0332507664.3(x, y) — 0.099752299x4 4(, y).

4. COMPARISON OF FUNCTION f(z,y) = ye® WITH Pg(x,y) AND Pg(z,y)
Using the following eight points, we compare f(z,v), Pg(z,vy), Pu(z,y)

TABL. 2. comparison of f(x,y), Pe(x,y), Pu(z,y)

(z.y) | flzy) |ps(@y) | pu(zy)
(0,0) 0 0.0000003 | 5.846521
(0,0.1) | 0.1 0.099993 | 5.846521
(0.1,0) |0 0.0000002 | 5.846521
(0.1,0.1) [ 0.110517 | 0.110583 | 5.846521
(0.2,0.5) | 0.610701 | 0.616053 | 4.413732
(0.9,0.1) [ 0.245960 | 0.679357 | 2.495203
(0.2,0.9) [ 1.099262 | 1.108896 | 2.930944
(0.9,0.9) [ 2.213642 | 6.114214 | 2.628206
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Now, we compare f(z,y), Pg(x,y) by using their graphs.

FIG. 5. The graph of f(z,y) on [0,1]?

FiG. 6. The graph of Pg(z,y) on [0, 1]?
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